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A kinetic approach is used to investigate the instability of space-charge waves in semiconductor 
superlattices in a strong electric field that induces Bloch oscillations in the minibands. Solution of 
the Boltzmann transport equation with a Bhatnagar-Gross-Krook collision integral yielded for 
the dielectric constant an expression that makes it possible to take into account, within a unified 
approach, the influence exerted on the high-frequency response of superlattices by resonance 
effects and by effects due to carrier drift and diffusion. It is shown that when the strong spatial 
dispersion is taken into account the spectrum of the space-charge waves are characterized in a 
wide range of superlattice parameters by a set of stable resonant Bloch superlattices and by an 
unstable drift-relaxation mode. 

1. INTRODUCTION 

When an electric field is applied to an ideal crystal hav- 
ing a sufficiently narrow resolved energy band, the carrier 
motion is localized and the particles oscillate at the Bloch 
frequency R = eE,d /+i, where E, is the electric field strength 
and d is the crystal period. The carrier dynamics in a band of 
finite width was investigated in sufficient detail in connec- 
tion with the theory of interband optical transitions.' Var- 
ious approaches to the description of the particle motion 
under these conditions, starting with Bloch's trail-blazing 
work, were critically analyzed in recent in which it 
was shown that if the lower-lying band gap is wide enough 
the probability of electron interband tunneling is negligibly 
small for a sufficiently large number of Bloch-oscillation 
periods. The presence of inelastic collisions is known to re- 
sult in carrier drift, in dissipation of the applied-field energy 
and, by virtue of the limited electron energy in the band, in 
negative differential conductivity (NDC) at E, > +i~/ed,',~-' 
where Y is the characteristic relaxation frequency of the dis- 
tribution function. 

In a recently realized new class of multilayer semicon- 
ductor structure [superlatticesx (SL) ] the artificially pro- 
duced periodicity makes it possible to vary in a wide range 
the parameters of the energy spectrum and to realize condi- 
tions for NDC on account of bounded motion of the elec- 
trons in an allowed subband (miniband) of the SL.9 It must 
be noted here, however, that notwithstanding the large num- 
ber of investigations of the hf properties of SL,'" there is still 
no clear idea of the spatial and temporal scales over which 
the space-charge waves (SCW) in SL become subject to the 
instability that governs the electric properties of the diode 
superlattice structures usually investigated in experi- 
ment. ".12 One of the approaches to the solution of this ques- 
tion is connected with consideration of the instability of the 
low-frequency drift-relaxation wave of the SCW spec- 
trum,13-l5 an instability that can be described in terms of 
quasihydrodynamic equations that take into account the 
NDC and the drift and diffusion of carriers localized in a 
narrow LS miniband. A consequence of the developed insta- 
bility of the Wconnected with this branch of the spectrum is 
generation of particles that move with drift velocity, or of 

strong electric-field domains localized near inhomogeneities 
of the structure (such as its boundaries)-the Gunn ef- 
fect. '"I5 

At the same time, the oscillatory character of the carrier 
motion in the SL narrow miniband makes possible instabil- 
ity development at much higher frequencies. As noted in 
Refs. 8 and 16, by interacting with the high-frequency field, 
carriers oscillating in a miniband can produce negative ab- 
sorption at a frequency equal to or a multiple of the Bloch 
frequency. It is important to note here in this situation there 
is produced in the system a characteristic high-frequency- 
response spatial-dispersion scale connected with the swing 
x,=:A/eE, of the Bloch oscillations of the electrons in the 
electric field (A is the miniband width). The problem calls 
therefore for a kinetic treatment. 

An approach to the calculation of the high-frequency 
conductivity (the dielectric constant) of an SL in a strong 
electric field with allowance for spatial-dispersion effects, 
based on an analogy with the calculation of the conductivity 
of a magnetoactive plasma, was formulated in Ref. 17. How- 
ever, the model used there for the collision integral 
St = - v (  f - fo) , as will be shown below, makes it impossi- 
ble, by virtue of the nonconservation of the number of scat- 
tered particles (S St dp#O), to take into account the influ- 
ence of the carrier drift and diffusion effects on the SCW 
spectrum. This, naturally, leaves out of consideration the 
low-frequency drift-relaxation branch of the spectrum. At 
the same time, the quasihydrodynamic approach used in 
Refs. 14 and 15 to describe the instability of this branch does 
not take into account the system's resonant properties due to 
the Bloch oscillations of the electrons. 

