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In this paper we study the dynamics of relativistic charged particles in the field of a fast 
electromagnetic wave w>kc and a transverse magnetic field. The particle equations of motion are 
reduced to a Poincari mapping. We find the solution of the problem of the evolution of the 
particle distribution function and show that when w = kc there occurs an unbounded stochastic 
particle acceleration and the energy grows with time according to the power law E a t3/7. When 
w > kc there exists a limitation on the magnitude of the stochastic acceleration. We discuss the 
characteristic features of the regular and the stochastic particle dynamics, the structural 
properties of the phase space, and typical bifurcations of phase trajectories. 

1. INTRODUCTION 

Charged resonance particles are accelerated when they 
move in the field of a plane wave and in a transverse magnet- 
ic field. Particles moving with a velocity close to the phase 
velocity of the wave in a magnetic field can be reflected many 
times from the wave front and their energy can increase. ' In 
the nonrelativistic case the same mechanism leads to parti- 
cles leaving the potential well of the wave and to a weakening 
of the intera~tion.~ However, the dynamics of detrapped par- 
ticles may turn out to be stochastic, and a different kind of 
particle acceleration then arises The stochastic mechanism 
for the acceleration of charged particles in a magnetic field 
and in the field of a plane wave was studied in Ref. 3 in 
connection with the problem of ion heating by lower-hybrid 
oscillations. In that paper the case of strong magnetic fields 
was considered, when the particle passed twice in each cy- 
clotron period through a resonance region and interacted 
with the wave. Successive changes in velocity in the reso- 
nance regions turn out to be uncorrelated with one another 
and there occurs diffusion in velocity and a stochastic parti- 
cle heating. The stochastic heating of detrapped particles in 
vanishingly small magnetic fields was studied in Refs. 4 and 
5. The slow damping of plasma waves due to the stochastic 
heating of detrapped particles was studied in the same pa- 
pers. The stochastic acceleration process in the case when 
the wave frequency is close to the frequency of cyclotron 
harmonics was considered in Ref. 6. An interesting feature 
of the nonlinear particle dynamics in that case is the forma- 
tion of a stochastic web in the phase plane. A small group of 
particles is then stochastisized; they diffuse along the chan- 
nels of the stochastic web and their energy increases on the 
average without limit. 

In the relativistic case, trapping in a potential well is 
possible for a group of particles with an initial velocity close 
to the phase velocity of the wave; this is accompanied by 
unbounded regular particle acceleration along the wave 
front.'-lo Such a regular acceleration method for charged 
particles trapped by a plasma wave, based on using a trans- 
verse magnetic field, is called surfatron.' The radiation 
which arises for such an electron motion was studied in 
Refs. 10 and 1 1 .  The radiation is caused by the oscillations of 
the trapped particles in directions at right angles to the wave 

front during their relativistic motion along the wave front. 
Thus, various physical effects which arise when charged par- 
ticles move in a plasma wave and in a transverse magnetic 
field are rather complicated and characterized by an inter- 
lacing of regular and stochastic mechanisms for transferring 
energy between the particles and the waves. A review of 
many results in this field is contained in Ref. 12. 

In the present paper we study the dynamics of charged 
particles in the field of a fast electromagnetic wave with a 
phase velocity w/k>c (cis the velocity of light in uacuo) in a 
transverse magnetic field. The trapping effect and regular 
particle acceleration do not occur in this situation. The sto- 
chastic detrapped-particle acceleration mechanism consid- 
ered in Refs.4 and 5 becomes here more efficient I3 , l4  due to 
the nonlinearity caused by the energy dependence of the cy- 
clotron frequency of the motion of relativistic particles in a 
magnetic field. It is important to emphasize that in the case 
where the phase velocity of the wave equals the velocity of 
light, w = kc, there exists for the stochastic acceleration of 
relativistic-particles a universal mechanism which is not 
connected with the magnitude of the amplitude of the field of 
the electromagnetic wave. We obtain a solution of the prob- 
lem of the evolution of the distribution function of the parti- 
cles subject to stochastic acceleration. For large times the 
distribution function ceases to depend on the initial condi- 
tions and becomes self-similar, and the average particle ener- 
gy E increases with time according to a power law Eo: t3/7. 
The dynamic equations of motion of the ultrarelativistic par- 
ticles then reduce to a simple Poincari mapping. 

