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A theoretical analysis is made of the reflection of spherical waves and wave beams from a 
homogeneous inverted medium. The integration contours in integrals describing the reflected 
field are determined by the causality condition. An asymptotic analysis of the fields of reflected 
waves shows that amplification due to reflection involves excitation in the incident signal of 
unstablelateral waves that grow exponentially in space. It is shown that in the limit of a plane 
wave the field described by the Fresnel reflection coefficient is supplemented by the field of an 
unstable lateral wave. The amplitude and the range of existence of this wave largely depend on the 
spectral profile of the beam from which the transition is made to the plane wave limit 
(configurational instability). This means that the solution of the problem of reflection of plane 
waves from an inverted medium, obtained using the Fresnel formulas, does not correspond to any 
realistic formulation of the problem. 

Some experiments on the reflection of laser radiation 
from inverted media have revealed that the reflected signal 
exceeds the incident signal considerably (by several orders 
of magnitude) Several authors have attempted to explain 
this observation using the formulas for the Fresnel reflection 
coefficients (see Ref. 4 and the literature cited there). How- 
ever, as shown in Ref. 2, the Fresnel reflection coefficients of 
an active medium cannot be much greater than unity so that 
the experimental cannot be explained by an analy- 
sis of reflection of plane waves. Moreover, this effect cannot 
be accounted for by allowance for the finite width of a beam4 
when a standard analysis of this problem is made5 in which 
the integrals with respect to the wave number, which de- 
scribe the reflected field, are taken along the real axis and 
further calculations are based on the expansion of the func- 
tions in the integrand as a series near the maximum of the 
spatial spectrum of the beam. Therefore, in spite of the fact 
that amplification as a result of reflection (called superlu- 
minescence in Ref. 1 ) had been discovered some time ago, a 
satisfactory explanation is still lacking. 

We shall develop a theory of the reflection of mono- 
chromatic signals of various profiles by an amplifying medi- 
um. The justification for considering the reflection of mono- 
chromatic waves is that the convective instability occurs in 
the "usual" inverted media employed in quantum electron- 
i c ~ . ~  This means that on application of a signal the waves in 
the medium itself decay with time at any fixed point in space 
and after a certain time interval only the monochromatic 
fields oscillating at the frequency of the source remain. We 
shall first consider the reflection of a spherical wave excited 
by a vertical dipole. Using the causal formulation of this 
problem,' we shall establish the rules for bypassing the sin- 
gularities of the integrand in the plane of a complex variable 
x ( X  is the projection of the wave vector on a plane parallel to 
the boundary of the medium). It is then found that the inte- 
gration contour L, is shifted away from the real axis and 
bypasses in a suitable manner the branching points of the 

integrand function. 
An asymptotic analysis of the integrals governing the 

reflected field shows that, in addition to a specularly reflect- 
ed signal whose behavior is described by the Fresnel reflec- 
tion coefficient, an additional field corresponding to a lateral 
wave is formed. The field of a lateral wave excited at the 
interface with the inverted medium grows exponentially in 
space because the beams corresponding to lateral waves 
propagate partly through the active m e d i ~ m . ~  We shall as- 
sume, as usual, that a lateral wave is excited at observation 
angles exceeding the critical value, so that the amplification 
effect can only occur in the part of the space defined by this 
angle. 

In the second part of the present paper we shall analyze 
the reflection of a beam from a boundary with an amplifying 
medium. We shall show that the reflected field includes not 
only the specularly reflected beam, but also a perturbation 
which is not described by the Fresnel formulas. This pertur- 
bation is due to the excitation of fundamentally unstable 
modes of the inverted medium. These unstable modes are 
excited even in the limit of an infinitely wide beam, and their 
amplitude and profile are extremely sensitive to the spectral 
profile of the incident wave (configurational instability9). 
This important circumstance means that the solution of the 
problem of the reflection of a plane wave by an interface with 
an inverted medium given by the Fresnel formulas does not 
correspond to any realistic formulation of the problem. 

An analysis of the profile of the reflected beam will be 
used to show that the exponential growth of the field in space 
is due to the excitation of a lateral wave. In the case ofbeams 
with a Gaussian profile the amplitude of the lateral waves 
increases strongly on approach of the angle of incidence to 
the critical value. In this case the rise of the field on increase 
in the beam width occurs also in the range of angles of obser- 
vation less than the critical value. 

