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The evolution of a weakly inhomogeneous universe is considered in the framework of theories of 
gravitation with higher derivatives. It is shown that for a large class of initial conditions the period 
of inflationary expansion of the background isotropic model is realized here as a quasi-de Sitter 
intermediate asymptote. The problem of the evolution of scalar perturbations of the metric is 
solved. In the case of pure R2 gravitation, the results are obtained in analytic form. Numerical 
integration of the equations shows that the qualitative behavior of the perturbations is unchanged 
in models with conformal anomaly with allowance for polarization terms. Bounds on the 
parameters of the theory that follow from astrophysical observations are obtained. 

#I. INTRODUCTION 

The appearance of inflationary models of the evolution 
of the universe has led to a real possibility of solving a num- 
ber of important cosmological problems. By an inflationary 
stage of evolution is meant a period of exponential (or qua- 
siexponential) expansion of the universe made possible by 
the presence of an effective cosmological constant in the 
model at this period.' Two simple ways of introducing an 
effective cosmological constant are known. The first is by 
means of a scalar field p with potential V(p) which either 
possesses a metastable state2 or makes it possible to realize a 
regime of slow rolling.' The second possibility is through 
quantum-gravitational  effect^,^ which lead to higher deriva- 
tives in the equations for the gravitational field. Both of these 
mechanisms may operate in superstring or Kaluza-Klein 
models-either separately or in conjunction. 

In the original variants of the inflationary  model^,^'^ the 
exact de Sitter solution was used. Subsequently, difficulties 
in the original variants of the models were overcome by us- 
ing the more general quasi-de Sitter s ~ l u t i o n . ~  The presence 
of an inflation stage is then no longer an exotic phenomenon, 
realized for specific initial conditions, but a characteristic 
regime through which an isotropic metric passes under a 
large set of initial conditions in models of both types. 536 

With the passage of time, the inflationary stage comes 
to an end, and the field that controls the inflation goes over 
into an oscillatory regime, the effective cosmological con- 
stant disappears, and quasiparticles with dust equation of 
state arise. The massive quasiparticles then decay into an 
ultrarelativistic plasma, which is thermalized to tempera- 
tures T- 10'0-10'4 GeV, and the universe goes over to a 
radiation-dominated Friedmann stage of expansion. 

In this overall picture, it is convenient to identify three 
successive periods: 1 ) the strictly de Sitter or quasi-de Sitter 
stage; 2 )  the decay of the effective cosmological constant due 
to the rapid change in the value of the field that controls the 
inflation-the "fast rolling" stage; 3) the stage of domi- 
nance of the quasiparticles, which subsequently decay into 
the hot plasma. 

Inherent in inflationary models is the following proper- 
ty, important for cosmological applications: In the inflation- 

ary stage it is in principle possible to generate from vacuum 
quantum  fluctuation^^.^ long-wave inhomogeneities with an 
amplitude sufficient for galaxy f ~ r m a t i o n . ~ . ~ . ' ~  In the sim- 
plest case of a single field controlling the inflation, these lead 
to adiabatic (inflation) perturbations of the metric with an 
almost ffat ~ ~ e c t r u m . ~ - " , ' ~  But if in the inflation stage there 
is present (but not dominant) another lesser field, X ,  that 
itself (or the products of its decay) makes the dominant 
gravitational contribution in the late Friedmann stages of 
the expansion of the universe, its fluctuations lead to appre- 
ciable isothermal (isoinflation) perturbations. It is impor- 
tant that the spectrum of these fluctuations may deviate 
strongly from a flat spectrum.I3 

In this paper, we give a systematic quantitative theory 
of the generation and evolution of adiabatic (inflation) per- 
turbations of the metric in all three stages in the expansion of 
the very early universe for quantum-gravitational inflation- 
ary models, comparing the results with the case of models 
with scalar field. Various aspects of this problem were con- 
sidered earlier in Ref. 14. 

The paper is arranged as follows. We first describe the 
stages of the evolution of the background metric in the mod- 
el with conformal anomaly, when besides the exact de Sitter 
solution there are, for a large set of initial data, solutions 
with quasi-de Sitter intermediate asymptotic behavior. 

