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The nature of the instability of uniform magnetization precession, recently discovered 
experimentally and theoretically in the A-phase of 3He, is discussed. The threshold for the onset of 
this instability is determined. 

It is now established both theoretically1 and experimen- - adz = - 7 (Mxdu-Mudx) - - X xQ2d,Zd,, 
tally,'v3 that the uniform precession of the s ~ i n s  in 3He-A is at X yZ (5 
unstable with respect to dxcitation of spatially inhomogen- 
eous spin oscillations. Some time ago, similar parametric in- 
stabilities were studied for the case of ferro- and antiferro- 
magnetic  material^.^'^ The analysis of the instability of the 
uniform precession in 3He-A carried out in the present com- 
munication has the purpose of enhancing the understanding 
of the nature of this instability and of following the indicated 
analogy, as well as of determining the threshold for the onset 
of the instability. 

To obtain these goals it is convenient to restrict one's 
attention to the case of weak nonlinearity (i.e., of a small 
angle between the precessing spin and the magnetic field). 
The spin dynamics equations from which we start have the 
form: ( [VW] = V x W denotes vector product, as usual in 
Russian literature-Translator's note) 

Where M is the magnetization, y is the gyromagnetic ratio, 
D is the spin diffusion coefficient, x is the Leggett-Takagi 
relaxation parameter, SF/SM and SF/Gd are the functional 
derivatives of the free energy density 

which includes the uniform magnetization energy, the Zee- 
man energy, the dipole energy, and the gradient energy ,"~  is 
the susceptibility, and H is the constant magnetic field. 
Comparing the A-phase with an antiferromagnet one must 
take into account the fact that the orbital vector 1, which 
remains immobile in spin dynamics experiments, corre- 
sponds to a field with uniaxial anisotropy, whereas the spin 
vector d corresponds to the antiferromagnetic vector nor- 
malized to unity. 

Assume the field H to be oriented along the z axis, and 
the vector 1 along thex axis. For the sequel it suffices to write 
only three equations out of those contained in the vector 
equations ( 1 ) : 

d M ,  -= X 
d t 

- o L M x  + - Q2d,d,+yA (&Ad,-dxAd,) + DAM,, 
Y 

(4)  

where w, = yH is the Larmor frequency and 
R = y( V,/X) 'I2 is the longitudinal NMR frequency. In the 
case of a small precession angle (linear transverse NMR) 
M,, the quantities My and d,  are small of first order, where- 
as dy is small of second order. Therefore d ,  = 1 - d :/2. The 
nonlinear correction to d,  in the dipole energy (to which the 
term -R2 in the right-hand side of Eq. (4)  is related) is 
decisive for the appearance of the instability. In antiferro- 
magnetic materials a similar role is played by the nonlinear- 
ity in the energy of the uniaxial anisotropy.' All other non- 

linearities may be neglected, without loss of generality. After 
this, making use of the strong field condition w, $ R, as well 
as of the smallness of the relaxation terms, it is easy to elimi- 
nate My and d ,  from the equations (3)-(5) ( d y  = 0 as a 
second-order quantity) and thus derive a wave equation for 
M, : 

where w, = (w, 2 + 0 2 )  112 and T = (xx/2f)R4/wL2 are 
respectively the frequency and the reciprocal of the relaxa- 
tion time of linear homogeneous transverse NMR. c = y(A / 
X )  ' I2  is the speed of the spin waves, M, = XH is the equilib- 
rium magnetization. 

The solution of Eq. (6)  corresponding to uniform 
precession should be of the form 

Mx=ML(t)  sin cpo(t), (7) 

where po(t)  is a rapidly varying function of t  and M, ( t )  is a 
slowly varying function. Substituting (7) into (6)  and ne- 
glecting the higher harmonics of sin 3p0 in the nonlinear 
term, and then setting the coefficients of sin p0 and cos po 
equal to zero, we obtain the precession frequency and its 
decav law 