It therefore follows that the experimentally observed 
amplification of waves on reflection can be explained fully 
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without invoking additional complicating factors such as in- 
homogeneities of the population inversion, nonlinearities of 
the medium, finite dimensions of the system, etc. 

REFLECTION OF SPHERICAL WAVES FROM AN INVERTED 
MEDIUM 

We shall assume that the source of spherical waves is a 
dipole oriented at right-angles to the interface between me- 
dia (Fig. 1 ). We shall consider the specific case when a medi- 
um containing the source is not inverted and has a permittiv- 
ity E, ,  whereas the second medium has amplifying properties 
and has a complex permittivity 2,. We shall assume that both 
media are nonmagnetic so that p = 1. 

The equations for the only nonzero z component of the 
vector potential A in the first and second media are 

m 

x J x ~ f '  (xp)p,-1 exp (ip, (.t+z) ) v (x, o) dx, 
- m  (7) 

whereA , and A, are related in the usual way to the intensities 
of the electric and magnetic field E and H: 

I ,  d 
div A I , ~  $. - - cpl,2=0. 

c at 

The relationships in the system (3) can be used to ob- 
tain the boundary conditions for the time-dependent Fourier 
components A ,,, : 

Here, are the frequency-dependent permittivities 2,,2 In 
accordance with the formulation of the problem, we shall 
select j in Eq. ( 1 ) to be 

j=Zof (t) d6 ( x )  6-(y) 6 (2-1). ( 5 )  

Here, f(t) is a function representing the time dependence of 
the current in the dipole, Zo is the characteristic amplitude of 
the current, and d is the dipole length. 

Solving the system ( 1 ) - ( 5 )  by the Fourier transforma- 
tion with respect to time and the coordinates x and y, we find 
that 

FIG. 1. 

477 Sov. Phys. JETP 66 (3), September 1987 

FIG. 2 

where Ai is the field of the incident wave; A, is the field of the 
reflected wave; V(x,w) = (vp, - p,)/(vp, +p,) 
(v = E , / E , )  is the reflection coefficient of the active medi- 
um;f(w) is the Fourier transform of f(t); k,,* = WE:(,Z/C; 
p,,, = ix in the limit Rex- 03;  H A') ( x )  is a Hankel func- 
tion. In the causal formulation of the problem we have 
f(t) =O up to a certain moment to. Without limiting the gen- 
erality of our treatment, we can assume that t, = 0. Up to 
that moment there are no fields Ai  and A,. This condition is 
satisfied if the integration contour in the integrals of Eqs. (6) 
and (7) is selected so that it passes above all the singularities 
in the integrands of Eqs. ( 6 )  and ( 7 ) .  This condition is 
obeyed automatically if L, is lifted sufficiently far into the 
upper half-plane of w. The branching points x,,,  = w~,,, 'I2/ 
c in the complex plane of a are then bypassed from below, 
whereas the branching points x,,, = - w ~ , , ,  "'/c are by- 
passed from above (Fig. 2). 

These rules solve completely the problem of selection of 
the integration contours in the (o, x) space. However, in 
practice, particularly when solving the problems of reflec- 
tion of quasimonochromatic signals, it is more convenient to 
represent the integrals (6) and (7) in such a form that the 
integration contour in the complex plane of o passes along 
the real axis. This can be done if in the process of deforma- 
tion of the initial contour L, toward the real axis we ensure 
that the singularities in the complex plane of x do not inter- 
sect the contour. When deforming the contour L, toward 
the real axis, we can quite readily encounter a situation that 
L, comes in contact with the singularities of the functions in 
the integrand in the upper half-plane of the complex variable 
W. 

If we consider the integral with respect to x in Eqs. (6) 
and (7) as a function G(w), we can distinguish two cases: 
G(w ) has singularities in the upper half-plane of the variable 
w and G(w) has no such singularities in that half-plane. The 
former case corresponds to amplifying media in which an 
absolute instability occurs. In investigations of the reflection 
by such media we have to solve completely the initial prob- 
lem allowing for the effects of the switching-on signal, be- 
cause in the final analysis the exponential growth of the 
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fields in time is related to these effects. The second case cor- 
responds to active media with a convective instability. In 
media of this kind the unstable perturbations drift away rap- 
idly and the intrinsic fields excited by the switching on of the 
source decay at each fixed point in space. This means that in 
the case of systems with the convective instability the pertur- 
bations oscillating at the frequency of the source finally pre- 
dominate. Since a convective regime is the one mainly real- 
ized in quantum electronics when active media are used,6 we 
shall consider the problem of reflection in this specific case. 