Then, having written down a self-consistent system of 
equations for the perturbations of the metric, we trace how 
the finite fluctuations of the metric needed for the formation 
of galaxies can be generated from initial vacuum fluctu- 
ations. In the physically most interesting case without con- 
formal anomaly, we obtain an analytic solution of the prob- 
lem (Sec. 3). In Sec. 4, we give the results of numerical 
solution of the problem in the presence of a conformal anom- 
aly. In the conclusions, we obtain constraints on the param- 
eters of the model from astrophysical observations. 

$2. BACKGROUND MODEL 

Einstein's equations with allowance for the quantum- 
gravitational corrections (in the class of conformally flat 
metrics with small perturbations) have the form 
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The original Lagrangian contains the combination 

quadratic in the curvature R and the nonlocal term 

which leads to a gravitational conformal anomaly of the 
quantized fields, 

with model-dependent numerical coefficients k,,  k,, k,. 
Comparing ( 1 ), (2),  and (3) ,  we find 

where M,, = G- 'I2, c = f i  = 1. In what follows, we shall not 
distinguish M, and the (renormalized) M. In the case k ,  
#O, Eqs. (1)  have the exact de Sitter solution 
R ;, = (1/4)S:R withcurvatureR = - 12H;. However, it 
can be shown that in the most characteristic cases of the sets 
of fields in supergravity either H, -M,, (going beyond the 
framework of the single-loop approximation) or H, + cc , k ,  
= 0, and there is no anomaly at all. In the physically inter- 

esting case without conformal anomaly only the second term 
obtained from the Lagrangian (2)  remains on the right- 
hand side of Eq. ( 1 ). Such terms quadratic in the curvature 
appear in numerous theories: in quantum gravity with high- 
er derivatives," in Kaluza-Klein models, in superstring 
 model^.'^ However, what is important for us is that the theo- 
ry (2)  can have a bearing on the very early universe, admit- 
tedly under the rather strong restriction M S  1014 GeV (see 
below, and also Ref. 17) on the bare mass M, which occurs in 
(2)  and determines the cosmological status of the model. 

The time evolution of the background isotropic metric 
(with flat comoving space) is determined by the 0-0 compo- 
nent of Eq. ( 1 ) for the scale factor a ( t ) ,  various aspects of 
which have been considered, for example, in Refs. 4 and 18. 
In addition to these studies, we give here a complete qualita- 
tive investigation of the equations for the background metric 
and describe in detail their inflationary solutions. The equa- 
tion for a ( t )  is most readily investigated by going over to the 
variable H = a/a: 

where the dot denotes differentiation with respect to the 
physical time t .  In the dimensionless y = H/M, and 
x = H /M, Eq. (4)  becomes 

where p = ( M  /H,) '. The phase portrait of this equation 

FIG. 1. Phase portrait and projection of the Poincark sphere for Eq. (4) at 
finite H,. 

(Fig. l a )  in the coordinates y-x is symmetric about the y 
axis. The half-plane x < 0 corresponds to contraction of the 
universe, the half-plane x > 0 to expansion. Here, there are 
two singular points: a complicated singularity with the na- 
ture of a focus at (0,O) with twisting trajectories (all trajec- 
tories pass through the zero point) that corresponds to 
Friedmann asymptotic behavior, and the saddle (0,1/0 I/,), 

which corresponds to the exact de Sitter solution a ( t )  = a ,  
X exp (H, t )  of Eqs. ( 1 ) and (4) .  The complete half-plane is 
divided into three regions, 1-111, by the separatrices 1-4 of 
the saddle point. The equations of the separatrices near it 
have the form 

*3- (9-4p) ''l 
Y = 2 

Separatrix 1 leaves the saddle point and enters the lower 
quadrant and then winds into the focus. Separatrix 2 leaves 
the saddle point and enters the upper quadrant and, passing 
through the singularity at (0, 0),  goes away to infinity in the 
lower quadrant; the point (0,O) is not a stationary point for 
this separatrix, but it is such a point (a  focus) for separatrix 
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1, the complexity of this singularity being due to these facts. 
The separatrices 3 and 4 leave the saddle point on opposite 
sides of the x axis and go away to infinity. 

