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A calculation is made of the attenuation coefficient and of the dispersion of the velocity of long- 
wavelength sound in weakly disordered metals with one-dimensional conductance at low 
temperatures. It is shown that delocalization of electrons by thermal phonons at temperatures 
T < w, results mainly in oscillations of the attenuation of sound as a function of the wave number. 
The amplitude and period of these oscillations are governed by the length of electron jumps 
between quasistationary localized states. In the case of sound polarized along the conducting 
chains an increase in temperature enhances greatly the role of the inertial mechanism of the 
electron-phonon interaction because of a quadratic increase of the conductivity a( T) with 
temperature. 

1. INTRODUCTION 

The electron system in one-dimensional ( ID) conduc- 
tors is known' to be unstable in the presence of any (no 
matter how weak) disorder of the crystal structure. This is 
manifested by an exponential localization of all the conduc- 
tion electrons at absolute zero. Consequently, disordered 1D 
metals are good conductors on the scale of distances less 
than the localization length and they behave like zero-gap 
insulators if the dimensions of the samples exceed this length 
significantly. The frequency dispersion of the conductivity 
of such systems has been analyzed in detail in Refs. 1 and 2. 

Localization of electron states in one-dimensional con- 
ductors not only affects the conductivity but also influences 
significantly the dynamic elastic moduli and, consequently, 
the propagation of acoustic waves in such conductors. This 
problem was investigated in detail earlier3 and it was found 
that the one-dimensional nature of electlon motion is the 
cause of one additional important effect. A strong Coulomb 
screening of charges in the course of propagation of long- 
wavelength acoustic vibrations in a 1D metal (qa< 1, where 
q is the wave number of sound and a is the lattice constant) 
suppresses the usual deformation mechanism of the interac- 
tion between electrons and sound. Instead we have to allow 
for an inertial (Stewart-Tolman) mechanism and for a 
cross-deformation interaction which appears as a result of 
modulation of the random potential of static defects by the 
field of the acoustic wave. This is true in the case of weak 
scattering of electrons by impurities (defects) when eFr i  >> ! 
( E ~  is the Fermi energy and r; ' is the frequency of the elec- 
tron-impurity backscattering). 

These two mechanisms of the electron-phonon interac- 
tion (inertial and cross-deformation) are much weaker than 
the deformation mechanism. Therefore, the dispersion of the 
velocity and the attenuation of acoustic waves in 1D conduc- 
tors are considerably less than in the usual three-dimension- 
al materials. The relative role of these mechanisms is gov- 
erned primarily by the relationship between the parameters 
m/M and ( E ~ T ,  ( m  is the effective mass of an electron 
and M is the mass of an ion). 

The problem of propagation of elastic waves in 1D met- 
als was solved earlier3 at the absolute zero. Our aim will be to 
study the influence of a finite temperature on the spectrum 

and attenuation of sound in such conductors. The screening 
of the deformation potential described above is independent 
of temperature. On the other hand, the electron states are no 
longer strictly localized at T # O  and this undoubtedly 
should be reflected in the electron elasticity of a crystal. 

Up to now the temperature effects in 1D systems have 
been investigated mainly in the case of the electron mobility. 
Electron transport at temperatures T # O  depends strong- 
lyon the relationship between the thermal phonon energy 
and the frequency 7; '. In the range Tr, < 1 the motion of 
electrons is in the form of jumps over distances which are 
large compared with the localization length. However, the 
quasistatic nature of the phonon field considered in this limit 
can enhance significantly the localization of electrons. A rig- 
orous solution of this problem is lacking at present. The 
main available results were derived sometime ago by Mott 
and Davis4 {including the familiar Mott law for the static 
conductivity a 0: exp [ - ( Tri ) ' I 2  1, deduced using quali- 
tative considerations) and they were also derived in Ref. 5, 
where a study was made of the frequency dependence a (w)  
in the pair approximation. 

The other limiting case Tr, ) 1 had been investigated in 
greater detail. It was shown in Ref. 2 that in this limit the role 
of phonons is mainly to produce delocalization and dynamic 
broadening of the energy levels of localized electrons. This 
makes possible their tunneling between closely spaced local- 
ized states and gives rise to a finite static electrical conduc- 
tivity. 

