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A procedure, analogous to the Langevin scheme of calculating thermodynamic fluctuations, is 
proposed for measuring mesoscopic fluctuations of the resistance of disordered metallic samples 
and of the fluctuations of the optical transparency of elastically scattering media. It is shown that 
the magnitude of the fluctuations of the conductance of small metallic samples, measured by a 
four-probe procedure, depends on the sizes of the measurement contacts, and when these sizes are 
decreased the fluctuations can greatly exceed e2/fi. The relative fluctuations of the transparency 
of mesoscopic samples greatly exceeds the relative fluctuations of the conductance. 

I. INTRODUCTION the electrochemical-potential difference picked off the other 

This paper is devoted to the study of the current-density 
spatial fluctuations produced in disordered metals by an 
electric field and due to random arrangement of the impuri- 
ties in the sample (mesoscopic fluctuations), and also to the 
analogous light-energy flux fluctuations produced in inelas- 
tically scattering media irradiated by coherent light. 

These fluctuations are calculated by a scheme reminis- 
cent of the Langevin scheme of calculating thermodynamic 
fluctuations.14 This scheme can be used because the spatial 
fluctuations of the current density in disordered metals (or 
of the energy-light flux energy in turbid media) can be divid- 
ed into microscopic (over scales shorter than the mean free 
path 1) and diffusional (over scales longer than 1). The mi- 
croscopic current-density fluctuations, averaged over a spa- 
tial scale of order I, play the role of extraneous currents and 
diffusion equations, which describe fluctuations over diffu- 
sional scales. 

The difference between the description of mesoscopic 
fluctuations of the conductivity in metals from that of opti- 
cal transparency of elastically scattering media is due to the 
different definitions of their extraneous-current correlators. 

In the description of mesoscopic conductivity fluctu- 
ations in disordered metals, the extraneous currents are pro- 
portional to the gradient of the electrochemical potential. In 
this case, the use of the Langevin scheme makes the calcula- 
tions easier than in the usual diagram technique in those 
situations in which the electric field is not uniform (e.g., in 
point contacts), and in samples of complicated geometry. In 
particular, such a scheme permits construction ofa theory of 
the measurement of mesoscopic fluctuations in disordered 
metallic systems, i.e., identification of the quantity mea- 
sured in the experiment. 

It is shown in Refs. 5 and 6 that conductance fluctu- 
ations in weakly disordered (p,l)fi metallic samples are of 
the order of 

Here (...) denotes averaging over the realizations of the ran- 
dom potential (i.e., over the samples), and p, is the Fermi 
momentum in the metal. The conductance G was measured 
here by a two-probe method. 

In e~periment,'.~ however, the conductance is most fre- 
quently measured by a four-probe method, with two con- 
tacts used to set the current flowing through the sample, and 

two contacts (Fig. 1 ). 
We shall show that in this case the fluctuations of the 

electrochemical potential across the measuring contacts is 
determined by gigantic macroscopic fluctuations averaged 
over the contact dimensions. The quantity ((SC)') mea- 
sured by the four-probe method should therefore depend 
strongly on the sizes of the measuring contacts, so that when 
these sizes are decreased the fluctuations of G can greatly 
exceed e2/fi. Finally, it is possible to measure in experiment 
the conductances G ,  and G, of the point contacts C, and C2 
themselves (see Fig. 1 1. It will be shown below that there a 
correlation exists between the quantities SG, and SG, and 
falls off as a power law with increasing distance between the 
contacts. 

Another possible use of the Langevin scheme proposed 
here is for investigations of mesoscopic fluctuations of the 
optical transparency of elastically scattering media. 

If a coherent light beam is incident on an elastically 
scattering medium, the intensity of the scattered light fluc- 
tuates as a function of the location of the scatterers if the 
scattering angle is given, or as a function of the scattering 
angle if the scatterer locations are given. The interference 
pattern resulting from the scattering is called a speckle. A 
fairly complete theory was developed for speckles produced 
as a result of single ~cat ter ing.~ 

We develop in the present paper a theory for speckles 
resulting from the passage of light through a multiply scat- 
tering medium. The extraneous currents are in this case pro- 
portional to the average density of the light energy at the 
given point (and not to the gradient of the electrochemical 
potential as in the case of metal-conductance fluctuations). 
As a result, the relative fluctuations of the optical transpar- 
ency of mesoscopic samples turns out to be much larger than 
the relative fluctuations of the conductance of metallic sam- 
ples. This demonstrates the difference between the mecha- 
nisms that give rise to extraneous currents in the two cases - 
discussed above. 