Bearing in mind this discussion, we shall drop the con- 
tour L, on the real axis so that the integration contour G ,  in 
the x plane is of the form shown in Fig. 3. In plotting the 
results shown in Fig. 3 an allowance is made for the fact that 
an inverted medium is characterized by Ime, < 0 (Ref. 4) ,  so 
that the branching point o&:/2/c is located below the real 
axis and the branching point - w&,/c is above the real axis. 

Using this representation of the integrals we shall now 
solve the problem of reflection of monochromatic signals 
from an inverted medium. Then, we have to substitute 
f(w) = 27~S(w - a) in Eqs. (6)  and (7) and to replace in- 
tegration along L, with integration along the real axis. Con- 
sequently, the reflected field is described by [the factor 
exp( - i a t )  is omitted] 

In an asymptotic analysis of the reflected field it is con- 
venient to adopt a new variable ?? = x/k, and to use the Han- 
kel-function representation for large values of the argument. 
After transformations, Eq. (8  ) becomes 

A?= (k , /2np) Ih (Zode'n'4/e) J qrhV ( q )  E-' ( q )  
GI) 

x exp{ik,R(q sin0+E(q)cos 0 ) ) d q ,  (9 )  

Here, R = [ (z + I), + P2] 1'2;~in8 = p/R; cos8 = (z + I)/ 
R; n = d l 2  is the relative value of the refractive index of the 
media in contact. The integration contour G, and the posi- 
tions of the branching points of the integrands are shown in 
Fig. 4 for the most interesting case when Ren < 1, which 
corresponds to the possibility of total reflection. We shall 
confine our attention to the case when Ren < 1. 

In addition to the branching points of the integrands 
77 = f n, f 1, we can expect the existence of poles of the 
reflection coefficient V. However,under the conditions cor- 
responding to experiments on active media, when 

( Im n(<Re n, (11) 

and for the method of taking cuts shown in Fig. 4 there are 
no poles. We shall now verify this. 

Poles of Vshould satisfy the equation 

If we square Eq. ( 12), we find that in the case of possible 
poles 

FIG. 3 

It is clear from Eq. ( 13) that when the condition ( 11 ) is 
obeyedthen Re??,,, <Ren, and IImr],,, I < IRe??,,, 1, i.e., 
lies between the cuts passing through the points f n. It fol- 
lows from the definition of the roots, given after Eq. (7),  that 
Ref ,,, > 0, Re( ,,, > 0 and therefore vl,, do not satisfy Eq. 
(12). 

We shall investigate Eq. (9)  by the steepest-descent 
method. The saddle point is 

and the global steepest descent contour T, is found from the 
conditions 

Im i ( q  sin 0+E cos 0 )  = I ,  (15) 

Re i ( q  sin 0+g cos € ) ) G O .  (16) 

The condition ( 16) determines the selection of the steepest- 
descent path. It follows from Eqs. ( 15) and ( 16) that J?, 
intersects the real axis at the saddle point at an angle - 7~/4 
(Fig. 4).  Using this circumstance and the inequality of Eq. 
( 1 1 ), we can readily show that the global path does not in- 
tersect the branching point n for angles of observation satis- 
fying the condition 

sin %Re n-1Im n ]  =sin 0,. (17) 

In this part of space there is only a specularly reflected 
spherical wave 

If the inequality 8 > 8, is obeyed, then in the process of 
deformation of the initial contour G, we find that r, ac- 
quires a loop surrounding the branching point n. Therefore, 
in addition to the contribution made to the reflected field by 
the saddle point, we have to include also the contribution of 
the integral along the edges of the cut. A simple analysis 
shows that for angles in the range 8, < 8 < Ren the integral 
along the cut edges does not give rise to exponentially grow- 
ing waves and the integral along the loop describes the part 
of the field which grows in space only when 

sin @Re n=sin 0,. (19) 
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The formula for A,  then becomes 
Et,(z<O) = (2n)-' J dxW. (x) E (x) exp (ixx+ip,l-ip2z). 