We show that because of the Kolmogorov-Arnold- 
Moser theorem about the conservation of invariant tori in 
the phase plane, there exist in the region of small energy 
values relatively large islands of stability in the vicinity of 
lower-order cyclotron resonances. We study the effect of dy- 
namic correlations connected with the existence of such is- 
lands on the diffusion of charged particles. 

2. MAPPING FOR RELATIVISTIC PARTICLES 

The Hamiltonian H describing the dynamics of relativ- 
istic charged particles in an electromagnetic field with vec- 
tor potential A has the following form: 
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where P is the generalized momentum. The Hamiltonian 
(2.1 ) is a function of time: 

In correspondence with (2.1 ) , the canonical equations of 
motion have the form 

We consider the motion of a relativistic charged particle 
in a constant magnetic field Bollz, at right angles to which, 
along the x axis, there propagates a linearly polarized elec- 
tromagnetic plane wave of frequency w and wave number k . 
We choose the vector potential A of the electromagnetic field 
as follows: 

A=e,(Box FA, sin ( k x - o t ) ) ,  (2.4) 

where A, is the amplitude of the vector potential of the elec- 
tromagnetic wave. Since the vector potential (2.4) and the 
Hamiltonian (2.1 ) are independent of the coordinates y and 
z, the generalized-momentum components P, and P, are in- 
tegrals of the motion. For the sake of simplicity we shall 
assume in what follows that these integrals are equal to zero. 
The Hamiltonian (2.1 ) then takes the following form: 

H=(m'c4+c2p2+e2[Box+A, sin ( k ~ - o t ) ] ~ ) " .  

(2.5) 

The particle equation of motion (2.3) is also considerably 
simplified: 

*=c2p/H, 

where p ~ p , .  Accordingly, we have for the change in the 
total energy 

8=- ( e20A, /H)  cos ( k x - a t )  [BOx+AL sin ( k x - a t ) ]  . 
(2.7) 

We write the solution of the unperturbed problem (A, = 0, 
H = 0) in the form 

where p = v,/O is the Larmor radius, v, the rotational ve- 
locity, and to the initial time. 

If A, # 0 a particle moving along a Larmor circle starts 
to interact with the wave and for ultrarelativistic particles 
with energies E s  (mcZ,eA, ) the interaction turns out to be 
most effective only in the vicinity of a single point on the 
Larmor circle, namely where the particle moves in the direc- 
tion of the wave propagation. Due to the relativistic Doppler 
effect the particle reaches the uniform-field region and effec- 
tively gathers energy from or gives off energy to the wave. On 
the remaining part of the trajectory the motion in the rapidly 
oscillating field is adiabatic. Neglecting on the right-hand 
side of (2.7) the second term in the square brackets and 
integrating over the cyclotron period we find the change in 
energy of a relativistic particle over that time interval: 

AE=-c2BoA,o dt  ( x l ~ )  cos ( k x - a t )  . 
(2.9) 

Assuming the phase velocity of the wave to be equal to the 
velocity of light (w = kc), we evaluate the integral on the 
right-hand side of (2.9) by the stationary-phase method. In 
the vicinity of the time t = t, corresponding to the nth pas- 
sage of the particle through the nonadiabatic region we ex- 
pand the trajectory in a series: 

x ( t )  = x ( t , )  + l ( t - t , )  +f (t-tn)'/2+; (t-tn)'/6+ . . . . 
(2.10) 

Assuming the change in the particle energy during a 
single collision time to be small, we differentiate (2.8) with 
respect to the time and, using (2.10), we write down the 
phase of the integrand on the right-hand side of (2.9): 

k x ( t ) - o t x k p  sin 0-kpQt, cos 0+(kpQ cos 0 - o ) t  

- (kpQ2/2)  ( t - t , )  sin 0- (kpQ3/6)  (t-t ,) '  cos 0. 

For ultrarelativistic particles p O z c  and the stationary 
phase points are given by the equation cosB=: 1 . We then get 
for the phase (2.11 ) the following approximate expression: 

In the vicinity of a stationary phase point x=:c(t - t ,  ), and 
we therefore get for the change in energy (2.9) the estimate 

Since, owing to the fast oscillations of the integrand in 
(2.13 1, only the region a n 2 (  t - t, )' /6 < 1 contributes to 
the integral, we can extend the integration limits to infinity. 
As a result we obtain 

AE=31/82"'I' ( ' I s )  e2BoALoc (ooeZ) -" ( m c 2 )  -'/%'" sin o t  nr 

where T(z) is the gamma function. The time interval 
A t  = t, + , - t, between consecutive collisions between the 
particle and the wave is equal to the period of the cyclotron 
rotation and is determined by the particle energy: 