We have investigated in the present study the spectrum 
of the space-charge waves in superconductor superlattices in 
a strong electric field, by solving the Boltzmann transport 
equation with a Bhatnagar-Gross-Krook (BGK) collision 
integral. I s  This approach permits an adequate account of the 
influence exerted on the SCW spectrum both by resonance 
effects due to Bloch oscillations of the electrons and by ef- 
fects connected with carrier drift and diffusion under condi- 
tions of strong spatial dispersion. It becomes possible as a 
result to determine the conditions under which either low- 
frequency (Gunn) instability or oscillations near the Bloch 
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frequencies are produced in the system. This is the main 
purpose of the present paper. 

2. INITIAL EQUATIONS 

We describe the energy spectrum of the electrons in the 
lower miniband, which is filled in accordance with the Boltz- 
mann statistics, in the tight-binding approximation8: 

A ( 4 -  P B )  PL' 
2 

cos- +-. 
A 2m 

Here A is the miniband width,p, the quasimomentum com- 
ponent along the SL axis, andp, and m the carrier transverse 
quasimomentum and mass. 

To describe the response of the electrons to external 
fields, we use the Boltzmann transport equation with a BGK 
collision integral, which permits adequate allowance for the 
particle-number conservation law JSt dp = 0 for scattering 
in an inhomogeneous field." If the external fields are orient- 
ed along the SL axis (vertical transport in the diode configu- 
ration), integration of the Boltzmann equation with a BGK 
collision integral with respect top, makes the problem one- 
dimensional: 

where 

u, is the characteristic particle velocity in the band (we omit 
hereafter the subscript z, since the problem is now one di- 
mensional), 

is the equilibrium distribution function normalized to no, 
n(x)  is the electron density in thex plane, I,, = I, (A/2xT) 
is a modified Bessel function of argument A/2ttT, T is the 
lattice temperature, Y is the characteristic relaxation fre- 
quency of the distribution function, and n, is the equilibrium 
carrier density. 

We supplement the transport equation (2 )  with the 
Poisson equation and with the condition that the total cur- 
rent be continuous. This formulates completely the electro- 
dynamics of the problem in the one-dimensional situation: 

where 

E is the lattice dielect+c constant and the integration is with- 
in the limits of the : ;L Brillouin zone. 

Equation (2)  is valid within the framework of the qua- 
siclassical description of the particle dynamics in the mini- 

Here A, is the width of the forbidden miniband. By virtue of 
( 5 ) ,  we neglect the Zener tunneling and the optical transi- 
tions in the upper minibands. At the same time, if (6) is 
satisfied, the swing x, = A/eE,, of the Bloch oscillations in 
the electric field exceeds the period d of the structure; this is 
equivalent in above-threshold fields Eo k fiv/ed to a suffi- 
ciently large electron mean free path d 5 2v,/v. 

The choice of the collision integral in (2)  in the BGK 
form is a rather crude approximation of carrier-scattering 
processes. Nonetheless, in the case of homogeneous high- 
frequency fields the nonlinear SL response, calculated on the 
basis of (2),  is well enough confirmed by results of numeri- 
cal simulation by the Monte Carlo method when account is 
taken of scattering by optical phonons and impurities.9 

3. DIELECTRIC CONSTANT 

Following the usual approach to SCW  investigation^,'^ 
we set apart in the structure the volume 0 < x < L, in which a 
small inhomogeneous perturbation 

E (x, t )  =Eo+ El (x) e-'"' ( 7 )  

is superimposed on the homogeneous constant field E,. The 
high-frequency field E, (x) ,  as well as the perturbations of 
all the remaining quantities that enter in the problem, per- 
mits in the segment 0 < x < L a representation in the form of 
Fourier series: 

where k = 2n-m/L and m are integers. Linearization of the 
Boltzmann transport equation leads to the following rela- 
tion for the Fourier component of the perturbations of the 
distribution function, of the field, and of the particle densitv: 

where R ,  = eE,d /fi is the amplitude of the high-frequency 
field, p = pd /fi is the dimensionless quasimomentum, 
a = - ( W  + iv)/R, p = ku,/fl is the normalized wave 
number of the perturbations, and F,, is the electron distribu- 
tion in the constant homogeneous electric field E,: 

m 

We obtain the connection, in the Fourier representation, 
between the perturbations of the electric field, of the current 
and of the particle density from Eqs. (3 )  and (4): 

