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The extent to which inflationary stages occur generically in homogeneous cosmological models 
with a scalar field is investigated as a continuation of earlier work [V. A. Belinskii, L. P. 
Grishchuk, Ya. B. Zel'dovich, and 1. M. Khalatnikov, Sov. Phys. JETP 62,195 ( 1985) 1. The 
ratio of the number of noninflationary solutions to the total number of solutions in open and 
closed Friedmann models, and also in the homogeneous type I Bianchi model is estimated. For 
the type I model and the open Friedmann model the ratio is m/m,, i.e., the same as in the flat 
Friedmann model, while for the closed Friedmann model it is 1/4. Criteria for selecting the 
measure in the solution space of the models are considered. 

1. INTRODUCTION 

A recent paper of Grishchuk and Zel'dovich together 
with the present authors' investigated the extent to which 
the phenomenon of inflation is generic in cosmological 
Friedmann models with a massive scalar field. A theory de- 
scribed by the action 

where m, = G- = 1.22. 1019 GeV is the Planck mass, and 
m is the mass associated with the scalar field,') was investi- 
gated. The aim was to find the number of solutions possess- 
ing a fairly long inflationary stage as compared with the 
number of all solutions in such models. The answers to ques- 
tions of this kind govern the extent to which we should take 
inflation in cosmology seriously. If it should be found that 
the fraction of inflationary solutions in the sea of all possible 
types of evolution is small, we would be left with a rather 
unattractive theory, in the framework of which it would be 
difficult to explain why the evolution of the universe corre- 
sponds to improbable (unstable) solutions. However, the 
results obtained in Ref. 1 and in the present communication 
show that in homogeneous cosmological models with a sca- 
lar field an inflationary stage of the required duration arises 
in the majority of the solutions, so that inflation is a general 
basic property of these models and is not due merely to the 
choice of special initial data. We regard this as an important 
conclusion, and if it can be extended in future to the general 
inhomogeneous case as well, it will significantly strengthen 
the real physical justification for the idea of inflation. 

The tool employed in our investigation is the qualitative 
theory of dynamical systems; for the considered simple mod- 
els it enables one to obtain a fairly complete picture of the set 
of all integral paths, divide them into those that are inflation- 
ary and those that are not, and, continuing them backward 
in time, obtain the traces (initial points) ofboth types on the 
initial manifold. In Ref. 1, we called this manifold the quan- 
tum boundary, and defined it as the set of the points of the 
phase space at which the energy density of the scalar field 
reaches (if we move along the paths backward in time) the 
characteristic quantum value m;. If the phase space has n 
dimensions, this boundary is an ( n  - 1 )-dimensional sur- 
face which bounds in the phase space the region in which it is 

still meaningful to use the equations of the classical theory of 
gravitation. After such an analysis, the ratio of the number 
of inflationary solutions to the total number of solutions, the 
quantity in which we are interested, can be readily obtained 
if we define a suitable measure in the space of initial data on 
the quantum boundary. As in Ref. 1, we define the number of 
solutions in some initial-data set, or, accordingly, the num- 
ber of phase paths in some bundle, simply as the volume of 
the part of the quantum boundary onto which the bundle is 
projected when continued backward in time. This definition 
implies certain assumptions about the nature of the as yet 
unknown initial quantum stage, since it is equivalent to as- 
suming an equally probable distribution of the classical ini- 
tial data which arise on the quantum boundary when the 
universe enters the classical phase of its development. How- 
ever, this definition is the simplest of all the possible ones and 
at the present time, there being as yet no theory of the quan- 
tum origin, is the only acceptable one. It should also be em- 
phasized that the results of our qualitative investigations can 
still be directly applied to find the degree of generality of 
inflationary solutions for any other distribution of the prob- 
abilities of the classical initial data on the quantum bound- 
ary. 

It is noteworthy that in some homogeneous cosmologi- 
cal models it is possible to find a simple and natural estimate 
for the number, understood in this manner, of inflationary 
solutions, or, alternatively, for the number of solutions that 
do not contain sufficiently long inflationary stages (as in 
Ref. 1, we shall call these the disadvantageous solutions). In 
Ref. 1, we obtained an estimate for the case of the flat Fried- 
mann model. We found that in the flat model the ratio of the 
number of disadvantageous solutions to the number of all 
solutions is in order of magnitude m/m,. On the other hand, 
it is well known (see, for example, Refs. 2 and 3 )  that this 
ratio must be small, specifically, m/m, - 10-5-10-6 if the 
inflationary models are to be consistent with present obser- 
vations. This nontrivial agreement settles the question in fa- 
vor of an overwhelming predominance of inflationary solu- 
tions in the flat Friedmann model. For the cases of the open 
and closed models, arguments were advanced in Ref. 1 to 
show that here too the number of inflationary solutions is 
fairly large, but we did not succeed in obtaining the corre- 
sponding quantitative characteristic to support the asser- 
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tion. The difficulty arose because the equations for the open 
and closed models represent an essentially three-dimension- 
al dynamical system (in contrast to the flat model, for which 
the phase space has two dimensions), and the investigation 
of the behavior of the paths in the three-dimensional case is 
naturally more complicated. 