In the present study the absorption and dispersion of 
the velocity of sound in ID metals will be considered in the 
range of temperatures defined by the inequalities 

where w, is the Debye frequency of the phonons. The first of 
these inequalities allows us to ignore the localization of elec- 
trons because of the scattering by thermal phonons, whereas 
the second is essential to identify the mechanism of the inter- 
action of these phonons with electrons. In this limiting case 
the thermal phonons have long wavelengths and the com- 
plete screening of the deformation interaction applies to 
them as well. 
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2. GENERAL RELATIONSHIPS 

The following equations describe elastic vibrations of a 
ID metal in the case of arbitrary directions of propagation 
and polarization of sound3: 

Here, n is the concentration of ions of charge Z [el; m, and e 
are the mass of a free electron and its charge; w, q, and u are 
the frequency, wave vector, and amplitude of sound; Kiklm 
are the adiabatic elastic moduli of the investigated crystal; 
u(q,w) is the electrical conductivity. The x axis is directed 
along the conducting chains and Six is the Kronecker delta. 
The angular brackets with the indices q and w denote the 
Fourier components of the retarded Green functions of the 
relevant Heisenberg operators, which are the current density 
and the stress operator: 

The following notation is used in Eq. (3): $(x) and $ + ( x )  
are the electron field operators in the spinor (in respect of 
the sign of the electron momentum) representation, ( ( x )  is 
a complex Gaussian random field equivalent to a random 
field of impurities with the correlation properties 

( ~ ( ~ ) ~ + ( x ' ) ) = E , ~ ( x - x ' ) ,  (%(x)l;(xr j)=O, 

v is the Fermi velocity of electrons, and Aik are the compo- 
nents of a dimensionless complex cross-deformation poten- 
tial tensor with values 1 A, ( - 1. 

In the calculation of the correlation functions in Eq. (2)  
we have to allow not only for the averaging over a realization 
of the random potential of impurities, but also for the inter- 
action of electrons with thermal phonons. This procedure 
should be carried out rigorously. If we confine ourselves to 
the range of temperatures defined by Eq. ( 1 ) , we find-as 
shown in Ref. &that one other inequality is automatically 
satisfied: 

(rph is the relaxation time of electrons interacting with 
phonons), which means that the scattering on the thermal 
vibrations of the lattice has little effect on localized electron 
states formed as a result of the elastic impurity scattering. It 
follows from the results of Ref. 2 that this influence reduces 
to a dynamic broadening of the energy levels of localized 
electrons and can be allowed for by replacing the frequency 
w with the complex quantity Z = w + i/rph. 

A direct calculation of the correlation functions in the 
last term of Eq. (2 )  shows that in a statistically homogen- 
eous conductor we have 

This makes the third term in Eq. (2 )  zero if sound propa- 
gates along or exactly across the conducting chains. In other 
words, in the case of symmetric directions of sound propaga- 
tion the induction and cross-deformation mechanisms do 
not interfere with one another. We shall consider only such 
cases because this simplifies somewhat the calculations but 
has no significant influence on the final result. 

A calculation of the correlation function (Tik T,,,, )q,i3 
requires an accurate allowance for the interference effect in 
the case of multiple scattering of electrons by impurities. In 
the approximation of a white-noise impurity potential this 
can be done exactly by using an original technique developed 
in Ref. 3 for the calculation of the correlation functions. 
Very cumbersome intermediate stages, which give rise to 
finite-difference Berezinskiy equations for the conductivity, 
allow us to represent the correlation function (Tik T,, ),, in 
the following form: 

Here, LC - a  is the correlation length ofthe random potential 
of the impurities, - 

F ( a )  = 1+2 r( R$I. 

n=O 

s+(q,  a )=s (q ,  a)+s(-q, a).  

The quantities R ,  + , in Eq. (6) satisfy the following system 
of the Berezinskii finite-difference equations' 

the solution of which gives 
rn 

The function S(q,%) in Eq. ( 7 )  can be represented by an 
integral 

rn 

1 
S(u, a )=-ep j  ~E~- 'S(E-P)Y(E).  (10) 

P 0 

in which y ( f )  is the solution of the equation 

where 

with the boundary conditions requiring that y ( f )  is finite at 
6 = f l  and that y(6) -0 when 6- m. 

3. ANALYSIS OF FUNCTIONS S+ (q,G) AND F(G) 

It is shown in Ref. 3 that at high frequencies, when 
W T ~  > 1 ,  it follows from Eq. ( 11 ) that 
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At low frequencies, when ori < 1, we can seek the solution of 
Eq. ( 1 1 ) by formal expansion in powers of f l  

which, however, is not exactly a Taylor series expansion. We 
shall show below that the function y, (6) includes a logarith- 
mic dependence on 8 ,  i.e., the series of Eq. ( 14) is func- 
tional. 

