
Effect of dissipation on the quantum kinetics of phase transitions at low 
temperatures 

S. N. Burmistrov and L. B. Dubovksii 

I. V. Kurchatou Institute ofdtomic Energy, Moscow 
(Submitted 26 December 1986) 
Zh. Eksp. Teor. Fiz. 93,733-746 (August 1987) 

The effect of energy dissipation on the rate of formation of nucleating regions of a stable phase in a 
metastable liquid is analyzed. At temperatures for which the phase transition occurs by means of 
macroscopic quantum tunneling the decay probability depends not only on thermodynamic 
properties but also kinetic characteristics of the system. A new characteristic temperature T, 
appears on the temperature dependence of the decay probability when the mean free path of the 
excitations, I (  T), becomes equal to the size of a critical nucleating region. At T, there is a 
transition from one temperature dependence, corresponding to energy dissipation in a regime of 
hydrodynamic viscous flow, to another temperature dependence, in which case the dissipation 
occurs under Knudsen conditions in the gas of excitations. 

1. INTRODUCTION 

Much interest has recently been attracted to the analy- 
sis of the kinetics of phase transitions at low temperatures, 
where quantum-mechanical effects can be seen on a macro- 
scopic scale.' The transition of a metastable phase into a 
stable phase occurs through the formation of nuclei of the 
new phase. At high temperatures the mechanism for the for- 
mation of these nucleating regions (we will say simply "nu- 
clei") of the stable phase involves thermal fluctuations. At 
sufficiently low temperatures, the mechansim instead in- 
volves quantum-mechanical fluctuations, which correspond 
to tunneling through a barrier. Such quantum-mechanical 
tunneling through a barrier is conveniently described by an 
approach based on a transformation to an imaginary time 
and the derivation of solutions with a finite action.'-3 The 
approach developed in Ref. 1 has been used widely to analyze 
specific systems: the solidification of the isotopes 3He and 
4He (Ref. 4), the kinetics of the stratification of liquid 3He- 
4He ~olutions,~ the probability for nucleation of the B phase 
in the A phase of superfluid 3He (Ref. 6 ) ,  the stability of 
supercooled liquid hydrogen7 (H,), the process by which 
quantum crystals of helium acquire fa~et ing,~ and the kinet- 
ics of the formation of molecular nuclei in metastable metal- 
lic hyd r~gen .~  

The analysis of the quantum kinetics of phase transi- 
tions which was carried out in Ref. 1 and also that in Refs. 2- 
9 were based on the assumption that no dissipative processes 
of any sort occur in the medium. As has recently become 
clear, however, dissipative processes strongly influence the 
probability for the decay of a metastable state and reduce the 
decay rate at zero temperature." In addition, there is a sharp 
change in the temperature dependence of the decay probabil- 
ity." In the present paper we analyze the effect of the dissi- 
pative processes which occur in a medium on the quantum 
kinetics of phase transitions at low temperatures. 

In a macroscopic description of the dynamics of a nu- 
cleus of a new phase, one usually distinguishes several mac- 
roscopic parameters: the density, the size, etc. That ap- 
proach corresponds to the assumption that all of the other 
(unimportant) parameters are related in an unambiguous 

way to the macroscopic parameters which have been identi- 
fied. In other words, the times involved in the relaxation to 
an incomplete equilibrium, by which we mean an equilibri- 
um in terms of only the unimportant parameters or fixed 
macroscopic variables, are assumed to be much shorter than 
the times involved in the relaxation of the equilibrium values 
of the macroscopic parameters which are used to describe 
the nucleus and its surroundings. In this type of adiabatic 
"fine tuning" of all of the unimportant parameters, the dy- 
namics in the medium is reversible, i.e., there is no dissipa- 
tion. 

