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A simple phenomenological method is proposed for finding the kinematic virial corrections in the 
linearized transport equation for nondegenerate gases at arbitrary temperatures. These are 
precisely the corrections that determine the possible existence of collective modes even in the 
classical temperature region. The connection between the kinematic corrections and the virial 
expansion of the equilibrium distribution function is discussed. All the phenomenological 
quantities are expressed in the final results in terms of a microscopic quantity-the exact 
amplitude for scattering of two particles. A microscopic verification of the phenomenological 
equations is presented, and the nonlocal gradient corrections to the collision integral are 
calculated. The apparent contradictions between the macroscopic expressions and the results of 
the perturbation-theory calculations (the12-term problem and others) are resolved. 

1. lNTRODUCTlON 
It has become clear recently that collective phenomena 

connected in one way or another with particle interaction 
occur not only in degenerate or sufficiently dense systems, 
but can also manifest themselves in rarefied gases at high 
temperatures, when the molecule ensemble is described by 
classical Maxwell-Boltzmann statistics. Such phenomena 
can lead both to noticeable effects in the thermodynamics of 
the gas and to the appearance of specific collective modes. 
Probably the greatest accomplishment in this field was the 
prediction and experimental observation of collective spin 
waves in spin polarized gaseous H t and 3Het (see Refs. 1 
and 2) .  In certain cases, which are unfortunately quite diffi- 
cult to realize, oscillations of zero-sound type can also prop- 
agate.3 From the formal standpoint, spin-wave and zero- 
sound modes appear when account is taken of quantum 
virial corrections of the Fermi-liquid type in the kinematic 
(left-hand) part of the transport equation for Boltzmann 
gases. In contrast to the collision integral, these corrections, 
which are due to interaction between the particles, do not 
vanish when the macroscopic dynamics equations (the con- 
tinuity equation, the Euler equation, and other) are obtained 
from the transport equation. In other words, these correc- 
tions lead to the appearance of additional terms in the rela- 
tions for the macroscopic conservation laws. If the spectrum 
of the sound oscillations in a nonideal gas are defined with 
the aid of the transport equation, it is just (and only!) the 
kinematic virial corrections which lead to the known virial 
expansion of the speed of sound. Obviously, when acoustic 
oscillations are considered, the kinematic virial corrections 
can be retained in the kinetic equation for all temperatures, 
since all the remaining terms that depend on the interaction 
and enter in the collision integral vanish in the correspond- 
ing integrations as a result of the particle-number and mo- 
mentum conservation laws. In the general case, the validity 
of retaining, in investigations of collective modes, terms that 
describe a self-consistent field of unusual form is verified by 
comparing these terms with nonlocal gradient additions to 
the collision integral. 

It was noted already in the earliest ~ tud i e s~ .~ . '  that at 
sufficiently low temperatures T<fi 2 / m G ,  where m is the 
mass of the gas particle and r, is the atomic dimension, even 

the gradient self-consistent terms in the transport equation 
exceed significantly the nonlocal terms in the collisbn inte- 
gral. Therefore the use of the transport equation with kine- 
matic virial corrections and a local collision integral is fully 
justified at T<fi  2/m<. Lhouillier and L a l ~ e , ~  using a T- 
matrix approach, obtained an expression for the local (i.e., 
independent of the distribution-function gradients) self- 
consistent field in the equation for the off-diagonal compo- 
nents of the polarization density matrix in a magnetized gas. 
The neglect of all the interaction-induced gradient terms in 
the transport equation turned in this case to be justified by 
the low gas density. It is precisely this circumstance which 
permits the results of Ref. 5 to be used for a description of 
transverse spin dynamics even at T> f i  '/rnd. Allowance 
for the gradient virial terms in the transport equation would 
lead in this case to corrections, small in terms of the density, 
to the spectrum of the damped transverse spin modes. On the 
other hand, the absence of these gradient terms excludes 
completely collective solutions of zero-sound or spin-wave 
type in the argumentation of Ref. 5. 