The term yo (6) can be found using the Green function 
of the equation which is derived from Eqs. ( 11 ) and ( 12) by 
going to the limit /? = 0: 

where K ,  (x)  and I ,  (x)  are the Macdonald and Bessel func- 
tions with an imaginary argument. The result obtained for 
the term So (q,Z), which is the leading term inp, is identical 
with that obtained in Ref. 3 and it can be written in the form 

where 

Integration in Eq. ( 16) represents averaging [with a prob- 
ability density w ( , u ) ]  over quantum fluctuations of the di- 
mensionless relaxation frequency v ( p ) ,  which is an eigen- 
value of the operator Co = C (p = 0 )  (for details see Ref. 7) .  

The term of the next order in powers ofpin S(q,Z) is of 
the form 

m 

st(q. a ) =  j d ~  e-'E[ ( ~ - I ) Y o ( E ) + E Y I ( ~ )  1, (17) 
0 

whereas y, (6) is found from the equation 

where 

Equation ( 18) has a solution satisfying the necessary bound- 
ary conditions, viz., 

m 

Y I  (5)= l d l '  G,(E, I f )  Igt(E1) + g2(5') I .  (19) 
B 

The lower limit in the integral with respect to ( ' in Eq. ( 19) 
cannot be assumed to be zero [in contrast to Eq. ( 17) ] be- 
cause of the irregular behavior of the termg, (( ') in the inte- 
grand in the limit 6 ' - 0. 

Since g, (g ' ) has no singularity at low values of 6 ', the 
contribution of the first term in Eq. ( 19) to S, (q,Z) is readi- 
ly calculated and in the sum with the first term of Eq. ( 17) it 
becomes 

m 

The contribution S i2'(q,Z) due to the second term in Eq. 
( 19) can be represented conveniently by the difference 

where w B 

ASl(q, a )=  j dge-~  ?I dErG.(E, E')g2(gr). (21) 
0 0 

The expression for S 12'(q,0) in the case of arbitrary 
values of x is very cumbersome, so that we shall consider it 
initially in the limit x< 1. In this range we find that 
S i2' (q,O) is a regular function of 7t and can be expanded as a 
Taylor series. The principal term can be calculated using the 
limiting expression for the Green function of Eq. ( 15) when 
7t = 0: 

The result of such a calculation is S I*' (0,O) = - 7/12. The 
term linear in x is then annihilated and the quadratic term is 
Ax2, where A - 1 is a numerical coefficient whose exact value 
is difficult to determine. 

We shall calculate AS, (q,i;,) by substituting in Eq. (21 ) 
the asymptotic expressions G, ({,{ ') and g,  (( ' ) in the case 
when I{ ' 1 4 1. This gives 

n (9-A') (1+A) 
AS, (4, a)  = - (22) 

2'' r2 (1+Ai2) 

A certain refinement must be made here. In Eq. (21) the 
Green function ( 15 ) or the operator ( 12), obtained in the 
zeroth order with respect to p, and also the function g2(() 
containing the solution yo (f) of Eq. ( 1 1 ) forb = 0, are inte- 
grated in the range defined by 6 ' 5; P. For these values of ( ' 
strictly speaking the values of G ,  and yo (( ') are invalid, 
because terms linear in and dropped from Eqs. ( 1 1 ) and 
( 12) are of the same order of magnitude as the other terms. 
This leads to an incorrect determination of the numerical 
coefficient in Eq. (22). 

We can find the correct expression for AS, (q,Z) using a 
procedure found fruitful in the calculation of the dissipative 
cond~ctivity.~ This can be done by substituting a variable 
6 = P( 1 + t )  in Eqs. (lo)-( 12). Then, the equation for 
y ( t )  =f iy[ l( t ) ]  becomes 

The solution of this equation in the range O< t <  1/fi (which 
corresponds exactly to 6'-P) in the zeroth order with re- 
spect to p can be obtained by expanding in terms of conical 
functions P -  , , + ;,,,, ( 1 + 2t), which are eigenfunctions of 
the differential operator on the left-hand side of Eq. (23) if 
p = 0. We shall not consider this procedure in detail but 
simply mention that the result AS,(q,Z) obtained in this 
way is half that given by Eq. (22). 