Accordingly, any process which occurs in a medium is 
reversible only if it occurs at an infinitely low rate, so that the 
medium, manages to reach equilibrium at any instant. The 
growth of a nucleus which perturbs the medium is assumed 
to occur at a low but finite rate, so that the overall system is 
not in thermodynamic equilibrium at each instant. Conse- 
quently, those processes which lead to an equilibrium and 
whose relaxation times are much longer than the time scale 
for the growth of a nucleus render the motion irreversible, 
i.e., lead to dissipation of the total energy of the nucleus. 

Two types of processes cause energy dissipation. The 
first is heat conduction, which arises if there are gradients in 
the various parts of a medium. The second is viscosity (inter- 
nal friction), which is manifested in the appearance of irre- 
versible transport of momentum from regions with a rela- 
tively high velocity into regions with a relatively low 
velocity. In the present paper we are concerned only with the 
dissipative processes of this second kind. 

The formation and growth of a nucleus of a new phase 
in a viscous medium are accompanied by a dissipation of the 
total energy of the nucleus, i.e., by a transfer of its energy to 
other degrees of freedom. Such a motion is described by add- 
ing to the ordinary potential forces some friction forces 
which depend linearly on the growth rate of a nucleus and 
which oppose its growth. The coefficient of friction depends 
on the dimensions of the nucleus. The effect of energy dissi- 
pation on the probability for the formation of a critical-size 
nucleus by tunneling will be taken into account here by the 
approach developed in Refs. 10 and 1 1. In this approach, the 
description of the energy dissipation reduces to finding an 
action which is nonlocal in terms of an imaginary time. 
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2. TUNNELING-ACTIVATION FORMATION OF NUCLEATING 
REGIONS IN A NORMAL LIQUID 

We assume that a metastable phase of density p is a 
normal quantum liquid, in which a solid nucleus of a new 
phase, of density p + Ap, forms. For example, we might be 
considering the solidification of 3He under pressure. We as- 
sume that the liquid and solid phases are quite close to a 
phase equilibrium and that the critical-size nucleus of the 
new phase is a macroscopic formation, containing a large 
number of particles. The appearance of a nucleus of the new 
phase with small dimensions is unfavorable from the energy 
standpoint, since the surface energy which arises for the in- 
terface of the new metastable phase exceeds the difference 
between the chemical potentials of the metastable and stable 
phases. 

We assume for simplicity that the thickness of the tran- 
sition layer between the phases is small in comparison with 
the size of the nucleus. The potential energy U(R) of a 
spherical fluctuation of the new phase, of radius R, is then 
given by 

Here o is the surface tension between the phases, and R, is 
the critical size of a nucleus, which is found from the condi- 
tion U ( R ,  ) = 0. The critical size R, is inversely proportion- 
al to the difference between the chemical potentials of the 
two phases; i.e., it is a measure of the deviation of the system 
from equilibrium. 

We will also ignore the compressibility of the liquid, 
since in the case of large nuclei the velocity of the boundary 
is much lower than the velocity of sound, and incorporating 
compressibility would correspond to incorporating the 
small contribution - ( k  / c ) ~ ,  where c is the sound velocity. 
The kinetic energy of a nucleus, expressed in terms of the 
radius of the nucleus, R ( t ) ,  and the velocity of its boundary, 
R ( t ) ,  is then given by the familiar expression' 

The instantaneous velocity field v(r) ,  which is governed ex- 
clusively by the continuity equation, is given in this case by 
the expression 

I 0, r t R  ( t )  ' 

It can be seen from ( 3 )  that the growth of the nucleus is 
accompanied by a macroscopic motion v(r)  of the flow of 
the metastable liquid, which has a nonuniform velocity. This 
means that different regions of a liquid are moving at differ- 
ent velocities, and some regions of the liquid are moving with 
respect to others. Correspondingly, dissipative processes oc- 
cur in the liquid as it relaxes to a complete thermodynamic 
equilibrium. These dissipative processes stem from the irre- 
versible viscous transport of momentum from regions with a 
relatively high velocity to regions with a relatively low veloc- 
ity. 