The trajectories in region I begin at infinity for y < 0, 
corresponding to a singularity at t = 0. Then, passing 
between separatrices 2 and 4, they reach separatrix 1 and 
continue to move near it to the singularities at (0,0), and, 
passing through them, enter the interior region between se- 
paratrices 1 and 2. It is remarkable that the entire separatrix 
1 is the intermediate asymptotic behavior for all trajectories 
of region I, some of which reach it from below, while others, 
close to separatrix 2 (fory < O), reach it from above from the 
interior region, passing before this through the point (0,O). 
All the trajectories of region I terminate in the singularity 
(0,O) as t- oo with regular Friedmann asymptotic behavior. 
The trajectories of region I1 begin at infinity for y < 0 from 
the singularity at t = 0 between they axis and separatrix 2, 
pass through the point (0,0), which is not singular for them, 
and go away at infinity into a singularity as t- CQ . The trajec- 
tories of region 111 pass to the right of separatrices 3 and 4 
and behave like the trajectories of region 11. The qualitative 
picture of Eq. (4) is completed by an investigation of the 
singular points at infinity by means of the PoincarC sphere, 
the projection of which is shown in Fig. 1b. At infinity, there 
are two complicated singularities of the type of a repulsive 
node, k ,  , and an attractive node, k,. 

In the theory without conformal anomaly with the La- 
grangian (2),  it is necessary to go to the limit Ha -+ cc in Eqs. 
( 1) and (4).  Then in the phase portraits of Figs. la and lb 
the saddle singularity is displaced to infinity along the x axis, 
and there remains the single separatrix 1, which begins at 
infinity and ends at a singularity at (0,O) of focus type. In 
this case, the behavior of the trajectories is corhpletely analo- 
gous to the behavior of the trajectories from region I in the 
case of finite Ha,  k,  (see Figs. 2a and 2b). 

We consider in more detail the trajectories of the physi- 
cally interesting region I, which have regular Friedmann 
asymptotic behavior. The typical phase trajectories of this 
region rapidly (as measured by the time t) reach the separa- 
trix I from below. The most interesting fact is that near this 
separatrix there is a quasi-de Sitter regime (intermediate 
asymptotic behavior) for which 

and an inflationary stage can be realized. We recall that in 
the considered model there exists an exact de Sitter solution 
(O,l/p"'), from which, however, one cannot depart with- 
out invoking additional considerations (stationary point). 
A physical reason for deviation from the exact de Sitter solu- 
tion is provided by quantum fluctuations of the m e t r i ~ . ~  In 
the original models with conformal anomaly, it was assumed 
that by virtue of these deviations some of the space will 
evolve directly along the separatrix 1. In such a scenario, 
there must be strong spatial inhomogeneities, since quantum 
fluctuations "throw" some of the geometry into region I and 
some into region 11. 

In the model with conformal anomaly, this difficulty 
can be avoided if one starts with the trajectories of region I 
[it is merely required that they reach separatrix 2 in order to 
ensure that the subsequent inflation will be sufficient, ln(a- 
(t)/a(t,)) X 6.51. Then the trajectories of this region will 

FIG. 2. Phase portrait and projection of the Poincare sphere for Eq. ( 4 )  in 
the case H, - m . 

have an inflationary intermediate asymptotic behavior cor- 
responding to motion along separatrix 1. It is easy to see in 
the physically most interesting casepd 1 that this separatrix 
in the section from the saddle to the first intersection point 
(0, 0 )  is situated near the zero isocline (on which H = 0) ,  
which is described by the equation 

Therefore, the equation of the separatrix itself on this section 
is equal up to terms O(BZ), to Eq. (6 ) .  

The solution of Eq. (6)  has the form 

sh (~--M~tl6H~)sh[~-M~/6H~-arcth(~'"/3) 1 
H ( t )  ~ 2 H 0  sh[2r -~~t /3H~-arc th(~" /3)  1 

(7) 

From (7)  in the limit p -0  we obtain 

In ( 7 )  and (8) ,  T is related to the initial value of H, at t = 0 
as follows: 
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Integrating Eq. (7),  we find the scale factor a ( t ) :  

M't 1 
a(t)=a,[ch(r 6Ho 2 

where 

In the limit 0-0 we obtain then 
-8H02/M1 

a(t)- [ch (T-s-) 
(see also Refs. 17 and 19). It follows from (9)  that initially, 
during a time 

the universe passes through an exponential stage of expan- 
sion, a a exp (H, t) ,  and then, during a time At,  =: 3H0 /M2, 
through a quasiexponential stage with 

M2 
a(t)=a,erp (-- (t-t,)' ). 