~ O E  
~,,, j :" '  = j ,  ( k )  - -El ( k )  1 

4n 

where 6,,, is the Kronecker delta. 
From the formal viewpoint, the method of finding the 

solution of (9)  is perfectly similar to the calculation of the 
dielectric constant of a magnetoactive plasma,'7~20 with the 
periodicity of the coefficients in (9 )  determined by the peri- 
odic dependence of the particle energy on the quasimomen- 
tum ( 1). Solving (9)  by the method given in Ref. 20, we 
obtain for the high-frequency conductivity that relates the 
Fourier components of the current and the field 
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X 
"*(p) ' d + m ( P )  

(a-s) ' (14) 

where w, = (4~e~n,u,d /~+i)  'I2, and the dielectric constant 
of the SL is determined, according to (12), by the usual 
relation 

E ( a .  k )  =e+i 
4no ( a ,  k )  

It is easy to verify that the expression obtained for the dielec- 
tric constant has a symmetry property that follows from the 
causality principle (the Kramers-Kronig re la t i~n)~ ' :  

& ' ( - a ,  -k, E ) = e ( o ,  k ,  E ) .  (16) 

In addition, since the preferred direction in the problem is 
determined by the electric field, we have 

E ( a ,  k ,  E )  =E (o,  -It, - E ) .  (17) 

Expression ( 15) describes the SL response to an exter- 
nal inhomogeneous hf field with account taken of the strong 
spatial and temporal dispersions. The characteristic scale of 
the spatial dispersion P=: 1, k--x,-l is the swing x , ~  A/ 
eE,,, and the scale of the temporal dispersion is the Bloch 
frequency. In the limit of homogeneous fields 8 - 0  expres- 
sion ( 14) goes over into the result of Ref. 2 1. In this case the 
resonance takes place only at the fundamental frequency 
w =: S1. Allowance for spatial dispersion leads, according to 
( 14), to a resonant response at the harmonics of the Bloch 
frequency w = no .  

We note here that the model of the collision integral 
St = - Y( f - fo) used in Ref. 17 to calculate the dielectric 
constant of an SL in a strong electric field makes it possible 
to take into account the influence of the spatial dispersion 
only on the conductivity component that is proportional to 
the carrier density [second term in the square brackets of 
(14)] ,  which has, naturally, been defined in the limit of 
weakly inhomogeneous high-frequency fields at wz /a2 S P ,  
S1> Y. At the same time, the response of the system to an 
external field contains collision-induced terms that lead to 
drift and diffusion at arbitrary powers ofp. They stem from 
the second term in the right-hand side of (9),  which takes 
into account the conservation of the scattered particles. To 
avoid misunderstandings, we note that the contribution to 
the convective current of the electronsj = e J ufdp, associat- 
ed with this term, is sometimes set apart as a component of 
the "diffusion vector" (Ref. 22). In our case, however, it is 
convenient to use the Poisson equation ( 1 1 ) and to include 
this contribution in the high-frequency conductivity (dielec- 
tric constant) of the system. We make use thereby of the 
terminology of Ref. 18. Thus, relation ( 14) accounts for the 
influence of both plasma and drift-diffusion effects on the 
linear response of SL within the framework of a single ap- 
proach. 

4. DRIFT-RELAXATION AND RESONANCE (BLOCH) MODES 

It is known that the temporal evolution of the initial 
perturbation in an active medium is determined by the solu- 

tion of the dispersion equation ~ ( o , k )  = 0 for real values of 
the wave numbers k. Examination of expressions ( 14) and 
( 15) shows readily that if the complex frequency w ( k )  is a 
solution of the dispersion equation, then - w* ( - k)  is also 
its solution, i.e., we can confine ourselves in the analysis of 
the SCW spectrum to the region Reo(k)  > 0, - w < k < a, 
and construct the solution in the region Rew ( k )  < 0 by using 
the indicated symmetry property. We note right away that 
since the system has a preferred direction connected with the 
electric field, the roots of the dispersion equation must satis- 
fy the symmetry relations for equilibrium isotropic media. It 
is obvious only that w (k,E) = w ( - k, - E). 