In this paper, we fill this gap and give a simple method 
for making the analogous analysis for the three-dimensional 
systems that describe the open and closed Friedmann mod- 
els, and also the type I Bianchi model, which was not investi- 
gated in Ref. 1. We find that in the closed Friedmann model 
the ratio of the number of disadvantageous solutions to the 
total number of solutions is 1/4, while in the open model and 
type I model this ratio is given by the same small quantity 
m/m, as for the flat model. In fact, the impression is created 
that the flat model plays a central role in the inflation mecha- 
nism. A most interesting result is that the inflationary prop- 
erties of the cosmological models that we have investigated 
are determined by a universal attractor that is none other 
than the inflationary separatrices of the flat Friedmann 
model. These separatrices, obtained and described in Ref. 1, 
correspond to unique cosmological solutions that have max- 
imal degree of inflation and in the two-dimensional phase 
space of the flat model attract the paths to themselves, forc- 
ing the paths in their immediate vicinity to pass through 
prolonged inflationary stages. The open and closed Fried- 
mann models and the anisotropic type I model have three- 
dimensional phase spaces, but the space of the flat model is 
part of the two-dimensional boundary of each of them. We 
find that the inflationary separatrices lying on the boundary 
of these three-dimensional spaces attract similarly not only 
the trajectories that fill the two-dimensional boundary but 
also the majority of the trajectories from the depth of the 
three-dimensional phase space. Since no other centers of in- 
flation arise in the phase spaces of the considered models, the 
separatrices of the flat model constitute a unique and univer- 
sal inflationary attractor, which is responsible for the exis- 
tence of the overwhelmingly large class of inflationary solu- 
tions in the cosmological models we have investigated. 

Of interest too is the general structure of the phase 
paths in these models. It is important that the entire phase 
space in the type I model and in the open Friedmann model, 
and also a large part of the phase space in the closed model, 
can be densely filled with two-dimensional invariant sec- 
tions joined precisely along the inflationary separatrices that 
we have been discussing. It is then easy to obtain a picture of 
the phase paths on each such section and establish that it is 
qualitatively equivalent to the picture which arises in the flat 
Friedmann model and has been described in Ref. 1. 

We recall in conclusion of this section that the under- 
standing of the physical content of the theory ( 1.1 ) is made 
easier by the analogy between the energy-momentum tensor 
T,, of the scalar field and the energy-momentum tensor of an 
ideal fluid. It follows from ( 1.1 ) that 

and this tensor can be written in the form 

where ui = pii ( - pimp;") and 

In homogeneous cosmological models in a synchronous 
frame of reference (g, = - 1, go, = 0 )  and for a potential 
that depends only on the time, p = p( t ) ,  the effective energy 
density E and effective pressurep are 

At the same time, the frame of reference is effectively comov- 
ing (uO = 1, ua = 0). 

2. ANISOTROPIC TYPE I MODEL 

Everything said in the Introduction can be most simply 
demonstrated for the example of the Bianchi type I homo- 
geneous model with metric 

In the theory described by the action ( 1.1 ), the system 
of Einstein equations and equations of motion for the metric 
(2.1) and the potential p = p ( t ) ,  dependent, as we have 
said, only on the time, can be split into three parts, which can 
be conveniently expressed by introducing for the metric co- 
efficients the notation 

and the isotropic component H of the Hubble parameters: 

Then the first part of the system of equations is a closed 
system for the functions H ( t )  and p ( t )  : 

the second serves to determine the anisotropy coefficients a 
and p: 

and the third is a subsidiary condition to the first two: 

We see that the basic equations (2.4) of the model de- 
scribe a three-dimensional dynamical system in the phase 
space of p ,  &, and H. Besides these quantities and the time, it 
is also convenient to use dimensionless variables x ,  y, z (by 
which we understand Cartesian coordinates in Euclidean 
space) and the parameter 7: 

In these variables, Eqs. (2.4) take the form 

and the subsidiary condition (2.6) becomes 

Thus, our phase space is the interior of the cone z2 = x2 
+ $, only the upper half of which, z > 0, which corresponds 

to the model for an expanding universe (a > 0) ,  is of interest 
to us. The actual surface of this cone is a two-dimensional 
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invariant manifold of the system (2.8) and is none other 
than the phase space of the flat isotropic Friedmann model. 
Indeed, the equality sign in (2.9) corresponds [as follows 
from (2.6) and the freedom of scale transformations] to the 
case when the anistropy coefficients a andj3 can be set equal 
to zero. 

In the finite range of variation of the variables, the sys- 
tem (2.8) has only one singular point-the origin (x, y, 
z)  = (0,0,O). This point is a stable three-dimensional focus. 
All paths are drawn into it, winding round clockwise (if 
viewed from above), and asymptotically they lie on the sur- 
face of the cone z2 = x2 + y2. (The single vacuum trajectory, 
thez axis, is an exception. It enters the focus along the verti- 
cal.) The first terms in the asymptotic behavior of the solu- 
tions near the focus have the form 

mp 2 
cP = (3n) lhmt  

sin (mt-q , )  , H = - 
3t 

Entry into the focus corresponds to the limit t- + w . The 
quantity v0 is an arbitrary constant, and the two remaining 
arbitrary constants appear only in the terms of the expansion 
in l/t that follow after the terms we have given. Thus, the 
point (x, y, z )  = (0, 0, 0 )  corresponds to the concluding 
stages of unlimited expansion during which the field q, oscil- 
lates and is damped and the expansion itself becomes iso- 
tropic, as in the well-known Heckmann-Schiicking model. 
The anisotropy coefficients tend to zero in accordance with 
the law 

and the scale factor a tends to infinity as 

It follows from (1.5) that ~ c c t - ~ ,  p a t - 2  
cos(2mt - 27, ). Thus, the averaged pressure vanishes, and 
the scalar field imitates a dust medium in these stages. 