The frequency spectrum of homogeneous magnetic res- 
onance in binary gases was obtained in Ref. 6 both in the 
framework of the macroscopic approach and with the aid of 
a transport equation with kinematic chiral corrections. The 
effective molecular field that leads to the chiral expansion of 
the magnetic-resonance spectrum can be taken into account 
in the transport equation at arbitrary temperatures. This ap- 
proach is difficult to extend to a description of the dynamics 
of weakly inhomogeneous transverse-magnetization distri- 
butions. ' 

We propose here a phenomenological, in the sense of 
the Fermi-liquid theory, method of finding all the kinematic 
virial corrections to the transport equation at arbitrary tem- 
peratures. All the phenomenological quantities are ex- 
pressed in the final results in terms of a microscopic proper- 
ty, viz., the exact scattering amplitude of two gas particles. 
Perturbation theory is used to verify and analyze the derived 
expressions and to calculate the gradient corrections in the 
collision integral. This explains automatically all the seem- 
ing contradictions between the phenomenological equations 
and the results of perturbation-theory calculations ( e.g., the 
so-called I,-term p r~b lem '~~) .  
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2. EQUILIBRIUM DISTRIBUTION FUNCTION 

Having in mind 3He gas, the superfluid 3He-4He solu- 
tion, and nuclear-spin dynamics in atomic hydrogen, we 
consider for the sake of argument a system of spin-1/2 parti- 
cles. Since the gas is assumed to be rarefied enough, Nri 4 1, 
where N is the number of atoms per unit volume, we can 
confine ourselves to pair collisions of the system particles. 
The contribution of the interaction to the total free energy of 
the gas is then given by a corresponding virial expansion that 
can be represented by a functional quadratic in the ideal-gas 
distribution 

Here n$)(p) is the polarization density matrix for an ideal 
gas: 

uuB are Pauli matrices, '92 is a unit vector in the spin-polar- 
ization direction, and n+ and n_  are the occupation 
numbers of states oriented parallel and antiparallel to '92. 
Summation over repeated spinor indices is implied in (2.1 ) 
and thereafter. We shall need later a microscopic expression 
for the interaction function @u8,pv in terms of the exact am- 
plitudes of the triplet ( f+ ) and singlet ( f- ) scattering of 
two particles'.4,6: 

Qag, p v ( ~ ,  p')  =$ ( P ,  P ' )  Gaabv+ l ; (~ ,  P' )oa~%vvr (2.3) 

where 8 is the scattering angle in the c.m. system, and the 
values off, can if necessary be expressed in terms of the 
phase shifts S, with the aid of the equation 

Here P, (cos 8 )  are Legendre polynomials, and, since the 
particles are identical, the summation in (2.6) is carried out 
only over odd values of I when f+ (8, q )  is calculated and 
over even values for f- (8, q).  

We obtain now the virial expansion of the distribution 
function. The quantum state of an individual particle in a 
rarefied gas is characterized by a definite momentum p. This 
classification is valid, i.e., p is a good quantum number if the 
momentum uncertainty due to the finite mean free path is 
less than the momentum itself: Ap- Wd 4p,  or 

where AT = f i / (m/T)"2 is the average de Broglie wave- 
length of the particle. Since Nri < 1 always in a gas, the in- 
equality (2.7) is certainly satisfied at high temperatures, 

when A, (r,, and the validity of (2.7) follows automatical- 
ly from the condition N A j 4  1 in the quantum region at 
AT )ro, i.e., when T g  fi  '/rn6. 

Turning on the interaction, of course, alters the occupa- 
tion numbers of the states in the gas. Since we assume that 
the classification properties of the energy levels of the gas are 
not changed by adiabatic switching-on of the interaction, the 
entropy of the interacting rarefied gas is determined by the 
usual combinatorial relation 

To simplify the notation we have omitted here the spinor 
indices of the density matrix. 

Varying (2.8) under the additional conditions that the 
total energy Eand the total occupation numbers N+ and N- 
with different spin orientations be constant, 

we obtain the equilibrium distribution function, which takes 
the usual Fermi form 

The indeterminate Lagrange multipliers are obtained, as 
usual, with the aid of the thermodynamic identity 

wherep + andp - are the chemical potentials for subsystems 
with different spin orientations, and the following notation 
was introduced: 

Comparing (2.9) and (2.1 1),  we find that 

b=T-' da~=papT-' .  (2.13) 

To avoid misunderstandings, we emphasize that we are con- 
sidering now a spin-polarized gas, e.g., 3Het, in the absence 
of an external magnetic field, over times shorter than the 
relaxation time of the longitudinal magnetization. This al- 
lows us to regard the gas as a two-component system consist- 
ing of particles with different nuclear-spin orientations. The 
quantities N+ and N- are conserved in this case, and the 
values ofp  + and p - are determined from the normalization 
conditions 

n , ( p )  =N*,  N++N-=N.  (2.14) 
P 

The generalization to the case of a gas polarized by an exter- 
nal magnetic field is self-evident. 