In the absence of dissipation in the medium around the 
neucleus, the growth of a nucleus is described by the equa- 
tion of motion 

where L is the Lagrangian of our system, 

L (R, R )  =M (R)EIZ/2-U(R) . 

The potential energy U(R ) is determined by ( 1 ) . 
Because of the viscosity (internal friction) in the meta- 

stable region around the nucleus, the medium has a drag, 
which tends to slow the growth of the nucleus. The energy of 
the nucleus is dissipated in the process: 

The dynamics of the development of a nucleus is described 
by adding to the right side of the equation of motion (4) an 
additional "dissipative" drag force F, which is linear in the 
growth rate and which opposes the growth of the nucleus: 

To determine how the coefficient of friction p (R ) de- 
pends on the radius of the nucleus, R, we need to determine 
the energy dissipation of the nucleus per unit time. We as- 
sume that the viscosity coefficient of the liquid phase around 
a solid nucleus is p ,  and depends on the temperature. We 
will not need the second viscosity coefficient c, since the 
metastable phase is assumed to be incompressible, so we 
have div v = 0. In general, the coefficient of friction p (R ) is 
described by 

The dimensionless function f ( x )  is the ratio of the radius of 
the nucleus to the mean free path of the excitations in the 
metastable phase, I (  T) . The number a is of order unity and 
depends on the nature of the excitations in the metastable 
phase and their interaction with the surface of the stable 
phase. Since 1 increases rapidly with Tat  low temperatures, 
as the temperature is varied there may be a transition from 
one regime in (6) to another, from a hydrodynamic regime 
with I(T) <R at a higher temperature T to a Knudsen re- 
gime with I (  T) % R at a lower T. 

The methods used to calculate the coefficient of friction 
p ( R )  in these two limiting cases are quite different. In the 
hydrodynamic limit, where the nucleus size R is much 
greater than the mean free path l (T)  (of the excitations in 
the liquid), we can use the Navier-Stokes equation for an 
incompressible liquid to find the energy dissipation. The rate 
of energy dissipation is then given by 

In this case the drag force Fis analogus to the Stokes formula 
for a sphere. 

In the opposite, Knudsen, limit, where the size of the 
nucleus is much smaller than the mean free path I(T), and 
the hydrodynamic equations must be abandoned, the energy 
dissipation is determined with the help of a distribution 
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function for the excitations in the medium. It is proportional 
to the surface area of the nucleus: 

In the case the drag force is no longer dependent on the mean 
free path I (  T), since the viscosity has the behavior 7 - I (  T )  . 
From (7) and (8)  we find the form of the function p (R)  in 
(6).  

We turn now to a quantum-mechanical description of 
the system. We take the approach pointed out in Refs. 10 and 
11 to find the probability for the decay of a metastable state 
in a system in which there is energy dissipation. The prob- 
ability for the formation of a nucleus of a new phase is then 
given to within exponential accuracy by the expression 

where A is the extreme value of the effective action SeR, 
specified in terms of an imaginary time: 

with the periodic boundary conditions R ( - P/2)  = R (P / 
2). Here p= T - ' is the reciprocal temperature. The first 
two terms in (10) are the kinetic and potential energies of 
the system. They are determined unambiguously by the cor- 
responding classical quantities, (2 1, and ( 1 ). The third term 
arises from the interaction of the collective variable R (7) 
with excitations in the system, which lead in the classical 
limit to the dissipative term (5) .  In the limit in which the 
interaction between the coordinate R and these variables is 
weak, D ( r )  is the two-particle correlation function of these 
excitations." The function D ( r )  is an even periodic function 
with a period of 1/T: 

D ( z )  = T D ( a )  an=2nnT 

The function D(T) is known1' to characterize the linear re- 
sponse ofthe system to an external agent. It can be written as 
the sum of two terms, one regular and one anomalous: 

The regular term D,, (w, ) characterizes the dynamics of 
the system and can be expanded in squares of the Matsubara 
frequencies: - 

The quantities Do and D, in ( 12) describe the renormaliza- 
tion of the potential and the mass; they have already been 
incorporated in the first two terms of the effective action SeE 
in ( 10). The quantities DZk with k>2 in ( 12) are unimpor- 
tant, since each term in the series is smaller than the preced- 
ing term by a factor of order (R /c)', and the term with D, in 
(R /c)' is already smaller than the term with the kinetic en- 
ergy of the system. 