The origin is the only equilibrium state that attracts the 
paths. All the remaining singular points of the system (2.8) 
repel the integral curves and are at infinity: x2  + y2 + z2 
= W .  These points correspond to the initial cosmological 
singularity, and to analyze them it is convenient to compact 
the phase space, augmenting it with an infinitely distant 
boundary, as in Ref. 1. In spherical coordinates defined by 

x=r sin 0 cos 9, y=r sin 8 sin 9, z=r cos 0 (2.14) 

Eqs. (2.8) take the form 

r,=-3rkos 0 (cos 26+2 sinz 8 sinZ $), 

0,=3r sin 8 cos 28 cos2 $, 

gq=-1-31. cos 0 sill $ cos $, (2.15) 

leads to the system 

p,=-3pz (1-p) cos 0 (cos 20+2 sin2 0 sin") ), 

8,=3p sin 0 cos 20 cosZ $, 

$,=- (I-p) -3p cos 0 sin cos Q (2.18) 

with a phase space that is now compact. In the coordinatesp, 
8, $, it is the interior of the spherical sector (2.16) with unit 
radius, the infinity x2 + y2 + z2 = w being mapped onto the 
"cap" of the sector2' p = 1. It can be seen from (2.18) that 
on this "cap" there are equilibrium states of three types. 
They are all shown together with the sector and the pre- 
viously described focus F in Fig. 1. The singularities of the 
first type continuously fill the arc K,PK, (p  = 1,$  = ~ / 2 )  
except for the point P (the north pole), which must be con- 
sidered separately, since it belongs to a singularity of a differ- 
ent nature. All the remaining points of this arc are repulsive 
nodes, so that each of these nodes sends out a two-dimen- 
sional pencil of paths along the directions normal to the arc. 
The asymptotic behavior of the solutions near these points 
has the form 

and the emergence from them corresponds to growth of the 
time from the instant t = 0 of the initial singularity. The 
choice of the constant C fixes the particular singular point 
along the arc K,  PK, (tan8 = (12~)' '~rn; ' C ) ,  and after 
this the spread of the paths in the two-dimensional pencil 
that emanates from the chosen point is determined by the 
arbitrary constant to >O. From the remaining relations 
(2.2)-(2.6) it is now easy to obtain the following asymptotic 
expression for the metric near t = 0: 

where the exponents q, satisfy the two conditions 

and the condition (2.9) for z > 0 gives 

The transformation of the radius and time 
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This asymptotic behavior is characterized by a negligibly 
small influence in the equations of the model of all the terms 
containing the mass m, and was first obtained in our Ref. 4, 
where we investigated the nature of the cosmological singu- 
larities in the presence of a massless scalar field. Such a field 
is equivalent to an ideal fluid with superhard equation of 
state p = E. 

The solutions of the next type are described by paths 
that emanate from the singular point P. They also form a 
two-dimensional pencil of curves sent out from P in the di- 
rections normal to the arc K,  PK,, but the asymptotic be- 
havior of the solutions near the origin is different in this case: 

where po is an arbitrary constant. The initial singularity 
t = 0 corresponds to the point P itself, and emergence from it 
corresponds to increase of the time from this value. The 
asymptotic form of the metric near t = 0 is described by the 
Kasner vacuum solution 

-d~~-dt'+t'~~d~~'+t'~~dx~~+t'~~dx~', (2.23) 

pi+p2+ps= I ,  pi2+pz2+ps2= I .  (2.24) 

Among these solutions there is also the exact vacuum solu- 
tion with p r o  (for po = 0),  whose trajectory is the polar 
axis PF (z axis). 

It can be seen from (2.2) and ( 1.5) that near the origin 
the characteristic inflationary equation of state E + p = 0 is 
realized in these solutions. However, simple estimates show 
that an inflationary stage suitable for cosmological applica- 
tions would in this case have to have begun long before the 
Planck time (before 10-24tp or even earlier), i.e., in the re- 
gion in which classical cosmology is not valid at all. There- 
fore, these solutions cannot be regarded as inflationary solu- 
tions in the generally accepted understanding of this term. 

Finally, the solutions of the last type are represented by 
paths that emanate from the points S, and S,. These are 
saddle points, and each of them sends into the physical phase 
space just one path, which lies entirely on the cone surfacez2 
= x2 + y2 and, descending on it, is attracted by the focus F 
(curves S, F and S, F in Fig. 1 ). These are the inflationary 
separatrices of the flat isotropic model. These unique solu- 
tions arise only in the theory with m #O and describe a cos- 
mological evolution which begins in the infinitely distant 
past and is subject to a strong inflationary effect (stronger 
than in the de Sitter solution). Their asymptotic behavior 
near the origin has the form 

Here, t is negative, t < 0, and increases from the value 
t =  - w corresponding to the initial singularity. The plus 
sign in (2.25) corresponds to the point S, (p < O), the minus 
sign to the point S, (p > 0). The anisotropy coefficients a 
and p for these solutions are equal to zero, and the scale 
factor a increases in accordance with the extremely rapid 
law 

~ ~ r n , ~ m ' t ~ ,  (2.27) 

in agreement with the usual requirements imposed on the 
properties of inflationary stages. since &24m2p2 for (2.25), 
it can be seen from (1.5) that in these regions the effective 
equation of state is E + p = 0, and it is not difficult to show 
that here it does indeed correspond to a real inflation effect. 
In Ref. 1, this effect was investigated in some detail, and the 
phase diagram of the surface of the cone was also described 
there in the same notation as in the present paper (see Figs. 1 
and 2 in Ref. 1 ) . 