Finally, the required function S + (q,Z) obtained in the 
principal approximation in fl is given by Eq. ( 16), and the 
term of the next higher order in the range x 1 is 
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S,+(q, iii)=1-2% exp (2%' In ( f ib ) )  

In the limit x ) 1, this term can be calculated conveniently by 
direct iteration of Eq. ( 18), which gives 

We shall now consider the function F (Z)  in Eq. (6).  It 
describes the local interaction of an electron with a vibrating 
impurity at the moment of collision an9 for this reason it is 
independent of the spatial dispersion parameter x. Substitut- 
ing R ,  from Eq. (9)  into Eq. (6),  we obtain the following 
expression for F(i3) : 

m 

the asymptotes of which are of the following form for differ- 
ent values of the parameter p: 

These limiting expressions demonstrate that the localization 
of electrons in a 1D metal is important also in the description 
of essentially local effects when the size of the spatial local- 
ization of electron states is unimportant. Only at high fre- 
quencies corresponding to IP I & 1, when repeated returns of 
electrons because of the scattering by impurities are unim- 
portant, does the formula for F(i3) become identical with 
that obtained in the Born approximation in respect of the 
cross-deformation interaction. 

4. ABSORPTION AND DISPERSION OF THE VELOCITY OF 
SOUND 

In this section we shall give the results of a calculation 
of the dispersion of the velocity and of the absorption of 
acoustic waves of different polarizations traveling along a 
conducting chain. The absorption and the dispersion of 
sound with a wave vector perpendicular to the direction of 
high conductivity will then be obtained from the derived 
formulas by a simple substitution of the relevant values of 
the velocity of acoustic waves and of the components of the 
tensor of the cross-deformation potential. In particular, if 
transversely propagating sound is also polarized across the 
conducting chains or filaments (in which case the vibrations 
may be longitudinal or transverse), we have to use the for- 
mulas for the transverse sound traveling along the chains 
and relabel the constants. However, if the vibrations are po- 
larized along the chains (when the sound is only transverse), 
we have to use the results given below for longitudinal 
sound. 

The difference between the cases of the transverse and 
longitudinal polarizations of sound is that in the case of 
propagation of transverse waves along the direction of high 
conductivity the inertial mechanism of the electron-phonon 
interaction is inactive and only the cross-deformation mech- 
anism remains, so that the contribution of the latter can be 
investigated independently. In the case of longitudinally po- 
larized sound both mechanisms are important and they may 
compete with one another. 

a) Transversesound, qllx 

On the right-hand side of Eq. (2) we are now left with 
just the first term. We shall introduce the adiabatic velocity 
of the transverse sound using the expression Kxyxy = Mns:. 
Then, the change in the velocity of sound As, = s, (w) - s, 
and the relative attenuation r , /w are described by the fol- 
lowing formulas: 

Here, 5, = Z(rng/4Ms:) - 1, p, is the Fermi momentum 
of the electrons, and A A, = A, + iA,. On the right-hand 
sides of Eqs. (28) and (29) we have to replace the wave 
number q with o/s,. We shall analyze the dependence of the 
velocity and attenuation of sound on its frequency and on 
temperature in various frequency intervals. We shall ignore 
the first term in the braces of Eq. (28), since it is a relatively 
small (independent of the frequency and temperature) cor- 
rection to the adiabatic elastic moduli and appears because 
of the electron-impurity collisions. 

Low frequencies, wr, (I. We have to consider here sev- 
eral regions, depending on the spatial dispersion parameter 
x = wri 'v/s,. We turn first to the case when x 4 1. In con- 
trast to conductors with a higher dimensionality, the spatial 
dispersion cannot be ignored in this range of frequencies for 
1D metals because of the oscillatory dependence of 
S,, (q,Z) [Eq. (24)].  Moreover, even when wr, 4 1, the 
time dispersion is important, because at a finite temperature 
we have a new parameter wrph &a?, ,  which occurs in the 
expression Jp )/4 = (7, /27ph [ 1 + ( Imph  1'1 ' I 2 .  

Substituting in Eqs. (28) and (29) the asymptotic ex- 
pressions for F ( Z )  and S + (q,i3), we then obtain the follow- 
ing formulas in the x < 1 case: 

I P I  , sin ( 2 %  ~n T ) ) ] }  

from which we can see that in addition to a small absolute 
dispersion of the velocity and attenuation of transverse 
sound in 1D metals, these quantities depend weakly on tem- 
perature (via the parameter r i / rPh) .  This dependence is 
manifested firstly by a monotonic quadratic rise of As, and 
I?, with temperature and, secondly, it is contained in the 
amplitude and period of the relatively weak oscillations of 
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these quantities. These oscillations should be observed in the 
range of frequencies defined by the inequalities 