According to the small-increment theorem, the total- 
energy change E,,, due to the interaction of the gas molecule 
coincides with Fin, from (2.1 1. We have therefore for the 
energy per particle, with allowance for the symmetry of the 
function @aB,p,/r.. , 
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In the classical temperature region T$fi 2~ 'I3/m Eq. (2.2) 
takes the form 

(0) 
0.e (P) = (Gap+aoaaW no (P) 7 

Substituting (2.3), (2.4), and (2.16) in (2.15), we get 

Substituting next the virial expansion of (2.17) in the distri- 
bution function (2. lo ) ,  taking (2.13) into account, and re- 
taining for the Boltzmann region only the first two terms of 
the expansion of (2.10) in powers of the activities exp(p + - / 
T) < 1, we get ultimately 

where n;'' is given by Eq. (2.2) in which we must substitute 
the expressions 

P*-go 
n,=nP(p,) -n;(p.). nP(p*) = exp(T)7  

The equilibrium polarization of the density matrix nap (p )  is 
diagonal, as it should be. The chemical potentials pi  , of 
course, also contain small virial corrections 
p + = p:' + Sp + . With the aid of (2.18) and from the nor- 
malization conditions (2.14) we get 

From (2.17), (2.19), and (2.20) we get 

-,= 

(2.21) 

In spinor form we have ultimately 

Equation (2.22) for pap agrees fully with the purely ther- 
modynamic calculations with the aid of the free energy (2.1 ) 
(see also Refs. 1 and 4) .  Thus, for example, the true chemi- 
cal potentialp = dF/dNcan be obtained from paB by using 
the obvious relation 

We have in fact obtained the equilibrium distribution 
function by using a Fermi-liquid scheme. There is another 
possible method, involving direct calculation of the mean 
value of the number of particles that are in a given quantum 
state. Calculations by such a method, performed for the dis- 
tribution function in a gas of zero-spin particles, are given in 
the book by Akhiezer and Peletmin~kii .~ the use of this 
method for the present case leads, naturally, to the same 
results. 

3. PHENOMENOLOGICAL EQUATIONS 

To describe the properties of gases in the classical tem- 
perature region it is customary to use the traditional Boltz- 
mann equation whose left-hand (kinematic) side corre- 
sponds to free motion of the gas particles, and all the changes 
in the particle states are described by the right-hand side of 
the kinetic equation (by the collision integral). As already 
shown, to allow for the interaction in the gas it is necessary to 
introduce not only the collision integral, but also specific 
additional terms that can be interpreted as virial corrections 
to the kinematic part of the Boltzmann equations and as 
describing in fact the interaction-induced deviation of the 
particle distribution function from Maxwellian in an ideal 
gas. A general microscopic derivation of the transport equa- 
tion with the kinematic virial corrections at arbitrary tem- 
peratures is a rather complicated task. By a rather simple 
method, however, it is possible to obtain exact values of these 
corrections in the linearized Boltzmann equation. 

The idea of the method is the following: the sought vir- 
ial coefficient to the kinetic equation is expressed in the form 
of some functional that is linear in n (p)  and has an arbitrary 
kernel. The transport equation is then used to obtain the 
linearized hydrodynamic equations. All the hydrodynamic 
fluxes in the gases (the momentum-flux tensor and others) 
can be expressed in terms of purely thermodynamic quanti- 
ties. Using the virial expansion of the thermodynamic func- 
tions (2.1 ) and (2.3)-(2.5) we can then obtain the actual 
form of the kernel of the linear functional for the kinematic 
virial correction in the Boltzmann equation. The use of lin- 
earized equations and linear functionals ensures uniqueness 
of the procedure. For simplicity and by way of illustration, 
we obtain here the kinematic virial corrections to the trans- 
port equation by transforming to hydrodynamic equations 
for an unpolarized ( a  = 0 )  nonideal gas. 