Thus, we have described above all the trajectories 
which fill the interior of our spherical sector and its side 
boundary. To this must be added the description of the un- 
physical integral curves that fill its "cap" p = 1. It can be 
seen from (2.18 that this upper boundary of the sector is 
also a two-dimensional invariant manifold of the system. 
Setting p = 1 in (2. l a ) ,  we obtain the equations 

0,=3 sin 0 cos 20 cosZ $, +.=-3 cos 0 sin $ cos @, (2.28) 

which have the exact solution 

sinz +=qZ cos 20 sin-' 0. (2.29) 

Here, q > 0 is an arbitrary constant. The phase portrait of 
this two-dimensional dynamical system is shown in Fig. 2 
(the form of the "cap" seen from above). From each singu- 
lar point of the arc K l  PK, there emerge in directions nor- 
mal to it two paths, which are then attracted by the points S, 
and S,. Thus, the right and left halves of the "cap" of the 
spherical sector form two-dimensional ingoing separatrices 
of the three-dimensional saddles S, and S, . 

We now return to Fig. 1, in which the heavy curves 
show the separatrices S, F and S,F of the flat model and two 
unphysical paths, KS, and KS,, which emanate from some 
point K of the arc K l  PK,. In our mind, we augment the 
obtained closed contour KS, FS, K with all paths that eman- 
ate from the point K and are attracted to the focus F. As we 
have already said, these paths form a two-dimensional pen- 
cil, i.e., they fill a certain two-dimensional surface in the 
three-dimensional phase space. It is clear from simple con- 
tinuity considerations that this surface is spanned by our 
contour KS, FS,K. Precisely similar two-dimensional in- 
variant sections are associated with each point of the arc K ,  

Compared with this, the energy density of the scalar field 
varies very slowly: 
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PK, (including the section of the singular paths PS , FS,P), 
and altogether they continuously fill the interior of our 
spherical sector. To each invariant section KS, FS2K there 
corresponds its symmetric K'S, FS, K', where the point K' is 
situated on the arc K, PK, symmetrically to the point K 
with respect to the center P. These two sections together 
form a single smooth cone-shaped surface that is embedded 
within the cone z2 = x2 + y2 and touches it along the lines of 
the separatrices S, F and S;F. The intersection of the surface 
with the "cap" of the spherical sector forms the closed curve 
K'S, KS, K' which is shown in Figs. 1 and 2 and is described 
by Eq. (2.29) for some given value of the constant q. The 
projection of this curve onto the horizontal plane is an el- 
lipse. 

It is difficult to obtain exact equations of these invariant 
sections because of their complicated behavior in the oscilla- 
tion neighborhood of the focus F. However, for our analysis 
this is not needed, since the inflationary stages in which we 
are interested can exist only outside this neighborhood. This 
can be seen directly from the universal asymptotic behavior 
(2.10)-(2.13), the nature of which has nothing in common 
with inflation. From (2.10) and the last of Eqs. (2.15) it 
follows that the oscillation neighborhood of the focus can be 
distinguished by the condition 3r(l.  Then in the region of 
the phase space in which 

one can obtain entirely adequate approximate equations of 
the invariant sections by using in it expansions in 1/3r. Then 
the first approximation to our dynamical system will be giv- 
en by Eqs. (2.15), in the last of which it is necessary to omit 
the term - 1 on its right-hand side, making the assumption 
that 

The approximate system obtained in this manner can be inte- 
grated exactly and has as its two-dimensional invariant sec- 
tions the elliptical cones described by Eq. (2.29). For given 
value of the constant q, we must now regard (2.29) not only 
as the equation of a closed integral curve, for example, K'S , 
KS, K', on the "cap" of the spherical sector, but also as the 
equation of a surface-the elliptical cone formed by the radi- 
us vectors of all points of this curve. This first approximation 
is most conveniently considered in Cartesian coordinates. If 
Eqs. (2.15) with the omitted term - 1 in the last of them are 
transformed in accordance with Eqs. (2.14) to the variables 
x, y, z, we obtain 

The invariant two-dimensional sections of this system 
in which we are interested have the form 

where q is the same constant as in (2.29). 
The elliptical cones (2.33) are situated within the coni- 

cal surface z2 = x2 + y2 and touch it along the generators 
y = 0, z = f x, but not along the separatrices S, F and S2F, 
as is necessary for exact invariant sections. This is due to the 
breakdown in the validity of the approximation (2.32)- 
(2.33) near the planes x = 0 (cosqb = 0)  and y = 0 

y 1 )Less than 2/3 

FIG. 3. The dashed lines bound the strip of disadvantageous paths. 