Iod A , = -  V (q=sin 0) exp (iklR) 
cR 

2iIod exp{iklR cos (8-8,) + 1 Im n [k,R sin(8-el) Icos 01) + 
ck,R2(1-n2) q" sin'" 8 , 

The second term in Eq. (20) describes the field of a lateral 
wave growing exponentially in space. The exponential factor 
in Eq. (20) can be rewritten in the form exp(lIrnk,lL), 
where L is the length of the optical path of the lateral wave 
inside the amplifying medium. In fact, the beam correspond- 
ing to a lateral wave travels in the first medium at the total 
reflection angle [when the condition ( 11) is obeyed, the to- 
tal reflection angle is o , ] ,  and then it passes inside the ampli- 
fying medium along the interface and emerges at the point of 
observation at the angle 0, (Fig. 1 ). It follows from Fig. 1 
that L = Rsin(B - 19, ) /cos~, .  

This investigation of the field of the reflected spherical 
wave shows that, in addition to the field of a specularly re- 
flected wave, there is a field of a lateral wave growing in 
space and it does not generally disappear when the source is 
moved to infinity. This fact alone means that the solution of 
the problem of the reflection of a plane wave by an interface 
with an inverted medium described by the Fresnel formulas 
is incorrect In fact, as we move the source to infinity, the 
front of a spherical wave becomes plane, but the solution 
nevertheless is given by Eq. (20) containing not only the 
Fresnel term, but also an exponentially growing factor. 

REFLECTION OF A WAVE BEAM FROM AN INVERTED 
MEDIUM 

In the experiments described in Refs. 1-3 a beam and 
not a spherical wave was incident on the interface with an 
inverted medium; it would therefore be of interest to deter- 
mine the characteristics of reflection of sufficiently wide 
beams from an inverted medium. 

Let us assume that a beam is incident from the uninvert- 
ed medium on the interface. The electric field E of the beam 
has one nonzero component parallel to the interface and it is 
formed on an aperture separated by a distance I from the 
interface. In the plane z = I the field E is described by the 
expression 

Ei(z=l, x)=Q(x)exp(ikrx sin cp-iQt), ~ , = Q E ~ " ~ / C .  (21) 

Here, p, is the angle of incidence on the interface and Q is a 
function describing the beam profile (the case Q = 1 corre- 
sponds to the incidence of a plane wave on the interface). We 
can find the reflected wave by the usual procedure5 involving 
expansion of the incident field along plane waves: 

E,(z, x) = (2n)-' l d x ~  ( x )  exp (ixx+ip, I 1-z ) , (22) 
Gx 

where E ( x )  is the Fourier transform of E(1, x )  [the factor 
exp( - i f i t )  is omitted]. 

We shall now seek the fields of the reflected and trans- 
mitted waves in the form 

The relationships (22)-(24) satisfy the field equations and 
the functions V, and W, readily satisfy the boundary condi- 
tions. The boundary conditions of continuity of the tangen- 
tial components of the electric and magnetic fields are satis- 
fied if 

However, we can still select arbitrarily the integration con- 
tour G, . It has to be selected in such a way that the result 
obtained by solving the initial problem is not in conflict with 
the principle of causality. The procedure for finding G ,  
based on this principle is described in the first part of the 
present paper. However, in practice it is frequently more 
convenient to adopt a simpler method (well known from 
plasma physics") of determination of the integration con- 
tour G,. When this method is applied to the reflection prob- 
lems, the wave fields are selected so that they vanish in the 
limit t -  - oo . When the field is described by a formula of 
the (2  1 ) type, this is achieved by selecting the positive imagi- 
nary part Imfl. If we are dealing with propagation of waves 
in stable systems, the correct result will also be obtained for 
Imfl- 0. In the case of inverted media, Im f l  cannot be se- 
lected to be infinitesimally small: conversely, ImR should 
exceed all the increments in the system. This rule will be 
satisfied automatically if we assume initially that Imfl- co . 
In this case the integration contour in Eqs. (22)-(24) 
should be selected along the real axis, when the branching 
points fl~:$/c lie in the upper half-plane and are bypassed 
from below, whereas the points - fleii;/c lie in the lower 
half-plane and are bypassed from above. Naturally, the val- 
ues of the rootsp,,, considered in the limit x - oo are as usual 
equal to ilx 1. 

After establishing these bypassing rules, we can take 
Imfl to zero retaining the relative positions of the singulari- 
ties and the contour. This has the effect that the contour is 
shifted away from the real axis and is of the form shown in 
Fig. 3. The solution of the field equations obtained in this 
way is in agreement with the causal formulation of the prob- 
lem. 