It was in the derivation of the transport equa- 
tion at T<fi 2/mrJ, that the interaction between the gas mol- 
ecules not only determines the collision integral, but yields 
also definite increments to the commutator [j2/2m, A ]  that 
describes the motion of the particles between the collisions. 
Accordingly, to describe the molecule motion in the effec- 
tive self-consistent field within the framework of the linear- 
ized transport equation, we shall include the virial correc- 
tions to the commutator in the form of a linear functional of 
general form 
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In the quasiclassical approximation, changing in (3.1 ) from 
the commutator to a Poisson bracket, we obtain 

a 
- Sn(p, r) +vV {6n (p, r) + j c (p, pf)  8n (p', r) dl?') = St Bn, 
at 

We do not specify the structure of the term St Sn in Eqs. 
(3.1) and (3.2), but assume that this term satisfies the usual 
relations that correspond to the macroscopic conservation 
laws: 

1 s t  an dr=0, p St 6n dI'=O. (3.3) 

The transport equation in the quantum temperature re- 
gion Tgf i  2/m4 (Refs. 1 and 4) corresponds at a = 0 to 
(3.2) with a functional kernel C(p, p') = 2n-aA,n,(p), 
where a is the s-scattering length. Introducing new symbols 

we can rewrite (3.2) in a typical Fermi-liquid form: 

In (3.5) and hereafter we leave out ofc, i.e., in fact out of a&/ 
dp the equilibrium virial correction that contains n,(p). The 
equilibrium distribution function, with the virial corrections 
(2.18) taken into account, is normalized to the total number 
of particles: 

j n(p) dr=N. (3.6) 

Integration of (3.5 ), and of (3.5) multiplied by the momen- 
tum, over phase space allows us to change to the hydrody- 
namic formulation 

It is known from Fermi-liquid t h e ~ r y ' ~ ~ "  that when condi- 
tions (3.3), (3.5), and (3.6) are met the momentum-flux 
tensor 11, accords with the hydrodynamic equations of an 
ideal (nondissipative) liquid if W = E, where E is the total 
energy of the system. Recognizing that E,,, = F,,,, we ob- 
tain with the aid of expression (2.1 ) for the free energy 

so that 

In the thermodynamic equilibrium state all the fluxes 
vanish. We express II, in terms of the deviation 6n (p)  of the 
distribution function from its equilibrium value n(p).  The 

equilibrium distribution function is expressed in terms of 
n,(p) by means of Eqs. (2.18) with a = 0: 

where n'jd' (p)  ,--n, (p) - n; (p) is the distribution func- 
tion in an ideal Fermi gas. Within the accuracy limits we can 
replace n,(p) in the integral term of (3.9)  by n (p) .  To the 
same accuracy, the deviation of the distribution function 
Sii(p) from n'jd' (p)  can be written with the aid of (3.9) in 
the form 

Using (3.41, we readily see that 

6n(p) + J C(P, p')6n(p1)dl?'=6~(p), (3.11) 

i.e., allowance for the virial corrections to the commutator 
[p2/2m, i i ]  in the right-hand side ofthe Boltzmann equation 
reduces to the fact that the deviation of the distribution func- 
tion should be reckoned not from the true equilibrium distri- 
bution function n(p)  but from the distribution function 
n'id' (p)  in an ideal gas, in view of the virial expansion of 
n (p)  . Calculations using Eqs. (3.7) together with (3.10) 
also allow us to represent II, in the form of a functional of 
Sii (p)  : 

Averaging (3.12) over the angles and recognizing that if the 
terms quadratic in j are neglected we should have 11, = SP 
6,, we get 

In an ideal gas in the absence of interaction, when the equa- 
tion of state is P = (2/3) E, the identity (3.13) is obvious, 
i.e., in the principal approximation we have at any degree of 
gas degeneracy 

6n(id) (p) dI'=6Pid. (3.14) 

We now demonstrate the validity of (3.13) for a nonideal 
gas. We consider the simplest case, when the distribution- 
function deviation Sii(p) is due only to the pressure SP, 
which we expand in powers of = .f Sii ( p ) d r  We repre- 
sent Sii (p)  also in form linear in SN. 