(sin* = O), where the inequality (2.3 1 ) can be violated even 
at large values of the factor 3r. Therefore, near these planes 
the form ofthe sections (2.33) must becorrected to take into 
account the following terms of the expansion in 1/3r. The 
corrected equations of the sections should be sought in the 
form 

where f (8 )  is found from (2.15). If we make these calcula- 
tions, we find that the invariant sections near the plane y = 0 
touch the cone z2 = x2 + y2 precisely along the separatrices 
S, F and S2 F, and not along its generatorsz = * x, as would 
follow from the approximate relation (2.33 ). 

We now consider the behavior of the paths of the system 
(2.32) on an arbitrarily chosen invariant section (2.33). The 
first of equations (2.32) shows that these paths are the inter- 
sections of the planes x = const with the chosen elliptical 
cone, and when the phase diagram which arises on it is pro- 
jected orthogonally onto the horizontal x, y plane (seen from 
above) it has the form shown in Fig. 3. In thehatched, cross- 
shaped region, which includes the coordinate axes, the first 
approximation considered above is invalid, i.e., there at least 
one of the inequalities (2.30) or (2.3 1 ) is violated. The radi- 
us of the central spot of this region is of order 1/3, the width 
of the strip along the x axis is of order 2/3, and the width of 
the strip along they axis depends on the parameter q and is 
given by 2q/3( 1 + q2)"2, but also does not exceed 2/3. The 
large dashed circle represents the intersection of the x, y 
plane with the quantum boundary. This last is a cylindrical 
surface with equation 

on which E = m i .  Thus, the radius of the quantum boundary 
is a number of the order of a million, i.e., huge compared 
with the widths of the hatched region indicated above. 

We now have all the necessary information on the quali- 
tative behavior of the inflationary paths on each invariant 
section. Indeed, from the foregoing analysis we know that in 
the hatched strip along the x axis all the phase diagrams of 
the type shown in Fig. 3 are joined to the diagram of the flat 
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model along the inflationary separatrices S , F and S2F. 
Therefore, all the paths ofthe invariant sections entering this 
strip turn abruptly toward the center and, accompanying 
these separatrices, undergo near them prolonged stages of 
inflation, just as occurs in the flat Friedmann model. It was 
noted in Ref. 1 that a path has an inflationary period of suffi- 
cient duration only when it enters the neighborhood of the 
separatrices at a distance from the center of the phase dia- 
gram not less than x - 6-8 (which means q, - 3mp-4mp ) . 
Thus, all the paths in Fig. 5 within a strip around they axis 
with a width of about 15 units will be disadvantageous. Since 
the hatched strip along they axis in which the conditions of 
applicability of our approximation can be violated has a 
width of only about one unit, it certainly contains only disad- 
vantageous paths irrespective of the details of their behavior. 
This circumstance frees us from the need to analyze the ap- 
proximation which follows (2.32) within this strip. 

Thus, we have shown that the three-dimensional phase 
space of the dynamical system (2.8) can be represented in 
the form of a packet of an infinite number of two-dimension- 
al cone-shaped invariant sections joined along the two infla- 
tionary separatrices of the flat model. In each section, these 
separatrices act as attractors in complete analogy with what 
occurs in the flat model itself. One can say that the separatrix 
contour S2 FS, forms a stable one-dimensional node for all 
two-dimensional paths of the system (2.8). 

We now estimate the ratio of the number of disadvanta- 
geous paths to the total number of integral curves in the 
considered model. As we have already said, we take the ini- 
tial manifold to be the quantum boundary (2.34)-a cylin- 
drical semi-infinite surface situated within the upper half of 
the cone3' z2 = x 2  +y2. We now construct two planes 
x = + x,, where x, - 6 8 .  On the quantum boundary, these 
planes cut out two vertical infinite strips, each with a width 
of about 15 units. It is clear from the foregoing analysis that 
all paths which begin at points of these strips will be disad- 
vantageous, while all the remaining points of the quantum 
boundary will be the beginnings of paths with sufficiently 
long inflationary stage. The required ratio will now be equal 
to the ratio of the sum of the areas of these strips to the area 
of the complete surface of the quantum boundary, and this is 
twice the strip width (about 30) divided by the circumfer- 
ence of the transverse section of the cylindrical surface 
(2.34), i.e., divided by the number 2 n ( 8 ~ / 3 )  '12m,m - ' 
-20m,m-'. This then leads to the estimate 

number of disadvantageous solutions m -- 
number of all solutions 

. (2.35) 
m~ 

3. ISOTROPIC FRIEDMANN MODELS 

The isotropic homogeneous models with metric 

and potential q, = p ( t )  in the theory ( 1.1 ) lead to the dy- 
namical system 

and one subsidiary condition on it: 

Hz=-ka-'+ (49x13) m,-Z (r$?+mZrp2), (3.3) 

where 

In the variables (2.7), Eqs. (3.2) give 

and the condition (3.3) indicates in which regions of the 
phase space x ,  y, z the paths of the various models are situat- 
ed: 

zZ-xZ- yZ=O - for the flat model (k=O) , 

zz-x2-y2>0 - for the open model ( k=- I ) ,  

zZ-xZ- yZ<0 - for the closed model (k=l).  (3.8) 

