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A system of quantum equations for the description of the dynamics of cooperative Raman 
scattering is derived allowing for relaxation, induced, and parametric processes. An equation 
with a periodic solution is obtained for the case of pure superscattering using a quasistationary 
approximation for the half-difference between the populations. The condition is found for 
ignoring the contributions ofinduced and parametric processes. A study is made of the influence 
of a four-wave parametric interaction on the cooperative Raman scattering. The results are given 
of a general numerical solution of the proposed system of equations with different values of 
characteristic dimensionless parameters. 

1. INTRODUCTION 

Several theoretical and experimental investigations 
have been made recently of the cooperative Raman scatter- 
ing of light.'x3 An experimental study of the cooperative Ra- 
man scattering of light by H, molecules was reported in Ref. 
3, where the pulsating nature of the scattering and the exis- 
tence of a delay of the first peak of the Stokes component 
relative to the leading edge of a pump pulse were established. 
A semiclassical approach was used in Refs. 1 and 2 to obtain 
equations describing such cooperative Raman scattering of 
light without allowance for relaxation processes. A periodic 
solution of these equations with alternate Stokes and anti- 
Stokes radiation pulses was obtained. This theoretical analy- 
sis ignored the parametric interaction of Stokes and anti- 
Stokes radiations. 

The cooperative Raman scattering of light, like the co- 
operative spontaneous emission (Dicke superradiance), are 
examples of collective behavior of a system of spatially sepa- 
rated atoms or molecules, when interatomic correlations in- 
duced spontaneously during the process of the scattering in 
an initially noncoherent system create coherent radiation at 
characteristic frequencies (Stokes and anti-Stokes frequen- 
cies in the Raman scattering case). 

A natural question is this: how is the cooperative Ra- 
man scattering related to the familiar spontaneous Raman 
scattering (SPRS) and stimulated Raman scattering 
(STRS)? An important characteristic of the cooperative ef- 
fect is a delay of a radiation pulse t,, scattered by correlated 
atoms, relative to the leading edge of an exciting pump pulse. 
The delay time cannot be determined in a consistent manner 
using a semiclassical theory of the type employed in Refs. 1 
and 2. 

We shall employ a quantum approach to propose and 
analyze a system of equations describing the dynamics of the 
cooperative Raman scattering allowing for relaxation, in- 
duced, and parametric processes. This system of equations 
makes it possible to follow a continuous transition from 
SPRS and STRS to the cooperative effect. When the relaxa- 
tion times are much longer than the characteristic times of 
the collective interaction of atoms with an electromagnetic 
field, this system of equations yields the equation of Ref. 1 
with a characteristic periodic solution. We shall find the 
conditions under which we can ignore the contributions of 

induced and parametric processes. We shall show that in the 
case of finite relaxation times the inclusion of these processes 
reduces the oscillation period and the delay time and makes 
the scattering dynamics a damped process. We shall consid- 
er qualitatively the influence of the conditions for spatial 
phase matching on the cooperative Raman scattering. 

2. PRINCIPAL EQUATIONS 

We shall consider the cooperative Raman scattering for 
a system of N two-level atoms or molecules subjected to a 
pump step-like pulse, so that the leading edge of the pump 
pulse is shorter than all the characteristic times of the prob- 
lem. We shall limit our analysis to the single-mode case when 
the Fresnel number is F- 1 (only this case is mainly encoun- 
tered in experiments). The initial state of the system is non- 
coherent and the Raman scattering creates fields the Stokes 
(frequency a,, wave vector k, ) and anti-Stokes (frequency 
a,, wave vector k, ) Raman components. It is assumed that 
initially the atoms are unexcited and occupy a volume v of 
cylindrical shape elongated along the z axis (cross-section 
area A,  length L) .  

The Hamiltonian of the system is similar to the Dicke 
Hamiltonian which is used widely in the theory of superra- 
diance (see, for example, Ref. 4) and it can be obtained from 
the latter Hamiltonian by replacing the matrix element of 
the dipole moment operator of an atom with xa8 gp8, where 

are the matrix elements of the scattering tensor: 
s(a)  

1 
x;;al = - C [ ( d 6 P t  e.,,,) d,, +-- 

fi ,=I  m e p + m P  

whereas 

is the pump field which can be regarded as a c number. The 
Hamiltonian is 
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Here, a, (as+ ) and a ,  (a: ) are the annihilation (cre- 
ation) operators of Stokes and anti-Stokes photons; 

(and a similar definition applies to g,) are the constants 
representing the coupling of the atoms to the fields at the 
Stokes and anti-Stokes frequencies in the presence of a 
pump, e, (and similarly e ,  ) are the unit vectors of the polar- 
ization of the radiation; w, is the transition frequency. Repe- 
tition of the indices a and p implies summation. 