Equations (2.14) and (2.15) lead to the following mapping: 

U,,+~=U,,+ Q sin 9n, q n + i = $ n + ~ n + * ' *  (2.16) 

where u, = ( 2 m E n  /u,mc2) and the phase $, = wt, . The 
mapping (2.16) conserves the phase volume and depends 
only on a single parameter 

3. STOCHASTICITY REGION 

We study the boundary of the stochasticity appearance 
in (2.16) as f~ l lows . '~  To do this we must define the quantity 

When K R 1 there arises a local instability leading to 
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mixing in phase space. If we disregard the region of phases $ 
in which chaos appears, the stochasticity condition deter- 
mines the lower bound for the particle energy, starting from 
which the motion becomes chaotic and stochastic accelera- 
tion begins: 

e A, 'I, E 'I, 

K . = L B - - ~ ( ~ )  mc O H  (=) > I .  

The criterion ( 3 . 1  ) is, apart from a numerical coefficient of 
order unity on the left-hand side, the same as the criterion 
obtained in Ref. 13 for the overlapping of the nonlinear res- 
onances. 

Inequality ( 3.1 ) determines the threshold value E,,, of 
the particle energy starting from which there appears sto- 
chastic acceleration: 

It follows from this expression that the threshold energy in- 
creases with increasing external magnetic field strength like 
E,, a B :. Most important, however, is the fact that for any, 
however small, value of the field strength of the electromag- 
netic wave there exists a threshold value for the particle en- 
ergy above which the dynamics is chaotic and the particles 
have a chance of increasing their energy without limit. 

We consider some properties of the mapping ( 2 . 1 6 ) .  
We give in Fig. 1 the numerical results of the mapping ( 2 . 1 6 )  
for Q = 0 .5  after l o 5  iterations for one trajectory. The initial 
condition was chosen in the chaos region. The stability is- 
lands not occupied by trajectories are stationary elliptical 
points. The coordinates of the stationary points of a single 
period ( U ( O ' , $ ( ~ ' )  are determined by the solutions of the fol- 
lowing equations: 

Q sin 1)(~)=0, IU(~)['~=Z~N, N - integer. ( 3 . 3 )  

Hence it follows that the phase $(O' = 0 or .rr , and do' 
= ( ~ T N ) ' ' ~ .  The last equation is equivalent to the condition 

for cyclotron resonance 

We study the stability of the stationary points as follows. We 
construct in the neighborhood of $"' and u"' the tangent 
mapping 

A 

where the matrix A has the form 

1 Q cos $(') I (312)  1 U(O) 1 I+ (vz) 1 U(O) 1 'I~Q cos 9'0) ( 3 . 6 )  
A 

Folving the equation for the eigenvalues il of the matrix A: 

we find the stability condition for the stationary points of a 
single period 

1 2+3/21 u(O) 1 'I2Q cos $(") 1 ~ 2 .  ( 3 . 8 )  

Hence it follows that if Q > 0 the motion in the vicinity of the 
cyclotron resonances is at $'O' = 0 always unstable, and 
when $'O' = .rr stability occurs in the region 

If inequality (3.9 ) is violated the motion in the vicinity of the 
cyclotron resonance becomes unstable. The instability con- 
sists in that the elliptical point becomes hyperbolic. Two new 
elliptical points of the doubled period are then generated. 
This is the ordinary island-doubling bifurcation. When the 
particle energy grows further there occur successive island- 
doubling bifurcations which are typical of Hamiltonian sys- 

FIG. 1. The (u ,$ )  phase plane of the mapping (2.16) for 
Q = 0.5. 
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tems. When KO = Kc' the elliptical points with periods - 2" 
lose their stability and there appears a cycle with period - 2" + I. The sequence of bifurcation values Kc' converges 
rapidly for sufficiently large n to a limit K A"', according to a 
geometric progression law, with exponent S,--8.72.'6"7 In 
the range of parameter values KO between two values corre- 
sponding to the sequence of doubling bifurcations in the vi- 
cinity of the elliptical points there appear and are split off 
necklaces of islands corresponding to higher-order reson- 
ances. 

The structure of the phase space becomes thus particu- 
larly complicated in the region 1 < K O  < K A"' where the 
fraction of stable components of the motion plays an impor- 
tant role. Stochastic trajectories form in this region an ex- 
traordinarily complicated structured set, the so-called fat 
fractals." The particle trajectories can stick for a long time 
in the region of relatively low energies and this is in turn 
strongly reflected in the particle diffusion which is consider- 
ably diminished. 