Neglecting spatial dispersion effects, the determination 
of the system natural-oscillation spectrum satisfying the re- 
lation E + ~ . ~ T ( T ( w , ~ - - . O ) / W  = 0 reduces to solving a third- 
order equation, with real coefficients, for the quantity 
6 = - iw/v, where w is the complex frequency: 

Here 

where wi is the square of the carrier plasma frequency. The 
solution of ( 18) takes in an approximation with low plasma 
frequencies y 4 max{) 1 - Z ' 1 " 2 , Z )  the form 

Relation ( 19) describes the relaxational (aperiodic) build- 
up of the perturbation in the above-threshold field Z >  1. It 
will be made clear below that at k + O  this solution corre- 
sponds to the drift-relaxation branch of the spectrum with a 
growth rate and a phase velocity that depend on the wave 
vector. Equation (20) yields damped oscillations of the elec- 
tric field at the hybrid plasma-Bloch frequency. In the limit 
y-0 these oscillations correspond to the Bloch resonant 
branch of the spectrum. It is important to note here that 
according to the Routh-Hurwitz criterion, there are no 
growing solutions with Im w > 0 at arbitrary values of the 
plasma frequencies (of the parameter y )  in below-threshold 
fields ( Z <  1 ), and that at Z >  1 there is a single root with 
Im w > 0. This proves at the same time that at k = 0 only the 
relaxation mode of the spectrum is unstable, and the oscilla- 
tions near the Bloch frequency are damped. 

Allowance for the spatial dispersion leads to the onset 
of propagating waves near the Bloch frequency and its har- 
monics, in analogy with the case of cyclotron waves in a 
magnetized plasma.20 In the limit 0 %  Y, R %a, ,  when the 
plasma resonance has high Q, the double series in ( 14) can 
be summed with the aid of the Bessel-function addition 
theorem,23 while the SCW spectrum near a resonance of 
multiplicity I can be represented in the form 

where y = A/2?tT, I = 0, 1, 2, 3... . The solution with 
Re w < 0 (I  < 0 )  is obtained in accordance with the symme- 
try property mentioned above. At I = 0 Eq. (21 ) describes 
the drift-relaxation branch of the spectrum. Indeed, in the 
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limit 8-4 1 we obtain, on the basis of (21 ), an ordinary dis- 
persion relation in the f ~ r m ' ~ . ' ~  

where the coefficients 

determine respectively the differential Maxwellian frequen- 
cy, the drift velocity, and the diffusion coefficient in a strong 
electric field Z )  1 and at relatively low carrier density 
wp 4 R .  

To analyze the SCW spectrum in a wide range of values 
of the parameter wp / v  and wave numbersfl we use a numeri- 
cal solution of the dispersion equation by the iteration meth- 
od. The calculation results for a Bloch resonance with suffi- 
ciently high Q, Z = R / v  = 4, A/2xT = 1, at different values 
of w p / v ,  are shown in Fig. 1 .  The frequency region Re w 
contains the drift-relaxation mode and two resonant ( I  = 1 ,  
2 )  modes of the spectrum. As seen from the figure, the con- 
ditions 

are met for the drift-relaxation branch, obviously as a conse- 
quence of the general symmetry property of the solutions. 
With increase of the plasma frequencies, in accordance with 
( 19), the growth rate of the instability of the drift-relaxation 
mode increases, whereas the resonant mode (1 = 1 ) is stable 
all the way to values o, /v-, 20 corresponding to quite high 
Q of the plasma resonance. At k = 0 the oscillation frequen- 
cy of the resonant branch follows the analytic estimate ( 2 0 ) .  
At high values of w, / v  the instability of the resonant branch 
sets in a t p ~ 2 . 5  and is of geometric origin. In this situation, 

the SCW length is comparable with the swing of the electron 
Bloch oscillations. Numerical calculations show that the in- 
stability region appears near R when the rather stringent 
conditions w, / R  2 5 ,  Z = n / v  2 3, and A/2x TZ 1 are si- 
multaneously met. It is important also to note that even un- 
der these conditions the growth rate of the resonant branch 
is quite small compared with that of the drift-relaxation 
branch. With further increase of the parameter w p / v  the 
hybrid frequency of the resonant branch can exceed the sec- 
ond harmonic of the Bloch frequency, leading to a restruc- 
turing of the SCW spectrum. We ignore this case, for owing 
to the high collision frequencies and the large effective mass 
of the carriers in the narrow SL minibands it is difficult to 
obtain a plasma resonance with high-Q w, / v  2 20. 