In Eq. (6)  the sign in front of the nonlinear term and is 
the same as the sign of the term proportional to AM, 
(Lighthill's condition); this leads to the appearance of a 
modulation i n ~ t a b i l i t ~ . ~  In order to make it manifest it is 
necessary to introduce in the amplitude M, and in the phase 
p, of the uniform precession small additions that vary slowly 
over space, to derive linearized equations for these quanti- 
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ties, and to determine when these additions increase with 
time. This was the approach taken by Fomin,' who operated 
with equations written in terms of the Euler angles. How- 
ever, one can also carry out the analysis in a manner more 
traditional for parametric instabilities in magnetism. We 
consider small spatially inhomogeneous oscillations on the 
background of uniform precession. For this purpose we set 

M,=M,( t )  sin rp,(t) +Mk(t) cos kx. (9)  

Substituting Eq. (9)  into Eq. (6)  we obtain a linear equation 
from Mk : 

a2iM, 3 M , ~  a M k  - +[ w: + - QZ7 cos 2o.t] Mh+2 (I'+DkY - = 0, 
atz 4 M p  at 

where 

We note that in the limit k-0 the frequency o, does not 
coincide with the uniform precession frequency w,, since no 
matter how small k is, the equation ( 10) describes a weakly 
nonuniform mode which differs from the uniform precession 
mode excited in the nonlinear regime. We obtain by means of 
the standard method for the growth ratep of the nonuniform 
mode 

where p=: M,/M, is the small precession angle. After sub- 
stitution ofwo and wk in the expression ( 1 1 ) makes the latter 
different from the one obtained by Fomin (in the limit of 
small 8) only by the presences of the reciprocal of the uni- 
form relaxation time I'. The consideration of I' is necessary 
for the determination of the instability threshold, since the 
spin diffusion does not guarantee stability for small k and 
yields small corrections to the magnitude of the threshold if 
DmL /c2 4 1, which is well satisfied in experiments. The 
threshold value of PC is determined by the condition p = 0 
for a k corresponding to the maximum ofp2, when the reso- 
nance condition w, = w, is satisfied: 

The instability considered here is analogous to the Suhl sec- 
ond-order instability, when two uniform precession mag- 
nons are converted into a pair of magnons with wave vectors 
k and -'k. In antiferromagnets such instabilities have been 
considered for the case of the absence of an external field 

(Ref. 5), when for the threshold value of the deflection angle 
of the sublattice magnetization one obtains in place of Eq. 
( 11) a quantity - (T/Cl) ' I 2 .  In an antiferromagnet it is con- 
siderably more difficult than in 3He-A to reach the region of 
strong magnetic fields, since, as a rule, fields of the order of 
100 kOe are necessary, field strengths which exceed HE" 
(see Ref. 7) which is the analog of the dipole field 
H ,  = R/y - 30 Oe in 3He-A. 

Substituting the values of I', w, and R from Ref. 3 into 
Eq. ( 12) we obtain 0, = 10". Experimentally the instability 
became noticeable for an angle of 40". But for the experimen- 
tal determination of the instability threshold it is necessary 
that the observation time should be considerably larger than 
the decay time 1/T, which is hard to realize in a pulsed re- 
gime, where the experiments of Ref. 2, 3 have been carried 
out. Therefore, in order to determine the instability thresh- 
old it is necessary to do experiments in a steady state re- 
gime.'' 

As the modulated instability develops, energy is 
pumped from the uniform mode into the nonuniform mode. 
When a sufficient degree of such pumping is attained one can 
observe a phenomenon of "reversibility", when pumping 
back of energy into the uniform mode begins (Ref. 6). This 
may be the cause of the nonmonotonic decrease of the induc- 
tion signal for the large P observed in the experiment (see 
Fig. 5 of Ref. 3 ) .  

In conclusion the author expresses his gratitude to Yu. 
M. Bun'kov, E. I. Golovenchin, V. V. Dmitriev, Yu. M. 
Mukharskii, V. A. Sanina, and I. A. Fomin for quite useful 
discussions of the questions touched upon above. 
"In general A is a tensor, but for simplicity we restrict our attention to the 
case when d varies only along one direction. 

"This circumstance was pointed out to the author by Yu. M. Bun'kov. 
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