11. TRANSPARENCY FLUCTUATIONS OF DISORDERED 
MEDIA 

a. We begin with a study of stationary spatial fluctu- 
ations of the density and of the light-flux energy, which are 
produced when a stationary coherent electromagnetic wave 
having an energy flux density J, and a wavelength il is inci- 
dent on the interface of an elastically scattering medium 
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FIG. 1. 

with vacuum. The geometric dimensions of the medium are 
assumed much larger than the mean free path I. In the case 
1bA we can find the density and flux of the light energy in the 
medium, averaged over the realizations of a random poten- 
tial, by using the kinetic equation, whose solution shows that 
the energy flux ( J )  and the energy density (n ( r ) )  averaged 
over the realizations of the random potential vary smoothly 
as functions of the coordinates over scales exceeding I. If 
1)A the density and flux of the light energy in the medium, 
both averaged over the realizations of the random potential 
can be found by using the kinetic equation, whose solution 
shows that the energy flux ( J )  and energy density n(r) vary 
smoothly with the coordinates over scales exceeding I. To 
describe the spatial fluctuations of the energy flux in the 
scattering medium, averaged over scales larger than the 
mean free path I, we use a scheme similar to Langevin's 
scheme of calculating thermodynamic  fluctuation^.^.^ The 
fluctuations over small scales assume here the role of ran- 
dom extraneous fluxes J,,, ( r )  in the diffusion equations 

div J=O, (1)  

J=-DVn+ J,,, ( r ) .  (2)  

Here D = lc/3 is the diffusion coefficient and c the speed of 
light. 

Equations (1)  and (2)  must be supplemented by the 
usual boundary conditions for the diffusion equations; they 
describe then the spatial fluctuations of the current and coin- 
cide with the equations that describe thermodynamic fluctu- 
a t i o n ~ . ' ~  The difference lies in the definition of the micro- 
scopic random currents J,,, . In our case the correlator of the 
random extraneous currents is obtained by summing the dia- 
grams of Fig. 2a, and at Ir - r' I $1  we have 

Equations ( 1 )-(3)  are valid at an arbitrary sample geome- 
try, and (n ( r )  ) is the solution of the diffusion equations ( 1 ) 
and (2) without extraneous currents J,,, ( r ) .  

The phenomenological scheme ( 1 )-( 3 ) is based on the 
assumption that spatial fluctuations of the energy fluxes and 
densities resulting from random interference of the waves 
scattered by the randomly distributed scatterers can be 
grouped into microscopic fluctuations Ir - r'l < I and diffu- 
sional ones Ir - r'l > I. To check on this assumption we ob- 
tained all the results of this study by using the much more 
complicated diagram-summation procedure. To determine 
the transparency of an elastically scattering medium it was 
necessary to sum the diagrams shown in Fig. 2b, which de- 
scribe electron diffusion at I r - rlI > 1. 

The qualitative interpretation of Eq. (3)  is the follow- 

FIG. 2. The plane x = 0 corresponds to the boundary of the medium on 
which the light is incident. 

ing. The light-energy density at some point r inside the medi- 
um is the result of random interference of waves scattered 
near the point r within a volume on the order of 1 3. The result 
of this random interference are spatial fluctuations of the 
density and flux of the light energy of the medium. 

The fluctuations of the microscopic density and flux 
energy from point to point are of the order of the values of 
these quantities: 

where the direction on the vector SJ ( r )  is random. 
The correlation functions of these fluctuation functions 

decrease with distance over a characteristic scale A all the 
wayto Ir-r'I <I: 

h Z  
<6n (r) 6n(r1) >= - (n(r))2 2 ( --- ,r-r, I ) , A< lr-rf 1 < l ,  (4)  

Equations (4)  and ( 5 )  are obtained by averaging the 
diagrams of Fig. 2a. I t  is the averaging of (5)  over a spatial 
scale of order 1 which leads to Eq. ( 3 ) .  

The use of the Langevin scheme ( 1 ) and (2) greatly 
facilitates also the calculation of the higher correlators of the 
quantities Sn and SJ. 