For the virial correction due to the particle interaction we 
obtain from (3.13) and (3.15) with the aid of (3.10) 

2 J P' 6iii., d r  = 2 j q (p, PI)  no (p) 6no (pf) d r  dI"=6Pi.,, 
3 2m 

where Pi,, is determined by expressions (2.1)-(2.5) at 
a = 0.Theset (3.14) and (3.16) agreesfully with (3.13).0f 
course, this approach must not be regarded as a rigorous 
derivation of a transport equation with kinematic virial cor- 
rections. However, the obtained agreement with the linear- 
ized hydrodynamic equations confirms the validity of using, 
in the linear approximation, of a transport equation in the 
form (3.1), (3.2) (3.5) with a certain collision integral 
St 6n that possesses the properties (3.3). The correspon- 
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dence between the hydrodynamic equations and the collec- 
tive self-consistent corrections to the transport equation was 
noted earlier by Miyake, Mullen, and Stamp.I2 

In the kinetic equation for a spin-polarized gas there 
appear also homogeneous (containing no gradients) kine- 
matic virial corrections, due to the noncommutativity of the 
operators anaB and caB in spin space. For weakly inhomo- 
geneous distributions of the transverse magnetization it is 
therefore permissible, in the principal approximation in 
N d  g 1, to retain in the transport equation only the local 
spin commutator i [2 ,  A ]  ,p/fi and the term v.VnaB that cor- 
responds to free motion of the particles if the interaction is 
negle~ted.~.' This procedure leads to the equation 

where St A, is the local collision integral. Equation (3.17), 
just as the reasoning in Ref. 5, can be used to describe the 
transverse spin dynamics at arbitrary temperatures. 
Allowance for the gradient virial terms 

in the left-hand side of (3.17) makes it possible to find the 
next term of the virial expansion of the spectrum of the trans- 
verse spin modes, and also to investigate the problem of col- 
lective solutions in the form of longitudinal spin waves of the 
zero-sound type, at least at sufficiently low temperatures, 
T<ii2/mri.  Application of an external magnetic field 
Hf t W  introduces into the kinetic equations a term 
S1,IIIZ X h,, where 0, = 2BH /fi is the Larmor frequency; 
this means that a gap o ( k  = 0) = fl, appears in the spec- 
trum of the transverse magnetization oscillations. 

4. MICROSCOPIC ANALYSIS 

To be specific, we return now to consideration of the 
transport equation in an unpolarized gas. Let the interaction 
between the articles be weak and let perturbation theory be 
applicable, so that a consistent quantum-theoretical deriva- 
tion of the transport equation is possible (see, e.g., Refs. 13- 
15). In this section we carry out a direct microscopic pertur- 
bation-theory calculation of all the kinematic virial correc- 
tions in the transport equation, and compare the data ob- 
tained with the phenomenological results of the preceding 
part of the paper. To avoid excessivley complicated expres- 
sions, we confine ourselves here to sufficiently slow parti- 
cles, pro< 1 (for simplicity, we set the Planck constant fi 
equal to unity), when the principal role is played by the ma- 
trix element of the interaction at zero momenta. 

Here and elsewhere all the expressions are normalized to a 
unit volume. In second-order perturbation theory, the cus- 
tomarily employed transport e q ~ a t i o n ' ~ . ' ~  takes then the 
form (3.5 ), where E now stands for 

and St n is a local collision integral in traditional form: 

Comparing the kinematic virial corrections in ( 3.5 ) , ob- 
tained on the one hand by perturbation theory (4.2) and 
determined, on the other, independently with the aid of the 
thermodynamic virial expansions (2.4), (2.5 ), and (3.8 1, 
we easily verify that the traditional transport equation ob- 
tained by the perturbative approach and taking only (4.2) 
and (4.3) into account is not accurate. In fact, in this equa- 
tiorr the kinematic virial corrections contain only terms lin- 
ear in U,, whereas all the terms quadratic in U, enter only in 
the collision integral (4.3). On the other hand, Eqs. (2.41, 
(2.5), and (3.8) show that the kinematic corrections must 
also contain those terms proportional to UG which enter in 
Ref (0, q) [the terms containing Im f (8, q)  in $(p, p') and 
~ ( p )  turn out to be of order U .] We shall show now that the 
term lost in the traditional scheme appears automatically in 
the calculation of the nonlocal corrections to the collision 
integral (4.3). 

Indeed, once we retain the gradient kinematic correc- 
tions (linear in U,) in the left-hand side of the transport 
equation, we must, at the same accuracy, take into account 
also the first term of the expansion in the gradients of the 
distribution function for the collision term (quadratic in 
U,). The collision term, which determines the time variation 
ofthe single-particle density matrix n,,, = (2, + a,) ,  can be 
represented in second-order perturbation theory in the 
form9 

The collision term (4.4) satisfies the principle of weaker cor- 
relations and regular correct boundary conditions as 
t -+ - w (Refs. 13 and 9) ,  as manifested by the presence of 
the function 6- (E)  defined by the relation 

0 

i j eiTs d ~ = n b -  (e) =nb ( e )  - - . (4.5) 
- 0, 

To construct a quasiclassical kinetic equation, it is conven- 
ient to change over from the density matrix n,,, - n,,,? to the 
Wigner distribution function n, ( r ) :  

1 
np(r) = - ~d3ke-ikrnp-./~,p+kp. 