We shall now investigate the field of the reflected wave. 
We shall do this by going over, as before, to a new variable 
q = d k ,  which represents the sine of the angle of incidence 
of a plane wave. We then have the following expression for 
E, : 

B.= (2n)-'k, j dqV. (q) E (k,q) exp {ik,R (V sin 8+E cos 8) 1. 
Gq 

(27) 

Since the problem of the reflection coefficient of an inverted 
medium has been discussed frequently in the literature (see 
Refs. 2, 4, and 10, and the citations given there), we shall 
consider briefly this topic. Firstly, we must stress that V, (q )  
is an analytic function of the complex variable 7, so that the 
value of V ,  on the real axis of 7, representing the reflection of 
plane waves, should be found from analytic properties of the 
reflection coefficient. We shall write down V, in the form 
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whereJ1 = qforv-  co and{>OforIq) <1.TherootC1can 
be represented in the form J '  = (pg2)112exp{i(g,, - g,,)/ 
21, where p,,, are the lengths of the radius vectors drawn 
from the branching point + n to the point q, and e, ,,, are the 
angles between the vectors and the real axis (Fig. 5). Using 
this representation of the root, we shall write V, in the form 

a2+2ab sin (qi-q2)/2f ba 
I Vi '2 = a'-2ab sin(cp1-%)/2+b2 ' 

It is clear from Eq. (29) that if I V, l2  > 1, then 

If the cuts joining the branching points + n to infinity 
are made vertically, the condition (30) is satisfied for 
r] > Ren or for plane waves incident at an angle g, which 
obeys the condition 

sin q>Re n. (31) 

If the opposite inequality is obeyed, then ( V, l 2  < 1 since p, 
now varies between the limits - r a n d  - 3r/2 and we have 
g,, < lr + g,, 1. Therefore, on opposite sides of the cut the 
reflection coefficient is different and in crossing the cut 
along the loopx the value of I V,I2 changes abruptly. 

However, it should be stressed that the conclusions, 
which can be found in one form or another in Refs. 2,4, and 
10, have no meaning because the value of the reflection coef- 
ficient depends on the method used to make the cuts. In fact, 
if a cut is not made vertically but is shifted for example to the 
left (Fig. 5, cut C,) ,  then ( V ,  l 2  > 1 also for the angles satisfy- 
ing the condition sine, < Ren. If we shift the cut far to the 
right, we can achieve a situation when I V, 1' is less than unity 
for any angle of incidence. This means that in investigations 
of the reflection of waves from an inverted medium we can- 
not restrict our analysis simply to homogeneous plane 
waves, but we must include also inhomogeneous plane waves 
determined by the integral along a loop which covers the 
branching points X. 

We shall now consider the field of the reflected wave 
given by Eq. (27). The integral along the contour G, can be 
represented by a sum of an integral along the real axis and 
integrals along the loops x and X ,  (Fig. 4) surrounding the 
branching points + n, i.e., 

FIG. 5 

In the subsequent analysis we shall assume, for the sake of 
simplicity, that the point of observation is in the projector 
zone, i.e., we shall assume that the following inequality is 
obeyed: 

where L is the characteristic width of the beam and R is the 
distance from the center of the image of the beam to the point 
of observation. When the condition (33) is obeyed, then 
E(k,q)  is the sharpest function in the integral of Eq. (27) 
with its maximum at q = sing, so that in the calculation of El 
it is sufficient to expand the remaining functions in the inte- 
grand as a series in the vicinity of q = sinp. This gives 

Xexp{ik,[x sin cp+ (z+l)cos 91). (34) 

Here, A = k,-'a$/aqI, = ,,, , and J, is the phase of the re- 
flection coefficient [ V, = exp ( - i$) ]. 

We can show that the term E l  does not describe the 
amplification of the reflected signal observed in the experi- 
ments. This does not yet mean that there is no amplification 
effect in the adopted formulation of the problem (compare 
with Refs. 2, 4, and 10). Amplification occurs because of 
excitation of exponentially growing lateral waves (terms E, 
and E3) by the incident wave. In considering this problem it 
is sufficient to deal with the integral E2, because in the case of 
sufficiently rapidly decreasing spectra the value of E, is fair- 
ly small. 