When KO increases, i.e., in the region of large particle 
energy values, the measure of the regular component tends 
to zero and the motion becomes completely chaotic. For the 
sake of simplicity we further consider the case 

For the phase correlations we can give the following esti- 
matet5: 

2n 

where the time for the decoupling of correlations is 

z,=2At/ln KO.  (3.12) 

Here At  is the time between two consecutive steps of the 
mapping, and is equal to the cyclotron period. Substituting 
Eq.(2.15) for At into (3.12) we get 

z,=4nE/0~rnc~ In KO. (3.13) 

The time rc for the decoupling of correlations or the 
time for the loss of memory of the original conditions satis- 
fies, according to (3. lo), the inequality 

Qz,<l. (3.14) 

4. RESULTS OF NUMERICAL CALCULATIONS 

The mapping (2.16) which we obtained and studied in 
preceding sections of the present paper describes the dynam- 
ics of ultrarelativistic charged particles with energies E 

mc2 in the field of an electromagnetic wave propagating at 
right angles to an external magnetic field with a phase veloc- 
ity equal to the velocity of light. In the more general formu- 
lation it is necessary to turn to a numerical analysis of the 
problem. We studied the set of Eqs. (2.6) with the Hamilto- 
nian (2.5) numerically for various values of the parameters 
E = eA, /mc2, Y = d m H ,  and S = 1 - kc/w. Figures 2, a-c 
illustrate the results of a numerical analysis of the set of Eqs. 
(2.6). The points of the trajectory of the particle motion in 
the phase plane are taken at times t, = 21~p/w 
(p = 1,2, . . . ) and the PoincarC mapping is thus construct- 

ed. The results of the numerical calculations confirm the 
conclusion [obtained from an analysis of the mapping 
(2.16) 1 that the dynamics of ultrarelativistic particles is 
chaotic and at w = kc there occurs an unlimited stochastic 
acceleration of relativistic particles. At the same time, re- 
gions of regular motion exist for particles of sufficiently low 
energies E--,mc2 moving in the field of an electromagnetic 
wave with a relatively small field strength amplitude ~g 1. 

The dynamics of low-energy particles becomes particu- 
larly interesting under conditions where there is resonance 
between the frequency of the electromagnetic wave and the 
nonrelativistic cyclotron frequency w = nw,. In the phase 
portrait (Figs. 2, a-c) there appears then in the low-energy 
region a system of relatively large islands of stability, which 
possesses an nth order orientational symmetry. In Fig. 2a 
which corresponds to the case v = 2 one can see also stability 
islands corresponding to third- and fourth-order cyclotron 
resonances; we discussed in the preceding section in detail 
the stability of the motion in their neighborhood. In the same 
figure one can discern the smaller stability islands corre- 
sponding to second-order resonances. One observes a similar 
picture also for Y = 3 (Fig. 2b). Here the system of stability 
islands in the low-energy region corresponds to third-order 
cyclotron resonance. In the region of larger energies there is 
also a system of rather large-scale islands corresponding to 
fourth-order resonances. The finer-scaled islands corre- 
spond to second-order resonances. Stochastic layers are 
formed in the intervals between the stability islands. For 
small values of the parameter E the stochastic layers sur- 
rounding the cyclotron resonances are separated from one 
another by invariant curves. When the parameter K in- 
creases the invariant curves which exist between the layers 
vanish and something like a stochastic web appears (Fig. 
2c). This web, however, disintegrates rapidly because of 
strong nonlinearity of the motion of relativistic particles in a 
magnetic field. 

Such a picture of the particle motion, the existence of 
stability islands and of invariant curves in the region of low 
energy values, leads for E< 1 to the fact that for particles 
which initially had rather low energies the adiabatic invar- 
iance is always conserved and the channel for unlimited sto- 
chastic acceleration remains closed. Only those particles can 
be accelerated which initially have a rather high energy. The 
situation is, however, changed when the amplitude of the 
field strength of the wave E increases. We show in Fig. 2d the 
phase portrait of the set of Eqs. (2.6) for Y = 3 and E = 0.3 . 
For such a value of the parameter E the regular component of 
the motion practically vanishes and, independently of the 
initial conditions, almost all particles are in a regime of un- 
limited stochastic acceleration. 