The corresponding compact picture in the coordinates 
p, 8, $ and all types of possible solutions for these models are 
described in Ref. 1. The course of the following investigation 
is the same as in the previous section. Using spherical coordi- 
nates, we can readily show that in the region (2.30)-(2.3 1 ) 
Eqs. (3.5) can be replaced approximately by the system 

which admits two-dimensional invariant sections of the 
form 

wherep is an arbitrary constant. It is easy to form a picture of 
these sections by referring to Fig. 5 of Ref. 1. It shows the 
boundary of the compacted phase space of the system (3.5 1, 
i.e., the surface of the spherep = 1 together with all the un- 
physical paths on it. The equations of these paths in the an- 
gular variables 8, $ express the relation (3.10) in spherical 
coordinates. In order to cover the surface of the sphere with 
the diagram of Fig. 5 from Ref. 1, it is necessary to identify 
the side edges $ = 0 and $ = 2~ of the diagram, identify all 
points of the upper edge 8 = 0 with the north pole P, and all 
points of the lower edge 8 = T with the south pole P'. On the 
surface of the sphere, we now select some path and from the 
center of the sphere describe the radius vectors to each point 
of this path. The cone-shaped surface formed by the con- 
structed radius vectors will then be one of the invariant sec- 
tions (3.10) in the compact image. As in Sec. 2, Eq. (3.10) 
must be corrected near the plane y = 0, and allowance for 
the following terms of the expansion shows that all the exact 
sections in this region are joined to the cone z2 = x2 + y2 
along its inflationary separatrices. We recall that we restrict 
the treatment to the upper half z > 0 of the sphere, which 
corresponds to expansion. 

The case of the open model does not require any new 
investigation, since it is entirely analogous to the case of the 
anisotropic type I model considered in the previous section. 
For p < 0, Eq. ( 3.10) describes cone-shaped surfaces filling 
the interior of the cone z2 = x2 + y2, i.e., the phase space 
(3.7) of the open model. All that follows repeats the analysis 
of Sec. 2 almost literally and leads to the same estimate 
(2.35) for the fraction of disadvantageous solutions. 

The situation is more complicated for the closed model. 
First, it is found that in the phase space (3.8) of this model 
there exist two sheaves of invariant sections in no way relat- 
ed to the inflationary separatrices S, F and S,F of the flat 
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model. These are the sections whose traces on the infinitely 
distant boundary p = 1 (see Fig. 5 of Ref. 1 ) lie within the 
contours C; K,  C, C; and C;K,C, C; . All the paths on these 
sections pass far from the separatrices S, F and S,F and are 
without inflationary stages. But, as can be seen from Fig. 5 in 
Ref. 1, the remaining sections are joined to the inflationary 
separatrices, and the behavior of the paths on them is qual- 
itatively the same as in the previously described models. 

We now find the traces of the noninflationary sections 
on the quantum boundary. If R, = (87~/3) 'l2rnprn - ' is the 
radius of the quantum boundary, then the invariant surfaces 
(3.10) will intersect it along curves with the equations 

The quantum boundary in the closed model is the side sur- 
face of a cylinder of bounded height O( -z<R,, and its un- 
folding is shown in Fig. 4. The traces of the noninflationary 
invariant sections are enclosed in the two hatched regions, 
onto which the regions bounded by the contours C; K ,  C, C; 
and C; K, C, C; shown in Fig. 5 of Ref. 1 are projected. The 
curve which bounds these regions is described by Eq. (3.1 1 ) 
forp = (2/9) - The total area So of the hatched regions is 
given by the expression 

n / z  

The total area S, of the quantum boundary is 

However, in this case the ratio S,/S, will not correspond to 
the correct fraction of disadvantageous paths. The point is 
that in the closed model for the expansion phase the Cauchy 
surface is by no means identical to the quantum boundary 
since the former includes as well the region of the planez = 0 
through which inflationary paths (see Ref. 1) can enter the 
interior of the cylinder x2 + y2 = R i ,  O<z<R,, from below 
the points of a regular minimum of the scale factor a. On the 
plane z = 0, this region is bounded by the conditions x2 
> 2y2, x2 + y2 < R i ,  i.e., it consists of two circular sectors, 
the total area A S  of which is 

Thus, for the closed model we obtain instead of (2.35) 

number of disadvantageous solutions so 1 
number of all solutions - S q + - ~ . S s Y '  

FIG. 4. Unfolding of the lateral surface of the cylinder. The curve is ob- 
tained in accordance with Eq. (3 .11 )  for p = (2/9) - ' I 3 ;  z = 0 for 
sin2$ = 1/3. 

4. ON THE CHOICE OF THE MEASURE 

We now consider in more detail the question of the 
choice of the measure in the space of phase paths. Suppose 
we are given an n-dimensional dynamical system 

a?=vi(xk) (i, k= l ,  2 , .  . . , n), (4.1) 

whose phase space is assumed to be Euclidean and the xiare 
regarded as Cartesian coordinates in it. We consider some 
infinitesimally thin bundle of paths and cut it with some 
hypersurface S. The measure dp of this bundle must natural- 
ly be proportional to the infinitesimally small volume of the 
obtained section and must have definite invariance proper- 
ties. The numerical value of the measure must be determined 
by the bundle as such and cannot depend on the choice of the 
form of the hypersurface cutting it, the point of intersection, 
or the choice of the parametrization along the phase flow. 
The integrated measure characterizing a finite bundle must 
possess the same properties. 