12 (10) 

In the case without conformal anomaly (as H, -. w ), 
the equation of the separatrix on its straight section takes the 
form 

and the scale factor is described by Eq. ( 10). 
The winding part of the separatrix is described by the 

scale factor 

which corresponds to "scalaron"  fluctuation^.^ 
Thus, all solutions of Eq. (4) ,  for arbitrary values of the 

parameter p >  0, formally begin from a singularity (except 
for the single exact de Sitter solution). Some of them, be- 
longing to region I, necessarily pass through the quasi-de 
Sitter asymptote: 

The relative fraction of such solutions depends on the size df 
region I, i.e., on the parameter 0 = M2/H:. With decreas- 
ingp, the size of region I increases, and in the limit p-0 all 
solutions have the intermediate de Sitter behavior. It is re- 
markable that although the Lagrangian (2)  does not expli- 
citly contain a A term, the R2 term effectively acts as one and 
effects the inflationary expansion. In the case of finite H,, 
there is an exact de Sitter solution with R = - 12Hi.  How- 
ever, here too a whole family of quasi-de Sitter solutions, 
whose curvature may differ by several orders of magnitude 
from the curvature of the exact de Sitter solution, can also be 
realized. This circumstance significantly extends the regions 
of values of the complete set of parameters in a number of 
the~ries.~'  

$3. PERTURBATIONS IN R2 GRAVITATION WITHOUT 
CONFORMAL ANOMALY 

In theories with Lagrangiansl' of the type (2)  that con- 
tain only terms local in the curvature, the behavior of the 

perturbations can be investigated by analytic methods. We 
consider a homogeneous isotropic universe with small scalar 
perturbations of the metric. Since throughout almost the en- 
tire period of evolution in which we are interested the metric 
of the background homogeneous universe can be approxi- 
mated to a good degree of accuracy by the flat model, we 
shall restrict ourselves in what follows for simplicity to con- 
sidering a universe with zero spatial curvature (k = 0).  The 
complete metric of the isotropic universe with small scalar 
perturbations has in the conformally Newtonian gauge'2s2' 
the form 

where a (7) is the scale factor, r ]  is the conformal time, and cP 
and $ are potentials that characterize the physical modes of 
the metric perturbations. We note that in this gauge ficti- 
tious perturbations are absent." In the employed coordinate 
system, the potentials @ and $ are equal to the gauge-invar- 
iant quantities cP, and - @, introduced by Bardeen.,* 

The solutions of the equations for the background mod- 
el were analyzed in detail in the previous section in the gen- 
eral case with conformal anomaly. We are now interested in 
the case when there is no anomaly ( H ,  - w ). In the limit H, - W ,  the scale factor together with (4)  also satisfies the 
equation 

F" F' aZ-a' = - - a - 
2F F ' (13) 

which can be obtained by subtracting from the 0-0 equation 
one third of the trace of the a-0 equations. Here a = a'/a, 
F = 1 - R /3M, and the prime denotes differentiation with 
respect to the conformal time r] .  Linearizing Eqs. ( 1 ) with 
respect to @ and $ in the limit H, - w , we obtain the follow- 
ing equations for the perturbations: 

where 6R is the perturbation of the curvature scalar. Equa- 
tion ( 14) is obtained from the 0-0 equation for the gravita- 
tional field, Eq. ( 15) corresponds to the 0-a equation, and 
( 16) to the a-P equation for a = 8 .  

Substituting (16) in (15) and regrouping the corre- 
sponding terms, we express @ and $in terms of Y = @ + $: 

@ = - -  ( F Y )  (17) 

Using (16), (17), and (13), we obtain from Eq. (14) the 
following equation for Y: 

Further, replacing Yby the new variable u = F3'2 a Y /F1 and 
transforming in the obtained equation for u the term in front 
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of u with allowance for ( 13) ,  we find after rather lengthy 
calculations 

Solutions of Eq. ( 1 9 )  can be readily found in asymptotic 
situations. We consider a plane wave with u a eikx. For k 2  
4 z W / z ,  we obtain 

where the constant 1, corresponds to the constant of inte- 
gration. In the derivation of the final expression for u, we 
have used the relation 

whose validity can be readily established by taking into ac- 
count Eq. ( 13). 