To this end it is necessary to specify higher correlations 
of the extraneous fluxes. The irreducible parts (cumulants) 
of these correlators are used by summing diagrams of the 
type of Fig. 3a and averaging over a scale of order I: 

1 
(Jext ,, (PI) . . - Jexr ia (rn))c == - - 2nlh2 [4nc ( n  (r,)) lh21n 

Figure 3b shows by way of example the diagrams that must 
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FIG. 3. 

be summed to calculate (J,, ( r , )  ... J,, (r, ) ) . 
The expression obtained agrees with the known fact9 

that, in a speckle, the Poisson distribution functions of the 
microscopic density ( F  ) and the light energy (P) are given 
by 

F ( n )  =(n(r) > - l  exp {-n/<n(r)>),  (7) 

b. We consider now the transparency of a scattering 
medium comprising a right parallelogram with dimensions 
L, X L, x L, (L,, L,, L, % I ) .  We assume the faces parallel 
to the x axis to be strongly reflecting. The light wave is inci- 
dent on the medium in thex direction. The transparency ( I  ) 
averaged over the realizations of the random potential (i.e., 
over the set of samples) is, in the zeroth approximation in 
the parameter A /I & 1 

To calculate the transparency fluctuations we can use 
Eqs. ( 1 )-(3) with the following boundary conditions: the 
normal components of the energy fluxes on the faces parallel 
to the x axis are zero, and Sn is zero on the faces that are 
perpendicular to the axis and through which the current 
flows. Using these boundary conditions, it is easy to show 
that the total fluctuational current through the cross section 
L, L, of the parallelepiped is 

6i.=L.-' 1 J... . (r) dr. 

The integration in (9) is over the volume u = L, L, L, of the 
parallelepiped. This yields an equation for the transparency 
fluctuations 

Recognizing that 

we obtain from (3 ) 

Substituting ( 1 1 ) in ( 10) we arrive at an expression for the 
fluctuations of a medium that is totally transparent 

Using (6), we can show that in the principal order in 
the parameter A /I< 1 the distribution of the total optical 
transparency of a mesoscopic sample is Gaussian as long as 
SI< ( I ) .  

If the wave incident on the sample is of duration 
T<T, = L : / D ,  then 

n2 
(J,,, <(r, t)J,,,,(r', t') )= - (ck)'(n(r, t )  > ' ~ 6  (r-r') 6rj6 (t-t'), 

3 

Here I, is the time-averaged sample transparency. 
The interpretation of the foregoing results is similar to 

that in Refs. 10 and 11 . I '  The transparency of a sample under 
stationary illumination is determined by energy levels locat- 
ed in an energy band of order WT, near the frequency of the 
incident light. Their number in the sample is of the order of 
N- vu f i / r 0 ,  where v is the density of states. The contribution 
of each level to I fluctuates from realization to realization by 
roughly a factor of two. In this case 

in accord with ( 12). If r<ro the sample transparency is de- 
termined by the quantum levels in an energy band WT, and 
the energy sublevels of width f i / r 0  make independent contri- 
butions to SI, so that 

in accord with ( 13). 
c. The fluctuations considered above can be observed, in 

analogy with Refs. 12 and 13, by varying the incidence angle 
6 of the light on the sample. A plot of (SI(6)SI(6 ') ) where 
S = 6 - 6' ,  is shown in Fig. 4. The correlator 
(Jext (r,6)Jextj (t1,6 ' ) )  needed in this case is given by the 
diagrams 2a. The Green's functions for the outer and inner 
loops correspond to the incidence angles 6and 6 ', respective- 
ly. At S % A  / I  the value of (Jex, (r,6)JeXtj (r1,6 ' )) is deter- 
mined by the diagram 2c, which is the analog of the diagrams 
that give the conductance fluctuations of mesoscopic sam- 
p le~ . ' ,~  

A dependence similar to that plotted in Fig. 4 is ob- 
tained if I ( 6 )  is taken to mean the intensity, per unit inci- 
dence-light intensity, of the light scattered into an angle 6, 
given the incidence angle. 
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FIG. 4. 

Finally, the diffusion of the scatterers in the sample 
leads to random oscillations of I with time. It is shown in 
Refs. 14 and 15 that if a typical scatterer is displaced a dis- 
tance of order A in a time of order r ,  a complete change of the 
realization takes place within a time r, = (12/L :)T, <r l ,  
meaning that the speckle has an anomalous sensitivity to 
changes in the scattering positions. 