For typical values of the SL structure parameters up / 
v-, 1.76, A/2xT=: 1.74, Z = 1.5,  corresponding approxi- 
mately to the GaAs-Al,,, Ga,,, As samples with period 
d = 90 b; investigated in Ref. 12 at T=: 100 K, A z 3 0  meV, 
E = 13, no-,2.2.1016 ~ m - ~ ,  v0=:2. 10' cm/s, and v-,5.10I2 
s-'; the numerically calculated SCW spectrum is shown in 
Fig. 2. It can be seen from this figure that the resonant 
branch is strongly damped, whereas the drift-relaxation 
branch is unstable in a wide range of wave numbers. In the 
entire wave-number region corresponding to the SCW insta- 
bility, the spectrum of the drift-relaxation branch is well de- 
scribed by a second-order polynomial of form ( 2 ) ,  so that 
the type of instability can be determined by using the crite- 
rion J w ,  J>ui /4D,  formulated for this case and describing 
the transition from convective to absolute i n ~ t a b i l i t ~ . ' ~ , ~ ~  In 
the normalized variables shown in Figs. 1 and 2, the abso- 
lute-instability criterion takes the form 

where5 = O / V ,  5, is the growth rate atB = 0, d(Re 5)/dO 
is the effective drift velocity, and Po is the limiting wave- 

FIG. 1. Spectrum of space-charge waves in superlattices in strong 
electric field at various carrier densities. The region Re i i(Z = w/ 
v) includes a drift-relaxation and two resonant branches at A/ 
2 x T =  1, Z = 4 ;  Curves I-wp/v= 1, 2-wp/v= 10, 3-up/ 

1 v = 20. 
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FIG. 2. Space-charge wave spectrum in low-Q plasma resonance; 
ARxTz:  1.74,2= 1.5, o,/v--,1.77. 

vector value at which the growth rate vanishes. As seen from 
Fig. 2, according to (26) the instability is absolute in this 
case. 

As shown in Ref. 24, in systems with NDC, drift, and 
carrier diffusion, the criterion (26) determines significantly 
the consequence of the evolution of the SCW instability. Un- 
der conditions of convective instability there is realized a 
regime with traveling electric-field domains, accompanied 
by pulsations of the current in the external circuit. At suffi- 
ciently high carrier density, Jw, 1 > v:/4D, a regime is real- 
ized with a static domain localized near an inhomogeneity of 
the structure (for example, near its boundaries); this leads 
to switchover effects on the current-voltage characteristic of 
the structure. A convenient estimate of the density at which 
the criterion (26) is satisfied is obtained on the basis of 
(23)-(25) at E,,%E,: 

We note finally that the approximation with a quasi- 
classical description of the Wspectrum is valid at A %d (A is 
the length of the SCW); this is equivalent to 

In the wave-number region shown in Figs. 1 and 2 we have 
TIP 2 1. Equation (28) reduces then to the initial condition 
(6)  for the validity of the quasiclassical description. 

5. CONCLUSION 

The foregoing kinetic analysis of the space-charge-wave 
spectrum in semiconductor SL shows that at typical values 
of the SL parameters the character of the instability develop- 
ment is determined by the low-frequency drift-relaxation 
branch. At the same time, the high-frequency resonant 
(Bloch) branches of the spectrum (Re w -- nR) are stable in 
a wide range of SL parameters, except in the cases of very 
high Q of the Bloch and plasma resonances. Thus, the build- 
up of high-frequency oscillations of an electric field and of 
space charge in superlattices at frequencies comparable with 
the Bloch frequency is hindered by the low electron mobility 
due to the small width of the miniband and to the high colli- 
sion frequency. 
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