In the short-wave limit (k2%z"/z )  we obtain 

Taking into account the connection between u and Y 
and proceeding from Eqs. ( 17) and ( 16),  we express @, $, 
and 6R in terms of u: 

Substituting ( 2 0 )  in ( 2 2 ) ,  we find for the long-wave pertur- 
bations ( k 2  &z"/z )  

In the case kZ$z"/z ,  

The solutions ( 2 3 )  and ( 2 4 )  are valid in any stage of the 
evolution of the universe described by Eq. ( 4 )  with H,  + co . 
We now consider the behavior of the perturbations in the 
quasi de Sitter stage ( 10).  Bearing in mind that in this stage 

H=: - (1 /6 )M2<H2 and integrating by parts, we find for 
long-wave perturbations with k2gz"/z=:  (2 /3 )M2a2  from 
( 2 3 )  

In the short-wave limit ( k2 % ( 2 / 3  ) M2a2) the terms 
with iS'/~and p / ~ c a n  be ignored in the quasi de Sitter stage, 
and we then obtain from ( 2 4 )  

It can be seen first of all from ( 2 6 )  and ( 2 5 )  that in the quasi 
de Sitter stage the perturbations are conformally flat in the 
lowest order of the expansion in M2 /HZ.  The short-wave per- 
turbations prior to the time they come through the horizon 
and right up to the time at which the perturbation wave- 
length becomes comparable with the scale M - '  
(Ma 4 k  4 <Ha ) , remain conformally planar in all stages of 
the evolution of the universe, and their amplitude - + 
remains constant. 

Further, the amplitude of the long-wave perturbations 
( k g M a )  increases in proportion to 1 / H 2 ( t ) ,  since H ( t )  de- 
creases in the quasi-de Sitter stage. 

The "scalaron" stage follows the quasi-de Sitter stage. 
Substituting a  ( t )  from ( 1 1 ) in Eq. ( 23 ) and bearing in mind 
that in this stage F z  1 ,  we obtain for the long-wave perturba- 
tions 

@ = A  (3]5-2/5 cos ( M ( t - t i ) ) ) ,  

Besides the constant part, for which = $, the amplitude of 
the perturbations in the "scalaron" stage contains an un- 
damped oscillating part with constant amplitude. The am- 
plitude of the oscillations will decrease only when allowance 
is made for decay of the scalarons. 

The oscillating parts of @ and $ are shifted by a half- 
period, and this may be important for the analysis of decay of 
the "scalarons." Comparing ( 2 5 )  and ( 2 7 ) ,  we find the co- 
efficient of amplification K ( k )  of the perturbations; this is 
defined as the ratio of the constant part of the amplitude of 
the metric perturbations @ in the "scalaron" stage to their 
amplitude at the time when the perturbations enter the long- 
wave regime: 

m (t>t,) ~ k 2 N ~ ~  
K ( k )  % - 3.6 ---- 

0 ( k - M n )  M L  
The following question is associated with the initial val- 

ues of the perturbation amplitudes. As initial perturbations, 
it is natural to take the quantum fluctuations of the metric. 

As was shown in Refs. 9 and 10, quantization of scalar 
perturbations of the metric with scales much less than the 
horizon in the de Sitter stage corresponds to a geod degree of 
accuracy to quantization of an ordinary massless scalar field 
p. The perturbations SR of the curvature are related to q, by 

The amplitude of the Fourier component of the field 
corresponding to the vacuum fluctuations at the time of 
emergence of the perturbation through the horizon is q, 
= H/21'2k3'2 (Refs. 23 and 10).  Therefore, as initial value 
for the perturbations it is necessary to choose the Fourier 
component of the perturbations of the metric, which is equal 
to 
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at the time the mode with wave vector k comes through the 
horizon. 

Further, bearing in mind that the amplitude of @, is 
constant until the scale of the perturbation is comparable 
with the scale - (Ma) - I, and taking into account the coeffi- 
cient of the subsequent amplification of the amplitude of the 
perturbations (28), we obtain the following value of the 
Fourier amplitude of the perturbations of the metric in the 
"scalaron" stage: 

On scales greater than the horizon, the amplitude of the met- 
ric perturbations in the subsequent stages remains practical- 
ly unchanged irrespective of the equation of state of the mat- 
ter that fills the ~niverse .~ '  Bearing this in mind, we arrive at 
the following estimate for the spectrum of perturbations of 
greater than galactic scales, converted to the present epoch: 

where @, is the characteristic amplitude of the perturba- 
tions in the physical scale A, and A, is the wavelength of the 
fossil phonons. The result (32) agrees in order of magnitude 
with the results obtained earlier by qualitative  method^.^." 
As can be seen from (32), the perturbation spectrum in- 
creases in the region of large scales. At M- 1013 GeV, its 
amplitude is sufficient for the formation of the large-scale 
structure of the universe (see below). In conclusion, we em- 
phasize that our results relating to the spectrum are valid 
only if the considered de Sitter stage is not followed by an- 
other analogous stage. 