To conclude this section we emphasize that the dis- 
cussed fluctuations of the optical transparency differ in 
character from the mesoscopic conductance fluctuations 
considered in Refs. 5 and 6. In the latter was obtained at 
T = 0 the result ((SG)') = e4/fi2, i.e. 

It is seen from (14) that the relative transparency fluctu- 
ations are much larger than the relative conductance fluctu- 
ations. This result could be deduced from the Landauer for- 
mulaI6 that relates G with the transparency I(8) averaged 
over the angles 8 of electron incidence on the surface of a 
disordered medium. As shown in Sec. IIc, the correlator 
(J,,, (r,8)Je,, (r1,8 ') ) is a rapidly decreasing function of 
S = 8 - 8 '. As a result, the contributions from diagrams 2a 
and 2b (i.e., of the extraneous currents proportional to 
(n ( r ) ) )  to ((SG)2) turn out to be small compared with 
whose of diagrams 2c in terms of the parameter A /I< 1. The 
contributions of these diagrams are independent of 8 and 
are, roughly speaking, proportional to (V(n(r))  ) 2 .  It is just 
the diagrams 2c which are the analogs of the diagrams 
summed in study (Refs. 5 and 6) of mesoscopic fluctuations 
of a linear response to an external electric field. 

Ill. FLUCTUATIONS OF THE RESISTANCE OF MESOSCOPIC 
SAMPLES 

a. The sizes of the current-density fluctuations pro- 
duced in disordered metallic samples by an external electric 
field can also be obtained from Eqs. ( 1 ) and (2).  In this case 
n ( r )  and J ( r )  have the meaning of the electron density and 
of the current density, while the correlator of the extraneous 
current is determined by averaging the microscopic currents 
over spatial scales of order I: 

We have resolved the extraneous-current correlator into 
three terms corresponding to different physical mechanisms 
and represented by diagrams a, b, and c of Fig. 5: 

FIG. 5 

Here D, (r,r,) is the Green's function of the equation 

f ( E )  = [exp(~/T)  + 11-' is the Fermi function, and 
E~~ = - E? Expression ( 16) was obtained by summing 
diagrams 5a and is valid at arbitrary temperature and arbi- 
trary spatial distribution of the electric field intensity E(r ) ,  
if the variation scales of E ( r )  turn out to be larger than I. In 
the case of a homogeneous electric field we have 

and the values of Lo for different limiting cases are 

Here L ,  = ( D / T )  is the coherence length of the normal 
metal, and L, = (D/r, ) ' I 2  is the electron phase-loss 
length. Attention is called to the gigantic values of these 
currents, which are proportional to Lo. 

The physical cause of these fluctuations is that the re- 
sponse of the fluctuational current at a point r to an electric 
field at a point r' has at T = 0 a long-range character": 

whereas 
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Here a, ( r , r l )  is the nonlocal conductivity, defined by the Fig. 5, followed by averaging of the x components of these 
equation currents over the sample v o l ~ m e . ~ . ~  

b. The calculation of the conductance Gof a mesoscopic 
J i ( r )  = 1 oIk(r ,  r')  E k ( r l )  dr'. sample corresponds to the so-called two-probe scheme of 

We emphasize that in this case the fluctuational currents 
turn out to be much larger than the average current 
(J) = aDE. Here aD = e2Dv is the Drude and Lorentz con- 
ductivity and v  is the density of states on the Fermi level. 

It follows from ( 19) that in an infinite sample placed in 
a uniform electric field, integration with respect to r' in ac- 
cordance with ( 17) makes the fluctuational response 
( ( C ~ J ) ~ )  proportional to Lo and causes it to tend to infinite as 
T- 0. The connection between the existence of such currents 
and the ergodicity problem was discussed in Ref. 18. 

From ( 1 ), ( 2 )  and ( 17) we obtain in an infinite system 
with constant E, if Ir - r'l >I ,  

LTh2 ( 6 n ( r ) 6 n ( r 1 )  )=vz(61.1(r)6p(r')  ) = 2 ~ ' ( e E h ) ~  - 
l2 I r-r' ( ' 

Here S p ( r )  are the fluctuations of the chemical potential in 
the metal. 

The same expressions were obtained by us by summing 
diagrams a and d of Fig. 5. 