5. STOCHASTIC ACCELERATION 

The diffusion of particles in the phase plane when the 
stochasticity condition (3.10) is satisfied can as usually be 
described by a Fokker-Planck-Kolmogorov equation. To 
derive the diffusion equation we follow a general prescrip- 
tion described in Ref. 15 and change in the Hamiltonian 
(2.5) to the action-angle variables (J,O) of the unperturbed 
problem corresponding to the free rotation of a relativistic 
particle in a magnetic field: 

x=p sin 0, p=pmoe cos 0, (5.1) 
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wherep = (2cJ/eB, ) is the Larmor radius. The Hamilto- 
nian (2.5) has in the new variables the following form: 

H ( 1 ,  8, t )  =[ Ho2+2eZBoA,p sin 8 s in (kp  sin 8 

- o t )  - (ezA , z /2 )~os  ( 2 k p  sin 8 - 2 o t ) ]  '", (5.2 

where 

is the Hamiltonian of the unperturbed problem. For parti- 
cles having a sufficiently large energy E)eA, Eq. (5.2) can 
be somewhat simplified and can be written as follows: 

+ m 

H ( I ,  8, t )  =Ho-e'BoA,pHo-l I,,' ( k p )  cm(n0-a t ) ,  

where J; (kp) is the derivative of the Bessel function with 
respect to its argument. Under condition (3.10) the particle 
motion is chaotic and characterized by fast phase mixing 
over a time r, and a slower diffusion with respect to the 
action. If we take the finite correlation decoupling time into 
account in the spirit of Ref. 15, the diffusion equation has the 
form 

where D( J )  is the diffusion coefficient: 

D ( I )  = (ezB0A,pI2Ha)' r, m2Jm'z ( k p )  J d r  

and 0 = dH,, /dJ the nonlinear frequency of the unper- 
turbed motion. Performing the integration over time on the 
right-hand side of (5.6) we get 

We can sum the series on the right-hand side of (5.7) using 
the identity 

Jm+p ( a )  J m  ( a )  3.c = - -- 
sin nq 

+ a  - a  (5.8) 
,,,--a, m--q 

As a result we obtain the following expression for the 
diffusion coefficient 

D ( 1 )  =i(e2BoA,p/2H0)'Q;1-"d ( a )  - d ( a 8 ) ] ,  (5.9) 

where 

a a3 nuZ 
d ( a )  = - - - - 

2 (kp) '  sin n a  J - '  (5.10) 

In the limit E) mc2 Eqs. (5.9) and (5.10) lead to the follow- 
ing expression for the diffusion coefficient: 

sh (2n /Qt , )  
X 

c h ( 2 n l Q r C )  - cos ( 2 n o l Q )  ' (5.11) 

The last factor on the right-hand side of (5.11 ) takes into 
account the slowing down of the diffusion due to the finite 
correlation decoupling time when one approaches the 
boundary of the stochasticity region, where Qr, --, oo . AC- 
cording to Eq. (3.13) 

and in the region of global chaos, where K O ,  1 and there are 
no stability islands, 07, -0. The factor which takes the fin- 
ite correlation decoupling into account is in this region equal 
to unity so that we finally have for the diffusion coefficient 
the usual quasilinear expression 

In the case where the phase velocity of the electromagnetic 
wave equals the velocity of light w = kc Eq. (5.13) simplifies 
in the high-energy region E%mc2 and the kinetic Eq. (5.5) 
takes the form 

where v,, = CA f w2'3e716~-s'6~ ; 5'6 and the numerical coef- 
ficient is 

Hence it follows that for large t 

and by virtue of (5.3) the average energy ( E )  grows with 
time as 

In comparison with the known regular acceleration 
mechanisms, such as the ~ u r f a t r o n , ~ ~ ~  when the particle ener- 
gy grows linearly with time, E cc t, the above considered sto- 
chastic mechanism leads to a slower energy growth for the 
accelerated particles. The stochastic acceleration mecha- 
nism also loses out against the self-resonance acceleration 
method when a circularly polarized wave propagating along 
the magnetic field with frequency w = kc = w, accelerates 
particles according to the law E cc t2/3. However, the condi- 
tions for the realization of the stochastic acceleration meth- 
od are considerably less rigid. Unlimited stochastic accelera- 
tion takes place not only of resonance particles, but also of 
any particle with energy exceeding the threshold (3.2). 