( 2 n )  
(4.6) 

In the Wigner representation (4.6) the collision term (4.4) 
can be written in the form 

and for n,,,? we get with the aid of (4.6) 
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In the homogeneous case n,,. = nPSp,,., expression (4.4), 
naturally, coincides with the collision integral (4.3). We are 
interested in the following corrections to (4.3), which are 
proportional to Vn, 

To calculate these corrections in the weakly inhomo- 
geneous case it is necessary to substitute in the collision term 
(4.4) the representation (4.8) and expand all the distribu- 
tion functions n, (r') in a power series: 

Following this procedure, the collision term (4.7) can be 
represented, in first order in the gradients, in the form 

where 

When summing in (4.10) and hereafter we always assume 
momentum conservation, viz., p + q = p' + q' for X, and 
X,, and p + q' = q + p' for X3. The terms XI and X2 stem 
from the term containing n3f,1u n,,,. in (4.4), while X3 corre- 
sponds to the term proportional to n4wp2, n3",1,. In the quasi- 
classical limitp$ k, using the definition (4.5) and the simple 
integration 

( k a )  (rb) eikr d3K d3r=i(ab) (4.11) 

we obtain ultimately 
3 

1=1 

where 

The term Y, is the sought kinematic virial correction of sec- 
ond order in the interaction, which was lost in the transport 
equation with the self-consistent field (4.2) and the local 

collision integral (4.3 1. Indeed, transferring Y, to the left- 
hand side of the transport equation we easily verify with the 
aid of the expression for the scattering amplitude 

that the terms Y,  correspond to the second-order perturba- 
tion-theory contributions to the energy of a particle in a self- 
consistent field, given by Eqs. (2.5), (2.17), and (3.8) and 
contained in the transport equation (3.5) as part of the com- 
bination 

Thus, it is precisely the term Y, which ensures full agree- 
ment between the semiphenomenological derivation of the 
kinematic virial corrections, on the one hand, and the micro- 
scopic calculations in second-order perturbation theory, on 
the other. 

The most important role in the derivation of the trans- 
port equation (3.5), (3.8) was played by satisfaction of the 
conditions (3.3). It is therefore necessary to verify that the 
remaining terms Y2 + Y, also satisfy these conditions. In 
this case, at pro< 1 the requirement that (3.3) be valid for 
&(St n, ) = Y, + Y, becomes trivial, since it is readily seen 
that Y2 + Y3=0 by virtue of the momentum conservation 
law. Indeed, the variable redefinition pttp'  in Y3 in (4.12) 
yields 

6 ( S t  np )  = Y2+ Y ,  

Taking into account the obvious relation 

we get from (4.14) 

To prevent misunderstandings, we emphasize that al- 
though first-order perturbation theory in the pseudopoten- 
tial was used to derive the transport equation subject to 
T<fi '/m< (Refs. 1, 3, 4 ) ,  the final result was expressed, 
with the aid of the renormalization conditions, in terms of 
the true scattering length, which contains absolutely all the 
terms of the perturbation-theory expansion in the interac- 
tion between the particles. Therefore the calculations in 
Refs. 1, 3, and 4 for T<fi 2/mr: lead to correct kinematic 
virial corrections that correspond to (2.5), (2.17) and (3.8) 
in the limit r,,/A, 1. 

5. THE PROBLEM OFTHE 1, TERM 

Seeming discrepancies with the results of perturbation 
theory appear also in the formulation of the macroscopic 
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equations of transverse spin dynamics. In this case, on the 
contrary, the perturbation scheme seems to acquire an extra 
term compared with the traditional macroscopic approach. 
This term appears already in the homogeneous case when 
the gradient corrections that depend on the interaction are 
neglected. The explicit form of such a term can be deter- 
mined by using the results of Ref. 14: 

2a 
X&ofE(0)-&(O) - (0) {no (Pi) [%LP,l -nz(pz) [%LP,l). 