It  is readily seen that we shall satisfy these requirements 
if in the infinitesimal case we specify the measure by the 
expression 

where ds, is the vector element of volume of the section of the 
bundle, vi is the velocity vector of the flow from (4.1 ) , and 
the scalar p(xi) is determined by the condition of vanishing 
of the divergence of the vectorpvi: 

d - (pvi) =o. a xi (4.3) 

The hypersurface S can play the role of the initial Cauchy 
hypersurface, and the measure of the finite bundle is deter- 
mined by the integral over the part of its volume A S  from 
which the given bundle emanates: 

j Poi asc (4.4) 
A 5  

The conservation of such a measure along the flow and the 
fact that it is independent of the choice of the initial hyper- 
surface are ensured by the condition (4.3). However, this 
procedure in no way determines the actual value of the mea- 
sure for the considered bundle. Since the measure of the bun- 
dle is conserved along the flow, it would be sufficient to 
know its value on the initial hypersurface S. However, it is 
determined by the functionp ( x i ) ,  which is found as the solu- 
tion of the partial differential equation (4.3) and, therefore, 
remains completely arbitrary on the initial hypersurface. 
Thus, the measure in the space of phase paths is not deter- 
mined by the dynamical equations and can be specified arbi- 
trarily. In each case, its actual choice requires special addi- 
tional criteria. These could arise, for example, when the 
measure is treated in the probability sense and there exists 
certain information about the probability distribution in the 
space of initial data on the hypersurface S. In the complete 
absence of such information, one can make the assumption 
of a distribution representing equal probabilities (as is done 
in our paper). Arguments of this kind, although not rigor- 
ous, do nevertheless have a physical nature. 

One also encounters a different approach to the choice 
of the measure, based on considerations of "naturalness," 
"simplicity," etc. Suppose, for example, that for Eq. (4.3) 
one can find some distinguished exact solution in elementary 
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functions. This solution uniquely determines the measure 
everywhere, including on the initial hypersurface. If such an 
exact solution corresponds to some particular mathematical 
construction, the measure corresponding to it may be 
deemed to be "natural," its physical content being ignored. 
For Friedmann models with massive scalar field, an ap- 
proach of this kind was proposed recently in Ref. 5, in which 
it was pointed out that Eqs. (3.2)-(3.4) constitute a Hamil- 
tonian system in a four-dimensional phase space with the 
constraint 3Y = 0 (3Y is the Hamiltonian). Therefore, the 
initial Cauchy hypersurface has two dimensions, and then 
the symplectic form of this system can serve as a "natural" 
differential meas~ re .~ '  The choice of the symplectic form as 
measure corresponds to the choice of a particular exact solu- 
tion of Eq. (4.3 ) for the function p. 

Let us consider this in more detail. Although only 
Friedmann models are considered in Ref. 5, it is not difficult 
to include in this scheme the anisotropic type I model as 
well, restricting the analysis to one of its invariant subspaces 
distinguished by some fixed value of the integral of the mo- 
tion b2a6 + b2a6/3 = const for the anisotropy coefficients. 
Then it is easy to show that not only Eqs. (2.3), (2.4), and 
(2.6) for the type I model but also Eqs. (3.2)-(3.4) for the 
Friedmann models are Hamiltonian and follow from the 
Hamiltonian 

in which the variables a and q, are regarded as generalized 
coordinates, and 

are the momenta conjugate to them. The constant y takes 
just two values: y = 1 for the Friedmann models and y = 3 
for the type I model. At the same time k, r k, where k is the 
usual indicator of the Friedmann models ( k = 1,0, - 1 for 
closed, flat, and open models), and k, is an arbitrary con- 
stant of integration in the type I model satisfying the condi- 
tion k3 (0 (a2a6 + B 'a6/3 = - k,) . In addition, the Hamil- 
tonian system is subject to the constraint 

The standard symplectic form 

can be reduced by means of the condition (4.7) (for elimina- 
tion from it of the differential da) to the following form in 
the variables x, y, z (2.7) : 

For the case of the Friedmann models ( y = 1 ), this is identi- 
cal to Eq. (3.10) of Ref. 5 (after correction of misprints in 
it). The dynamical equations themselves have in the vari- 
ables x, y, z and 7 the form 

with the subsidiary condition 

Thus, the flow velocity vi (from here on, n = 3, i.e., the in- 
dices i, k, I take the values 1, 2, 3) has the components 

vi={v', v2, v3) = {y, -X-~YZ, y (x2+ y2-z2) -3y2). (4.12) 

If we now introduce the notation 

and assume that (x, y, z)  = (XI, x2, x3), the form (4.9) can 
be written as 

where E,, is the completely antisymmetric symbol of three- 
dimensional Euclidean space. Recalling that the vector ds, 
of the element of two-dimensional area dual to its tensor 
element dxk A dxl/s is constructed as 

we obtain from (4.14) the formula (4.2) 

and it is readily verified that the vector poui satisfies Eq. 
(4.3). Thus, the entire procedure has been reduced to the 
finding of some particular exact solution of Eq. (4.3), name- 
ly, the solution (4.13). In what way is this solution distin- 
guished among the infinite set of the others? From the point 
of view of physical grounds for the construction of the mea- 
sure, the answer is not at all. However, the existence of a 
regular method for finding at least one exact solution of Eq. 
(4.3) has methodological value, since it then reduces the 
problem of finding all the remaining solutions to the search 
for integrals of the motion of the considered dynamical sys- 
tem. Indeed, if pa is a solution of Eq. (4.3), then any other 
solution will have the form 

where J is an integral of the motion. In terms of exterior 
forms, the choice of the differential measure on the basis of 
the solution (4.17) means that one is taking as measure a 
nonclosed 2-form that differs from the symplectic form only 
by a general factor which is an integral of the motion. Such a 
form, like the symplectic form, is conserved along the flow. 
One of these possibilities corresponds to the measure chosen 
in our paper, i.e., the one that corresponds to an equally 
probable distribution of the initial data on the quantum 
boundary (2.34). 