The matrices uy and ujt = (uj- ) + are the annihila- 
tion and creation operators of an excitation of a jth atom 
located at a point rj. They are related simply4 to the Pauli 
matrices: 

Using the Hamiltonian of Eq. ( 1 ) and allowing for the 
interaction with the heat bath, we obtain a system of equa- 
tions similar to the corresponding system of equations in the 
case of superradiance: 

FIG. 1. Normalized intensities of the Stokes and 
anti-Stokes radiations and normalized values of the 
half-difference between the populations: a )  r / T 2  
= 3 X 1 0 - 2 ,  TIT, =0.375, {=O.l,  N =  1012; b)  

T/T,  = 3 X 10 2 ,  TIT= = 0.75, f = 0.05, N =  1012. 
The continuous curve represents the time depen- 
dence of R / N  whereas the dashed and dotted 
curves represent the time dependences of n J N a n d  
nu /N.  

- dn. n, 
dns + 2. = F s ,  -- + - = Fa, 
dt T dt z 

[ -2n,R+S,+S,o-I;QR I ,  

[2n.R+S.+S.o+I;QR]. 

dS, S. - -t - = 2R (<Fa-F,) , 
dt T ,  

dS, Sa - + - = 2R (-%F,+F,), 
dt T, 

( 2 )  

In these equations n, = (a,+ a ,  ) represents the average 
number of the Stokes photons and n, is the average number 
of the anti-Stokes photons. The constant 
.r = (c/L + c/L,) - ' is the photon lifetime in the active re- 
gion (Lo  is the absorption length). The quantities Fs and Fa 
are defined as the correlation functions of the fields and di- 
pole moments at the Stokes and anti-Stokes frequencies: 

dQ Q - + - = - F,-Fa, 
dt z 
dR N+R 
- f - = Fa-Fa. 
dt Ti 
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The constants T, and T2 are the longitudinal and transverse 
relaxation times, 

N 

is the half-difference between the populations of the active 
levels of the atoms. The quantity T; = 21ga I2/fi2 repre- 
sents the characteristic time of the interaction between the 
atoms and the field. Here, S, and So are the correlation func- 
tions of the dipole moments 

N 

f-i i + j  

whereas S, = (N/2)  - R and S, = (N/2)  + R are the 
populations of the upper and lower levels governing the in- 
tensity of the spontaneous scattering. The quantity 
Q = (a,a,) -t C.C. determines the correlation functions of 
the Stokes and anti-Stokes photons. Finally, [is the correla- 
tion coefficient for all the atoms in the sample: 

N 

This coefficient gives a measure of the coupling between the 
Stokes and anti-Stokes fields, and it can be regarded as real if 
we assume that the atoms occupy a volume with coordinates 
z satisfying the inequality - L /2<z<L /2. 

Equation (2)  is derived on the assumption that 
N N 

(o,)eik"--(osjli) eikrl=Rc (k) . 

Physically this assumption means that the field amplitude 
varies little within the dimensions of the sample. 

The parameter f is unity if the phase-matching condi- 
tion is satisfied for the parametric process k, + k, - 2k, 
= 0; otherwise, it is less than unity. We can calculate this 

coefficient in the general case by changing in Eq. (3)  from 
summation over all the atoms in the cylindrical sample to 
integration over the whole volume of the sample, which 
gives5 

where J, is a Bessel function of the first kind and of the first 
order, p is the radius of the transverse cross section of the 
sample, and ( 1  and 1 denote the longitudinal and transverse 
components of a vector. 

3. ANALYSIS AND SOLUTION OF DERIVED EQUATIONS 

We shall now consider in greater detail the right-hand 
sides of the third and fourth equations in the system (2) .  The 

474 Sov. Phys. JETP 66 (3), September 1987 

variable Fs (Fa ) is the rate of transfer of energy stored in the 
atomic system to a Stokes (anti-Stokes) mode of the scat- 
tered field, which takes place via the induced processes n,R 
(nu R ), spontaneous processes S, (S, ) , cooperative pro- 
cesses S, (Sa ), and QR processes involving a four-wave pa- 
rametric interaction between the scattered fields. We shall 
now compare the contribution of the induced, cooperative, 
and parametric processes to the scattering intensity. The 
first, fifth, and seventh equations of the system (2)  yield 

1 

-2n.Rf S4-(;QR= 1 d t ' { ~  (f) e-('-')/' 
0 

x 1-W. ( t ' )  -5 (F ,  ( t ' )  - tFa( t f )  ) I 

+2R (t') e- ( i - l ' )JT*[cFa ( t ' )  -Fa ( t ' )  I}. 
( 5 )  

Hence it follows that in systems with T <  T2 the main contri- 
bution to the scattered light intensity comes from the coop- 
erative spontaneous processes S, (S, ), whereas in the r % T2 
case it is the induced and parametric processes that predomi- 
nate (when considered on the order-of-magnitude scale, 
they differ only by the presence of the parameter { in the 
latter case). 