Expressions ( 2  1 ) and ( 2 2 )  were obtained for a model in 
which the electrons interact with an external field but not 
with one another. The scheme described, however, easily 
admits of introduction of fluctuational electric fields that 
result from fluctuations of the electron density. Equation 
( 2 )  must then be replaced by 

J ( r )  =aDE ( r )  -eDVn+JcT(r)  = -eDvVq+JcT(r ) ,  ( 2 3 )  

and the Poisson equation 

div E=4ne6n. (24) 

must be added to ( 1 )  and ( 2 3 ) .  We have used here the Ein- 
stein relation, 7  = p  + eq, is the electrochemical potential, 
and q, is the scalar electric potential. This fact can be proven 
by summing diagrams d and e of Fig. 5, where the wavy lines 
correspond to Coulomb propagators. 

Expression ( 2 2 )  is not altered thereby, and the expres- 
sion for ( S 7 ( r ) S 7 ( r f ) )  is obtained from (21 ) by the substi- 
tution 6p  -1317 Using (21 ) we can show that so long as the 
inequality (A / l )4L , / l<  1 holds it is possible to neglect in 
( 16) the difference between the mean field and the applied 
one. This inequality holds in most experiments. 

The fluctuations of the conductance of a mesoscopic 
sample ( (SG)') --,e4/fi2, calculated forp,l) h in Refs. 5 and 
6,canalsobeobtainedfromEqs. ( I ) ,  ( 2 3 ) ,  (16),and ( 1 7 ) .  
To obtain this result from the diagrams it is necessary to sum 
the sequence shown in Figs. 5a, b, c, and d. It is interesting 
that even though the diagrams of Fig. 5d are not small, the 
final result is obtained by calculating the correlator of the 
fluctuational currents with the aid of diagrams a, b, and c of 

measuring the resistance, wherein a voltage is applied to the 
investigated sample and the total current flowing through 
the sample is measured. Much more widely used, however, is 
the four-probe method, in which two contacts, C, and C,, are 
used to pass a specified current through the sample, and the 
difference between the electrochemical potentials between 
the remaining two contacts C ,  and C2 is measured (see Fig. 
1 \ 
1). 

In this case, the measured conductance fluctuations de- 
pend strongly on the sizes of the contacts. Actually, accord- 
ing to ( 2 1 ) ,  application of a potential difference to the sam- 
ple leads to the onset of fluctuations 6 7 ( r )  of the 
electrochemical potential. The amplitude of these fluctu- 
ations increases with decrease of the investigated spatial 
scale. l 8  

We consider now a case in which the potential is mea- 
sured by ideal point contacts, i.e., contacts with infinite con- 
ductivity. The boundary condition for Eqs. ( 1 ) and ( 2 3 )  on 
the interface of the contact and the sample is then 
~ ( r )  = 7 ,  = const. The quantity to be determined in this 
case is ( ( A v , ) ~ )  = ( [ S q : ' )  -  ST:^']^). Here 7:'' and 7:'' 
are the electrochemical potentials at the first and second 
contacts, respectively. 

Equations ( 1 ), ( 2 3 ) ,  and ( 16) are easier to solve if 
agL, .  Here a is the characteristic dimension of the contact. 
If this condition is met, one can substitute in ( 16) the value 
of E ( r )  not perturbed by the point contact, i.e., contribu- 
tions are made to the integral by Ir - r'l -Lo. To determine 
( (A?? ,  ) 2 )  we can solve Eqs. ( 1 ) ,  ( 2 3 ) ,  and ( 1 6 )  with the 
usual boundary conditions unperturbed by the point con- 
tacts, and then average the resultant solutions 
( S 7 ( r ) S 7 ( r 1 )  ) for r  and r' over a volume of order a3. Apart 
from a numerical factor that depends on the shape of the 
point contact, we obtain then ( a  < L,  ) 

Accurate to a numerical factor, the same result is obtained if 
the electrochemical potential is measured by a tunnel junc- 
tion that does not perturb the solution of Eqs. ( 1 )  and ( 2 3 )  
in the region of the contacts. It is necessary here to average 
over the contact areas. If the distance between the measure- 
ment contacts satisfies the condition L > a ,  the quantity 
(S7iL'67f.*') can be neglected and the expression for the con- 
ductance fluctuations ( ( 6 5 )  ') measured by the four-probe 
method is 

Here Go = u, L, L, / L .  
Thus, when account of ( 18 ) is taken and a  is regarded 

as small, the value of ( ( 6 5 ) ' )  becomes much larger than e4/ 
f i2 ,  and the large value of the mesoscopic fluctuations is due 
not so much to the small size of the sample as to the small 
sizes of the measuring contacts. 