Their origin is associated with the existence of the following 
characteristic length of the electron system: 

which represents the length of a jump of an electron between 
distant localized states. If orph ) 1, then these are the states 
whose energy levels differ by an amount equal to a quantum 
w of the external field. However, if wrPh 4 1, the jumps occur 
between quasistationary states whose levels overlap within a 
width 1/rPh. Exponential decay of the amplitude of the oscil- 
lations in the range of frequencies where the left-hand in- 
equality of Eq. ( 3 1 )  is disobeyed can be attributed to the 
statistical scatter of the electron jump lengths. This scatter 
means that only one or two periods of the oscillations can be 
observed in reality. Oscillations of the type described by Eq. 
( 3 0 )  have been predicted earlier for the conductivity of 1D 

In the region of strong spatial dispersion, x) 1, the ve- 
locity and absorption of transverse sound are described by 

At high frequencies, wri>1, the velocity of transverse 
sound is independent of its frequency and the nature of its 
temperature dependence is generally the same as that given 
by Eq. ( 3 2 ) .  However, in the high-frequency limit the ab- 
sorption practically ceases to depend on temperature: 

b) Longitudinal sound, qllx 

The equation for longitudinal sound differs from the 
equation for transverse vibrations by the presence in Eq. ( 2 )  
of a term with the conductivity u ( q , i 3 ) ,  which describes the 
influence of the inertial interaction of electrons with the lat- 
tice. Consequently, the formulas for the velocity and attenu- 
ation of longitudinal waves differ from Eqs. ( 2 8 )  and ( 2 5 )  
by the replacement of all the transverse elastic moduli with 
the longitudinal moduli A = A,, and also by the presence 
on the right-hand sides ofthese equations of additional terms 

At low frequencies, wr ,  ( I ,  in the region of weak spatial 
dispersion x = wl, /s, < 1 ,  the correction to the velocity of 
longitudinal sound because of the inertial interaction is neg- 
ative [in contrast to Eq. ( 3 0 )  1, depends quadratically on the 
frequency w,  and is independent of temperature: 

where < ( 3 )  is the Riemann zeta function. The inertial cor- 
rection to the absorption coefficient found in this frequency 
range can be represented by a sum of a monotonic part 

and an oscillatory term with a relatively small amplitude, 
which appears because of the oscillatory nature of the one- 
dimensional conductivity. The temperature dependence of 
the inhomogeneous conductivity of 1D metals was analyzed 
in detail in Ref. 6.  It was found that oscillations of u(q , i3 )  
can generally be described by a fairly cumbersome formula 
which we shall not give here. However, in the range where 
these oscillations are strongest [see the inequalities in Eq. 
(31  )], the formula for u(q , i3 )  simplifies and the corre- 
sponding correction to the attenuation of sound becomes 

Going now to the region of strong spatial dispersion, 
x) 1, we find that Eq. ( 3 4 )  yields the following asymptotic 
expressions: 

6sl /s l=-2Z ( r n , ~ ~ ~ / m u ~ ) ~ ,  

6rl /a=2a~,ZI~- ' (m~s, /mU) '[ 2 ( ~ , / u ) ~ + . t ~ / t , , , ] .  ( 3 8 )  

This result is not affected by a further increase in the velocity 
of sound and by transition to the high-frequency range ori 
) 1. 

It is clear from Eq. ( 3 8 )  that when w is increased, the 
contribution of the inertial interaction to the velocity of 
sound in the region x ) 1 becomes saturated with respect to 
the frequency and the Stewart-Tolman attenuation should 
approach rapidly zero. For this reason, beginning from a 
certain frequency, which is found by comparing the absorp- 
tion of Eq. ( 3 8 )  with a formula of the ( 3 2 )  type for T,, the 
attenuation of longitudinal sound is governed entirely by the 
cross-deformation mechanism of the electron-phonon inter- 
action. 

We shall conclude by noting that in our opinion the 
results obtained in the present study, particularly geometric 
resonance oscillations of the absorption of sound, may be 
used in experimental determination of the electron-phonon 
interaction constants of 1D metals and at temperatures 
T< w ,  these constants are components of the tensor A,. 
Moreover, it should be noted that because of the screening 
(in the long-wavelength limit) of the deformation potential, 
the dispersion and attenuation of acoustic waves, and also 
their temperature dependences are very weak. This can be 
used to construct various thermally stable acoustoelectronic 
devices from 1D conductors, for example, dispersion-free 
delay lines characterized by very low losses may be feasible. 

We shall make one additional comment. We have ana- 
lyzed the dispersion and attenuation of sound in the tem- 
perature range defined by Eq. ( 1 ), which is bounded from 
above by the Debye frequency. On increase in temperature 
above this frequency w ,  a relatively weak cross-deformation 
interaction of electrons with thermal phonons changes to the 
usual deformation interaction, which alters greatly the elec- 
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