$4. PERTURBATIONS IN THE MODEL WITH CONFORMAL 
ANOMALY 

We now consider the problem of the evolution of per- 
turbations in the more general case when a conformal anom- 
aly is present. A self-consistent system of equations for @, $, 
and SR can be obtained in this case by linearizing the com- 
plete system of Einstein equations ( 1 ). The initial conditions 
are chosen in the form (30). 

In the presence of a conformal anomaly, the system of 
equations was solved numerically. The corresponding re- 
sults for the time evolution of @, and $, are given in Fig. 3. 

For k7)  1, SR, oscillates with a damped amplitude. 
Then, in the inflationary stage at the time when k7- 1, the 
perturbation with given wave vector k comes through the 
horizon. If this occurs already in the de Sitter stage 
[a ( t )  a exp(Hot) 1, then the amplitude of the curvature per- 
turbations increases in it e x p ~ n e n t i a l l ~ ~ ~ ' ~ :  

6R=6ROeu, k=[-3/2+(9/h+(M/Mo)2)'h] H,. 

After the transition to the quasi-de Sitter regime ( 10) 
the amplitude SR approaches a constant value and at the end 
of the quasi-de Sitter stage relaxes. 

The initial fluctuations @, and $, increase exponen- 
tially from the time ( 7  - k -  I) they come through the hori- 
zon: @, - $, a SR /R. Then in the quasi-de Sitter stage 
following the de Sitter stage (a  a eHc"), the values of @, and 
$, , as in the case without conformal anomaly, grow consid- 
erably, a 1/H2(t) [see (25)],  and in the scalaron stage the 
expressions (27) are valid. 

FIG. 3. Dependence of the amplitudes of the metric perturbations @ and 4 
on the time. 

To characterize the evolution of the metric perturba- 
tions, we use the previously introduced amplification coeffi- 
cient K, which depends in the general case on the wavelength 
and the parameter M /Ho, K =  K(M /Ho, k ) .  The results of 
the numerical calculation of K for the physically interesting 
values 0 < M /Ho < 0.5 for wavelengths corresponding to the 
horizon scales at the present epoch ( - lo2' cm) and differ- 
ent scales of the structure ( - cm, - cm, and - loz2 
cm) are given in Fig. 4. To within 2%, they can be approxi- 
mated by the analytic formula 

FIG. 4. Coefficient of amplification of the amplitude of the metric pertur- 
bations, K ( M / H o , k ) ,  as a function of M / H o  for different wavelengths: 
curve 1 for loZX cm, curve 2 for 10Z6cm, curve 3 for 10Z4cm, and curve 4 for 
loZ2 cm. 
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Here, H(t, ) is the value of the Hubble parameter at the time 
t, at which mode k comes through the horizon, and t,, is the 
time at which the quasi-de Sitter stage ends and the scalaron 
stage begins. In the limit Ha -+ 03 ,  the expression (34) goes 
over into (28). 

The expression (34) makes it possible to establish the 
analytic dependence on K (and, hence, the spectrum of per- 
turbations of the metric) on the wave number k, 

and this describes the distortion of the flat perturbation spec- 
trum. 

For H, /M% 1, K = 3.6(H /M)'. With decreasing Ha, 
the value of K increases, and for Ha /M-0.5 the coefficient 
K is 40 times greater than the analogous coefficient in the 
case Ha - at the scales of the contemporary horizon. 

We note that the growth of the inhomogeneities Q k  and 
$, by the time t,, corresponds to a qualitative explanation of 
the occurrence of inhomogeneities as the result of the spatial 
fluctuations at the time inflation ends. 

$5. CONCLUSIONS 

We conclude by giving the bounds which follow from 
observational data, on the parameters of the theory. 