As explained in the Introduction, our choice is based on 
physical considerations relating to the invalidity of the clas- 
sical equations of gravitation beyond the quantum boundary 
and the complete absence of information in this region. Un- 
der such conditions, if our arguments are granted, the use of 
the measure (4.16) on the initial surface (2.34) cannot be 
justified. But if one approaches the investigated systems 
from the formal point of view and treats all regions of the 
phase space on an equal footing, then, of course, such a mea- 
sure can be given a meaning. Let us consider the phase space 
of the open Friedmann model or of the type I model. The 

448 Sov. Phys. JETP 66 (3), September 1987 



results of our study show that the paths in the entire infinite 
region of the phase space outside the quantum boundary 
arrive rapidly in the neighborhood of the inflationary separ- 
atrices and then move along them, approaching them ever- 
more closely. Thus, one gets the intuitive idea that the den- 
sity of the flux through the lower part of the cylindrical 
surface (2.34), i.e., where it intersects the cone of the flat 
model, is very large, and in the neighborhood of the points of 
entry of the inflationary separatrices actually diverges. This 
is how one must interpret the appearance of the singularity 
in the density (4.13) at x2 + y2 - z2 = 0. One can show that 
for a correct method of integrating the measure (4.16) over 
the surface of the quantum boundary this singularity makes 
a real contribution to the integral measure only near the 
points of entry of the inflationary separatrices and not on the 
complete circle of the intersection of the quantum boundary 
with the cone x2 + y2 - z2 = 0 of the flat model. The ratio of 
the number of disadvantageous paths to their total number, 
calculated from the traces of the paths on the quantum 
boundary by means of the measure (4.16), is equal to zero. 
However, we point out once again that the interpretation 
given above of the measure (4.16) on the quantum boundary 
follows in fact from the nature of the behavior of the paths 
off this boundary. This also agrees with the method of calcu- 
lation in Ref. 5, in which it was not the quantum boundary 
that was taken as initial Cauchy surface but the paraboloid 
xZ + y2 - i? = const, on which the measure is free of singu- 
larities. However, in this case the entire infinite region out- 
side the quantum boundary is introduced explicitly and 
gives an infinitely large contribution to the total number of 
paths (relative to the number of disadvantageous paths) in a 
clearer manner. 

We thank Ya. G.  Sinai for a helpful discussion of this 
paper. 

"We use an energy system of units, in which the velocity of light, 
Planck's constant, and Boltzmann's constant are equal to unity. In 

Secs. 1-3, the Latin indices take the values 0. 1,2, 3, the Greek indices 
the values 1,2,3. The time is denoted by x0 = t ,  and differentiation with 
respect to t is indicated by a dot. The interval is written in the form 
- d.? = g,,dx'dxk, where g,, has signature ( - + + + ). 

2' In the geometrical constructions employed here and later, we regardp, 
0, $ as spherical coordinates of some new space with Cartesian coordi- 
nates x' = p sin0 cosq, y' = p sin0 sin$, z' = p cos0. This new space is 
placed relative to the original one in such a way that the new axes x', y', z' 
coincide with the old x, y, z and, therefore, the angle variables Band $ 
for the two spaces are identical. Each point of the spacex, y, z is mapped 
in accordance with the law (2.17) along its radius vector to some point 
of the interior of the ballp < 1 in thespacex', y', z', and the entire infinity 
x2 + f + 2 = co of the original space is mapped to the surfacep = 1 of 
this ball. 

3' Each point of this quantum boundary gives the beginning of one path, 
which moves into the interior of the cylinder (2.34) and never returns to 
its surface. Indeed, it follows from (2.8) that (xZ + y 2 ) ,  = - 6zy2, and 
forz> 0 this derivative is negative, i.e., all paths intersect the cylindrical 
surfaces x2 + y2 = const only on the side of their interior. In order that 
(2.34) may serve as a Cauchy surface, it is also necessary that every path 
begin on it. In our case, this requirement is violated by the two-dimen- 
sional bundle of singular integral paths with initial asymptotic behavior 
(2.22). Some of them (for (pO / < 21'2mi/m) are situated entirely with- 
in the quantum boundary and do not have any point in common with it. 
However, compared with the set of all paths (which has a two-dimen- 
sional Cauchy surface) one two-dimensional bundle (with one-dimen- 
sional Cauchy manifold) has measure zero, and its influence on our 
estimates can be completely ignored. 

4' The possibility of introducing a measure of such kind can also be gener- 
alized to multidimensional gravitational systems. They are all Hamilto- 
nian systems with constraint R = 0. If the original phase space has 
dimension 2m, the real phase space on the level of the constraint R = 0 
has dimension 2m - 1, and the dimension of the Cauchy manifold in it 
is 2m - 2, i.e., even. Then as differential measure in the space of phase 
paths one can take the exterior power of order m - 1 of the original 
symplectic form. 
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