The solution of Eq. (5.14) with the initial condition 
f(t = 0 )  =f, (J) has the form 

ca 

501 Sov. Phys. JETP 66 (3), September 1987 



FIG. 3. Curve of the time-dependence of the average par- 
ticle energy in a doubly logarithmic plot for E = 0.3, 
v=Z.S=O. 

For large values oft the solution ( 5.17) reaches a self-similar 
form, which has forgotten the initial conditions: 

where N = Sf dJ is the particle density. The particle energy 
distribution function has also a self-similar form: 

f (E ,  t )  - E P 7  exp {-const E'/a/t). (5.19) 

We carried out a numerical analysis of the set of Eqs. 
(2 .6 )  to check the stochastic acceleration law (5 .16) .  The 
calculation was performed for 800 trajectories with different 
initial conditions in the chaos region for w = w ,  = Y = 2 
and different values of the parameters E = eA, /mc2 and 
6 = 1 - kc/w . The calculation time corresponded to 2  X lo3 
periods of the electromagnetic wave. We show in Fig. 3  the 
time-dependence of the average particle energy on a doubly 
logarithmic plot for E = 0.3 and S = 0  . The straight line 
corresponds to the stochastic acceleration law (5 .16) .  An 
analysis of the numerical results showed that the deviations 
of the stochastic acceleration law from the self-similar law 
(5.16) for S = 0  and large times w t / 2 a >  lo3 are always 
small. 

In the case when the phase velocity of the electromag- 
netic wave exceeds the velocity of light in vacuo, w > kc, the 
situation becomes different. We show in Fig. 4 the curves of 

the time-dependence of the average particle energy for Y = 2 
and E = 4.  Curve 1 corresponds to the case S = 0 ,  and curve 
2  to the case S  = 0.045. The smooth curve corresponds to the 
stochastic heating curve (5 .16) .  It is clear from the figure 
that starting from some time the stochastic acceleration 
ceases in the case when the phase velocity of the wave ex- 
ceeds the velocity of light. The stochastic acceleration is lim- 
ited by the exponential cutoff of the diffusion coefficient at 
high energies. Using the asymptotic form of the derivative of 
the Bessel function in (5.13) for large values of the argument 
and the index, we find the maximum value Em,, of the ener- 
gy up to which particles are accelerated: 

where S  = 1 - kc/w ( 1. The restriction on the magnitude of 
the stochastic acceleration is connected with the fact that in 
the case S#O for particles with energies exceeding the maxi- 
mum (5.20) the regions of steep changes in the adiabatic 
invariant disappear and the particle moves in a fast oscillat- 
ing field during the whole of the cyclotron period. 

Yet another restriction on the magnitude of the maxi- 
mum energy which particles can acquire in the stochastic 
acceleration process is connected with energy losses through 
synchrotron radiation. The energy AE, emitted during a cy- 
clotron period of a relativistic particle rotating in a magnetic 
field is given by the following expression: 

FIG. 4. Time-dependence of the average particle energy 
for E = 4.0 and v = 2. The curves 1 and 2 correspond to 
S = 0 and 0.045. 
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FIG. 5. Formation of a spiral structure in the ( p , x )  
phase plane for c = 0.3, v = 2, and 6 = Oat the time 
ot /2a = 100. 

The losses through synchrotron radiation start to play a sig- 
nificant role if the change of energy (5.2 1 ) becomes compar- 
able with the magnitude of the energy change (2.14) due to 
the interaction of the particle with the wave. Equating these 
expressions we find the maximum value of the particle ener- 
gy up to which stochastic acceleration is possible: 

We note yet another interesting feature of the stochastic 
acceleration of relativistic particles, which manifests itself in 
the formation of spiral structures in the phase plane (see Fig. 
5).  Such spiral structures were observed in a numerical ex- 
periment within relatively short calculation times wt /2a 
< lo3. For longer times the structures are, in general, 
washed out and the distribution function is smoothed out. 
The formation of a spiral structure is connected with the 
choice of the initial particle distribution function in phase. 
As the initial condition in the numerical calculations we 
chose a function which was evenly distributed along a wave- 
length. Therefore, for part of the particles the phase relations 
were most favorable for acceleration. As time goes on there 
is a phase mixing and the nonuniformity of the acceleration 
disappears. 

In conclusion we note that one of the most important 
physical consequences of the acceleration consists in the fol- 
lowing. In the self-consistent problem the increase in parti- 
cle energy occurs at the expense of the waves losing that 
energy. We are thus led to the existence of a universal mecha- 

nism for the damping of an electromagnetic wave in a mag- 
netic field. 
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