In the derivation of ( 2 6 )  we have neglected the correla- 
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tion between the values of ST:'' and measured with 
point contacts, 

We examine now the expressions for K,  and K,  in ( 15) : 

which are obtained by summing the diagrams shown in Figs. 
5b and 5c. 

The physical essence of these terms is the long-range 
character of the correlations of the extraneous currents (in 
contrast to the S-correlated currents ( 16) ) . The amplitudes 
of these currents, however, are much smaller than in ( 16). 
As a result, the contributions of (28) and (29) to the con- 
ductance fluctuations ((SG)') are the same as that of ( 16). 

These diagrams play no significant role in the calcula- 
tion of the fluctuations of the electron density or of the scalar 
electric potential in small volumes near a point contact of 
size agL,, i.e., in the calculation of ((68) ') .  

The term (29) that corresponds to the diagrams c of 
Fig. 5 describes the long-range correlation of local (on a 
scale of order I) conductivities at the points r and r'. Such a 
phenomenon can be studied by measuring the correlation of 
the intrinsic conductances of the contacts C, and C,: 

where G, and G, are respectively the conductances of the 
point contacts C, and C,. In accordance with Refs. 5 and 6 
we have 

The result obtained in Ref. 19 

is obtained also from the foregoing analysis, since ((Av, )') 
is independent of the location of the contacts. 

c. Application of a magnetic field H alters the character 
of the interference between the electron wave functions and 
leads as a result to fluctuations of G(H)  as a function of 
H.2036 Another method of studying mesoscopic fluctuations 
is to measure SG as a function of the level of the chemical 
p~ten t ia l ,~  of the electric field intensity,19 or of the purity 
diffu~ion. '~ . '~  According to an ergodic hypothesis advances 
in Ref. 6, averaging of the moments of SG over different 
realizations of a random potential is equivalent to averaging, 
in a single sample, over different value of H. We shall use this 
hypothesis. 

To calculate (SG(H)SG(H + AH)) we must know the 
correlator (Je,,i(r,H)Je,,j(r',H')): 

( J e x t  i(r, H)J,,,  ,(r', H ' )  )=K,+K,-t H,. (31) 

Oniy the first term of (3 1 ) is significant in the calculation of 
(sG(H)sT;(H + AH)).  A calculation of the conductance 

in Refs. 6 and 19 yielded the quantity k, (H,H1), which de- 
pends on the experimental geometry and is given by 

where L,  = (c/4eH) "' is the magnetic length. 
It turns out here that fluctuates when H varies in the 

same characteristi%scale AH, =:@,/L (Ref. 20) as G, but 
the amplitude ( (SG) ) of the fluctuations turns out to be of 
the order of (26). Experiment8 revealed in certain cases con- 
ductance fluctuations that exceeded e4/# as H was varied. 
This can possibly be explained by the result (26) above. 

Note that the conductances GI and G, of the point con- 
tacts C, and C, also undergo fluctuations when the magnetic 
field is changed by an amount AH,, =:@,/a2. At the same 
time, the correlator (SG, (H)SG,(H + AH) ) decreases as a 
function of AH at AH k AH,, -- @,/L and decreases by a 
factor of two at AH = 0, H > AH,, (AH,, 4 AH,, ). This 
means that the correlation of G, and G, is destroyed by weak 
magnetic fields that change the values of GI and G, only 
little. 

These phenomena can apparently be investigated by ex- 
periments on MIS structures, with the averaging over the 
realizations (...) effected by varying the gate voltage, in 
analogy with Ref. 8. 

We discuss now the applicability of the Onsager rela- 
tion to the conductance of mesoscopic samples in an external 
magnetic field. The standard derivation of these relationsz1 
pertains to the case when the conductance is measured by the 
two-probe method. It was shown in Ref. 19 that to prove the 
relation 

< [ 6 G  ( H )  - 6 G ( - H ) ]  '>=0. 

It is necessary to take into account in (31) all three terms 
corresponding to diagrams a, b, and c of Fig. 5. The quantity 
k 3 ( ~ ,  - H )  is an even function of H. The quantities 
K,(H, - H )  and k , ( ~ ,  - H ) ,  depend generally speaking 
on the sign of H and lead to the Onsager relation only if 
summed and following an appropriate integration. 