We shall consider the case of superscattering, when 
r<r, 4 T2, TI ,  where r, is the characteristic time of the col- 
lective processes. In this case we can ignore the relaxation 
processes and then the fifth, sixth, and eighth equations of 
the system (2 )  give the law of conservation, similar to the 
law of conservation of the length of the Bloch vector in the 
case of superradiance: 

where c2 is found from the initial conditions [when the sys- 
tem of atoms is initially in an unexcited noncoherent state, 
we find that S, (0)  = S, (0)  = 0, R (0) = - N /2, and c2 
( 1  +L)N2/41. 

Since r< T2, it therefore follows (as shown above) that 
the cooperative processes predominate, so that the contribu- 
tions of the induced and parametric processes can be ig- 
nored. Then, in the quasistationary approximation, ignoring 
the first terms in the first four equations of the system ( 2 ) ,  
and using Eq. (6), we obtain the following equation 

d2x 4 d x  -+ --=- 
dtI2 N dt' 

2x[l-x2+4/N], 

wheren= 2R/Nand t ' =  t /r , .  
This is the equation for oscillations of a nonlinear oscil- 

lator with the quasielastic coefficient dependent on the oscil- 
lation amplitude: 

a ( x )  = 2 [  1-x2+4/N] 

In the zeroth approximation with respect to the parameter 
4/N, Eq. ( 7 )  reduces to the familiar equation of Ref. 1 with 
the periodic solution, but it is of more general form [in con- 
trast to Eq. (7) ,  it was necessary to assume in Ref. 1 that not 
all the atoms were initially in the ground state]. In this ap- 
proximation we find from Eq. (7)  that 

dx 
-= 

1 
.t - [ (I-x2) (I-a2x2) 

dt' a 
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where a = ( 1 + 8/N) ' I2  

The solution of Eq. (8)  is in the form of elliptic sines 

where x(0)  = 1 if the atoms are in the ground state and 
x(0)  = - 1 ifthey are in an excited state: 9 = ( 1/2)ln 2Nis 
the integration constant, found from the initial conditions. 

The delay time to is found in terms of the constant a , :  

whereas the oscillation period is deduced in terms of elliptic 
Jacobi functions as follows: 

T=4a.cCK (a) =4t,. 

The system of equations (2)  was solved for the general 
case by numerical methods assuming various values of the 
dimensionless parameters T/T,, 7/T2, and <. In the case 
when 74rC and T, = T2 = CO, a purely periodic solution 
obtained and corresponded Eq. (8) .  The scattering process 
begins with an increase in the Stokes component and then 
the anti-Stokes component appears because of a four-wave 
parametric interaction. During the first half-period the 
Stokes component exceeds the intensity of the anti-Stokes 
component but beyond the maximum the system of atoms 
becomes inverted. During the second half-period the Stokes 
and anti-Stokes components, are interchanged and the sys- 
tem assumes a final state which is identical with the initial 
one. 

If relaxation is allowed for, then-as expected-the pe- 
riodic nature of the process disappears and for T,  - to a con- 
siderable reduction in the intensity of the scattered fields 
takes place after two or three peaks. The change in the time 
T, does not affect greatly the delay time to.  

If T, 2 T, the role of the induced and parametric pro- 
cesses increases greatly (photons do not have sufficient time 
to leave the active volume before the interatomic correla- 
tions are induced) and an allowance for these processes re- 
duces the oscillation period. The delay time to is directly 
proportional to the characteristic constant of the collective 
processes T, ( to  -T,,) as in the superradiance case. The os- 
cillation period depends weakly on the parameter c (when ( 
is increased, the period decreases). If 5 = 1, which corre- 
sponds to complete spatial phase matching of the modes 
characterized by k, + k, - 2k, = 0, the oscillations of the 
intensities of the scattered fields disappear. The numerical 
solution yields one weakly separated and closely spaced 
Stokes and anti-Stokes peak each, and these relax slowly to 
zero with time. This means that in the case of a strong cou- 
pling between the scattered fields there is no cooperative 
Raman scattering. 

We shall conclude by noting that, for the sake of simpli- 
city, we have considered only the single-mode case and have 
ignored the process of pump depletion, but the system of 
equations ( 3 )  is readily generalized to the case of multimode 
radiation and pumping of any form. 
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