We shall represent the integral E, in the form 

Ez = a  h ~ ( k , q ) e x ~ { i k , ~ ( q  sin B+E cos 8))dq. 
n 

Here, n, = Ren and A> 0 in the limit q - a. The inequality 
( 1 1 ) was used to derive Eq. (35). 

In the subsequent analysis it is necessary to select a spe- 
cific distribution of the intensity in a beam. Let us assume 
that, for example, the beam envelope is a Gaussian curve, 
i.e., 

Then, if the inequality 

(where sine, = Ren) is obeyed, the argument of the expo- 
nential function in the integrand of Eq. (35) can be expand- 
ed as a series near the point q = n,, retaining on the first two 
terms, so that E2 becomes 

E,=n'"aL 1 n2 ("exp (3ni/4) erp{ik,R cos (O-B1) ) 
i 

x J z ' ~  erp{T2(z-i+i sin 9-n, 
o 

1 n2 1 ) - ~ ( ~ - l ) ) ~ ~ ~  (38) 

where y = k,L ln21/2, a n d P =  k,R In21sin(e - 6,)/cos6,. 
It is clear from Eq. (38) that the field of the reflected 

wave rises exponentially on increase in the beam width L if 
the angle of incidence q, is close to the total reflection angle 
6, = sin-In,. More exactly, exponential growth occurs if 
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so that the field reaches its maximum value when the angle of 
incidence is p = 8, and the other conditions are kept fixed 
(fixed point of observation, beam parameters, and gain). 

An asymptotic calculation of the integral of Eq. (38) 
will be made for the most interesting case when (p I % 1. Co- 
sequently, the field intensity governed by the integral along 
the edges of the cut x is 

E,=n'"aL I n, I v, exp (3ni/4) exp{ik,R cos (0-0,)) 
exp {y2 (a-1) 

[- p+zr2r for 0<0i, I ByZ,  

2 (2yza+0)" for 0<01, I p I  9 y 2 .  
. . 

anda l so fo r  8>8,. (40) 

Here ii = 1 + i(n, - sinp)/ln,l. We can see from Eq. (40) 
that for angles of observation 8 smaller than the total reflec- 
tion angle 8, the field falls exponentially on increase in the 
beam width and the rate of fall decreases in the limit p- 8,. 
As the angle of incidence approaches the critical value 
(8 5 8, ), the field rises and the rise is particularly strong for 
beams incident at angles close to 8,. In the case of angles of 
observation greater than the total reflection angle the field 
rises exponentially in space (factor expp), as determined by 
the excitation of a lateral wave. It should be stressed that the 
amplitude of a lateral wave grows exponentially on increase 
in L if the inequality of Eq. (39) is obeyed and falls when the 
opposite inequality is satisfied. This is due to the fact that in 
the limit p- 8, the beam excites most strongly a lateral wave 
since the maximum of the angular spectrum of the beam is 
located at angles close to the angle of total reflection. 

It follows from this analysis that, as in the case of reflec- 
tion of spherical waves, the amplification is due to excitation 
of lateral waves. It should be mentioned in this connection 
that the field described by Eq. (40) does not tend to zero at 
all when the beam width tends to infinity. On the contrary, 
E; rises exponentially when Eq. (39) is obeyed. This circum- 
stance means that in solving the problem of reflection of 
waves from an inverted medium we cannot limit ourselves to 
the stimulated solutions determined by the Fresnel formu- 
las, but must consider right from the beginning a beam of 
finite width. It is then found that on going to the plane wave 
limit (L - cc ) the field of the reflected wave depends strong- 
ly on the angular spectrum of the beam. For example, if we 
select a beam with a rectangular profile, i.e., if 

then the exponential growth of the field on increase in L is 
observed for any angles of incidence p,  in contrast to a Gaus- 
sian beam for which the growth occurs only in the range of 
angles p satisfying the inequality (39). This is a manifesta- 
tion of a configurational instability which appears on reflec- 
tion of waves from unstable media.9 The essence of this effect 
is that on reflection of signals from an unstable medium 
there are considerable differences in the reflected field even 
if the form of the signals is very similar and the differences 
appear in the amplitudes of unstable waves and also in the 
form of the part of space where unstable waves exist.9 

The authors are deeply grateful to V. L. Ginzburg for 
suggesting the problem of reflection from unstable media 
and to N. G. Denisov for interesting discussions of the topics 
considered in the present paper.' 
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