In Ref. 7, the conductances of mesoscopic metallic sam- 
ples were measured by the four-probe method. The Onsager 
relation was not satisfied in this case. It was shown in a theo- 
retical paper,22 with the aid of the Landauer relation be- 
tween I and G, that the Onsager relation should not be satis- 
fied in four-probe experiments. In the Langevin scheme 
described above, this circumstance is manifested by the fact 
that at a gL, the second and third terms in ( 15) can be ne- 
glected, and the value of ( [sG(H) - ST;( - H )  1') turns 
out to be of order of ((SG)') or H >  AH,. The measured 
Hall effect of mesoscopic samples also turns out to be of the 
same order. 

IV. CONCLUSION 

Let us summarize our results. The mesoscopic fluctu- 
ations of the optical transparency of elastically scattering 
media can be calculated by using the Langevin scheme for 
solving diffusion equations with random extraneous cur- 
rents J,,, . These extraneous currents result from random 
interference of waves reaching a given point along different 
diffusion trajectories, and are proportional to the density of 
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the light energy at the given point of the medium. As a result, 
the transparency of mesoscopic samples fluctuates from 
sample to sample. 

These fluctuations can be investigated by varying the 
angle of incidence of the radiation on the sample, in analogy 
with Refs. 12 and 13, or by studying the diffusion of the 
scatterers in the sample and measuring the time variation of 
the transparency. The transparency is here anomalously 
sensitive to variation of the scatterer  location^.'^.^^ 

Another experimental possibility is to study the trans- 
parency fluctuations produced in samples by changes of the 
external magnetic field. The waves traveling along different 
diffusion trajectories acquire different polarizations, owing 
to the Faraday rotation of the light propagation in the medi- 
um. This mechanism of the action of a magnetic field on 
localized changes of the average optical transparency of a 
sample was considered in Ref. 3. The estimated magnetic 
field that leads to transparency fluctuations of the order of 
( 12) is AH, z I / L  :P, where P is the Verdet constant. 

In calculations of the conductivity fluctuations, the 
quantity J,,, ( r )  is determined by the long-range character of 
the fluctuational current response at a point r to an electric 
field applied to a point r'. It turns out here that the measured 
mesoscopic fluctuations of the conductance depend strongly 
on the measurement method. If a two-probe method is used, 
the fluctuations of the conductance at T = 0 are of the order 
of e4/fi2 (Refs. 5 and 6). In the four-probe method, which is 
most widely used in experiment, the measured fluctuations 
can greatly exceed this value. The reason for this behavior is 
that the measuring contacts average the gigantic microscop- 
ic mesoscopic fluctuations over the contact dimensions. It is 
possible that the fluctuations in several samples exceeded e4/ 
f i2  in Ref. 8 as a result of this effect. 

Mesoscopic fluctuations of the conductivity can be 
studied experimentally also by other methods. For example, 
it is possible to investigate the correlation of mesoscopic 
fluctuations of the resistance of two point contact by varying 
the external magnetic field. This correlation is given by Eq. 
(30). 

The use of the Langevin scheme allows, naturally, for 
both the agreement between the Onsager relation and the 
value of G ( H )  measured by a two-probe method, and the 
disagreement with the value of G ( H )  in four-probe measure- 
ments. 

The described Langvin scheme of calculating mesosco- 
pic fluctuations can be used only to calculate correlators in 
first order in the parameter ( p , l / f i )  - ' 4 1. It is shown at the 

same time in Ref. 24 that high correlators of the fluctuations 
of the conductance G  have a non-Gaussian character in ap- 
proximations of higher order in the parameter ( p , l / f i )  - '. 
We hope to extend the described scheme to include also this 
case. 

We note in conclusion that the mesoscopic-sample 
transparency fluctuations investigated by us differ in nature 
from mesoscopic conductivity fluctuations. In the former 
case J,,, - (n ( r )  ), and in the latter J,,, - V (n ( r )  ). It is this 
which determines the relatively large fluctuations of the con- 
ductivity compared with the conductance fluctuations. 

We are grateful to B. L. Al'tshuler, A. G. Aronov, V. L. 
Gurevich, L. B. Ioffe, Sh. M. Kogan, and B. I. Shklovskii for 
helpful discussions. 
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