PI  P2 p,' &PI, (5.1) 

The existence of the additional term (5.1 ) cast doubts on the 
validity of the equations obtained in Ref. 5 at a =: 1, meaning 
also on the quantitative interpretation of the experiments on 
nuclear spin waves in gaseous H r .' 

It was proposed in Ref. 8 that in a consistent derivation 
of the transport equation the term I, is completely cancelled 
out and vanishes. An opinion was orally expressed that I, is 
only partly cancelled out, but in no way completely. F. Laloe 
was the first to suggest, and to advance strong corroborative 
arguments, that the I, term, while undoubtedly existing, is 
totally contained, without a remainder, in the kinematic vir- 
ial corrections and is taken into account automatically if 
these corrections are expressed in terms of the exact scatter- 
ing amplitude. The results of the present papers prove this 
statement to be correct. Indeed, expressions (4.13 ), (2.4), 
and (2.5) show that the term I, is exactly a second-order 
perturbation-theory correction to the kinematic virial term 
that contains the function [(p,p1) in Eq. (3.17). 

There is thus no I,-term problem in fact, and equations 
of type (3.17) are valid for all degrees of the polarization a. 
The quantitative analysis of the experimental data on trans- 
verse spin dynamics in gaseous H r  (Refs. 16-18) and 3Het 
(Refs. 19 and 20) on the basis of similar equations is perfect- 
ly correct. On the other hand, since the I, term is not related 
to the collision integral, one can see no reasons whatever for 
introducing two different relaxation times (with unequal 
temperature dependences) in the phenomenological de- 
scription of the dissipative terms in the equations of motion 
for transverse magnetization.,' 

I am grateful to F. Laloe for interesting and useful dis- 
cussions and for correspondence on the I,-term problem. 

APPENDIX 

We present here a simple method of obtaining, for 
T<fi '/rnr;, a collision integral in a spinor form suitable for 
specific analysis of various relaxation processes in a spin- 
polarized gas of spin-1/2 particles. The collision integral can 
be interpreted as the difference between the "arrival" and 
"departure" of particles in a given quantum state. In the 
temperature region T<fi ,/rn6, when the interaction can be 
described by using perturbation theory followed by renor- 
malization to the true scattering amplitude, the decrease and 
increase of the number of particles in the k th quantum state 
are given by the relations 

so that 

For states pure in spin, i.e., in the case when the polarization 
density matrix is diagonal, by substituting in (A1 ) and (A2) 
the Hamiltonian 

where g = 27~~77 ,/rn is the coupling constant and a is the s- 
scattering length, with allowance for the momentum and 
energy conservation in the elementary scattering act, leads, 
upon summation in ( A  1 ), to the known Fermi collision inte- 
gral: 

(-44) 
It  is implied in expression (A3) and (A4) that in the limit of 
slow collision, la l /A,  1, only fermions with oppositely di- 
rected spins are scattered. In a Boltzmann gas, when the 
occupation numbers of the quantum states are small, we can 
neglect the functions F, , in (A4) the terms of third order in 
n + , l.e., 

For mixed spin states, transforming to an arbitrary polariza- 
tion density matrix naB (p)  = (a; a , ) ,  we obtain in place of 
(A4) and (AS) 

Fa ,  (pi, ~ 2 )  =nab (pi) n,, (p2) 

It is easy to verify that in the case of pure states, when 
naB = 0 for a#/?, expression (A6) goes over at a = /? = T, 
n, , = n +, n,  , = n _ into (A4) with account taken of (AS). 
The vertex function rap,lrv is defined by the expression 

which can be rewritten with the aid of the identity 

in the traditional form: 

For density-matrix perturbations of the form 
anaB (p) = h (P)  uaB, hl%?, the linearized collision integral 
(A6) takes the form 
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Expression (A10) for the collision term in the transport 
equation that describes the dynamics of the transverse mag- 
netization, retains the same form also in the case of arbitrary 
deviations, SnaB (p)  = v(p)SaB + q(p)uaB, since the equi- 
librium polarization density matrix is diagonal, and the per- 
turbations of the off-diagonal elements of the density matrix, 
i.e., q l  = (qx,  rl, ) = A, are not linked with the perturba- 
tions of the density v(p), as in the case for the fluctuations of 
qz. The collision integral St naB (p)  of (A6) agrees in the 
corresponding limiting case with the analogous Boltzmann- 
equation term obtained in Ref. 14. 
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