The first bound is associated with the following condi- 
tion on the duration of the inflationary stage needed to ex- 
plain the homogeneity of the universe on scales of the con- 
temporary horizon: 

Here, (SR /R), is determined by the initial deviation of the 
model from the exact de Sitter solution. If this initial devi- 
ation is due to quantum fluctuations of the curvature, 
SR /R - M /M,, , then it followsfrom (36) that Ho > 2M. We 
note that at the end of the de Sitter stage in this case the 
magnitude of the fluctuations SR on the maximal scales be- 
comes comparable with the background value R and, there- 
fore, it is here necessary to take into account the back reac- 
tion of the fluctuations on the background metric 
(fluctuation phase transition). If Ho 9 M, then in the calcu- 
lation of the perturbations on the scales corresponding to the 
scales of the currently observed horizon this effect can be 
ignored, and the theory developed in the previous sections 
can be used. However, on the maximal scales corresponding 
to inflation by 

the reaction is important, and the expressions obtained 
above for the perturbations are invalid. At large Ho (H, 
BM), the duration of the quasi-de Sitter inflationary stage 
(10) is determined by the initial value of H. In this inflation- 
ary stage, inflation to the scales corresponding to the cur- 
rently observed horizon is achieved only if 

and this gives the bound H / M ?  5. Note that the duration of 

the de Sitter stage is always about ln(R /SR), 2 10 times 
greater than the duration of the quasi-de Sitter stage. 

The next most important restriction on the parameters 
of the theory is associated with the observed bounds on the 
anisotropy of the microwave background radiation, AT/T, 
due to adiabatic perturbations of the metric. The metric per- 
turbations considered in Secs. 3 and 4 with wavelength cor- 
responding to scales comparable with the scale of the con- 
temporary horizon lead to angular fluctuations in the 
temperature of the microwave b a ~ k g r o u n d ~ ~ :  

where I is the number of the harmonic in the expansion of 
AT/T in multipoles, and the constant A is related to the 
perturbations of the metric as follows: 

The numerical coefficients a and Y ,  depend on the particu- 
lar cosmological model with hidden mass. In the case when 
the equation of state in the late stages is the dust equation, 
a = 3/5, X ,  = 1; in less trivial cases, these values are 
changed ~lightly.'~ From the bounds on AT/T there follows 
the allowed range of values of A: A - 10 3-10 4. Bearing in 
mind that c9 = @,K, where K(M/H,,k) is the coefficient of 
amplification of the initial perturbations, and 

we obtain 

Using the results of the calculation of K(M/Ho)  from 
Sec. 4, we can find bounds on M and H,. The allowed values 
for these parameters are given in Fig. 5. In the case H,  $ M, 
we obtain M S  10'"-1'4 GeV. For H, = 2M, we have 
M <  2.5. 10"-10'2 GeV (see also Ref. 17). The bounds on M 
that follow from the bounds on the amplitude of the gravita- 
tional waves generated in the inflationary stage are much 
weaker. 

The temperature of the heating after the decay of the 
scalarons (with decay probability r -pM3/ M $) is 

FIG. 5. Bounds on the parameters Mand H,  for different allowed values 
ofA: curve 1 f o r A =  1 0 "  curve 2 forA=0.5 .10- ' ,  and curve 3 for 

= 
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where N is the number of degrees of freedom of the created 
particles, and P is a numerical coefficient that depends on 
the nature of the decays. For M -  1013 GeV, TR - 108-10'0 
GeV. Thus, this model is at the limit of compatibility with 
the standard picture of baryosynthesis, which requires TR 
> 10" GeV (as regards this criterion, the model without 
anomaly or with Ho ) Mis preferable). However, there exist 
models of baryosynthesis in which the baryon asymmetry 
can also arise at energies much lower than 10" GeV.25 
Therefore, this criterion does not rule out scenarios with 
M < 1013 GeV. 

In the case M >  loL4 GeV, the inflationary stages of the 
types considered in this.paper can occur only if they are 
followed by another inflationary stage at lower energies, 
brought about, for example, by a scalar field. 

We note finally that the models discussed here can be 
realized both in the framework of quantum cosmology'9~26 
and in the framework of chaotic ~cenarios.~ 

"In an isotropic universe, the terms quadratic in the Weyl tensor in the 
Lagrangian do not lead to corrections in the linearized equations for the 
perturbations by virtue of the conformal flatness (C,,,,=O) of the 
background model. 
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