The anomalous term D,, (w, ) in ( 1 1 ) characterizes 
the damping in the system1' and contains I w, 1 in addition to 
w: in its expansion. In the limit (R /c)' < 1 the leading term 
in the expansion Dan (w ,  ) is 

where 7 is the viscosity of the system.'091' This situation 
corresponds in the T representation to 

D ,  ( z )  =-qnT2 sin-' (nTr ) .  

In the limit of low velocities, R <c, there is accordingly 
an unambiguous correspondence between the classical prob- 
lem with dissipation, described by a Lagrangian L and an 
energy dissipation rate E as in ( 5 ) ,  and the quantum-me- 
chanical problem, described by an effective action 

812 

The quantities y enter the nonlocal term as a difference 
between squares, since we have 

Equation ( 15) follows from the circumstance that Dl (w, ) 
in ( 13) vanishes at zero Matsubara frequency. The quantity 
y(R ) is determined by the classical mobility p (R ) in accor- 
dance with 

p ( R )  =q (dyldR)'. (16) 

Correspondingly, the functional dependence y (R ) is nonlin- 
ear in the Knudsen and hydrodynamic limits and is given by 

Expressions (17) hold in the case of nucleation in a 
three-dimensional space. In the general case of a d-dimen- 
sional space, expression (6)  for the mobility would be re- 
placed by 

pd ( K )  =2 ( d -  1 )  Sdq ( ApIp) 'Rdm2fd( R/1), (6') 

which leads to the following expressions for the coefficient y 
in the two limiting cases: 

2 [ 2  ( d - 1 )  Sdad] '" ( ( Ap 1 / p )  (d-kl)  -'R'd+'"21-", R<I 
y.={ 

2[2(d-l)Sd] " ( ( A p  l / p )  d-'Rd/', RBI ' 

(17') 
Here S, is the surface area of a d-dimensional sphere of unit 
radius. The mass in the d-dimensional space is described by 

Expressions ( 6'), ( 17'), and ( 2') can be used (for example) 
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at d = 2 to analyze dissipation during the faceting of quan- 
tum  crystal^.^ In this case we would have 

where a is the interatomic distance. 

3. CASES OF WEAK AND STRONG DISSIPATION 

In the absence of viscosity (7 = O), the effective action 
(14) reduces completely to the case of the dissipationless 
kinetics of thc phase transitions which were studied in Ref. 1. 
It can be seen from ( 14) that dissipative processes associated 
with the viscosity, or internal friction, (first) reduce the 
probability for the tunneling formation of a nucleus by an 
amount equal to the argument of the exponential function 
-p( R, )R f , and (second) cause the argument (A) of the 
exponential function for the transition probability (9)  to be- 
come dependent on the temperature, in contrast with the 
situation in the dissipationless kinetics, where the argument 
A is completely independent of the temperature in the quan- 
tum-mechanical regime.' 

As in the absence of dissipation, there are in principle 
two types of trajectories which lead to an extremum of the 
effective action S,, [R ( T )  ] in ( 14). The first trajectory is a 
classical trajectory which does not depend on the time T and 
which passes through a maximum of the potential energy 
U(R), given in (1) :  

This trajectory causes the vanishing of both kinetic energy 
(.2), which is proportional to the square of the derivative 
R (7) , and the dissipative term in the effective action ( 14). It 
leads to a classical activation regime with an argument for 
the exponential function which does not depend on the pro- 
cesses which occur in the medium, being governed exclusive- 
ly by thermal fluctuations: 

A ( T )  =U,IT, Uo='l,,4nuRC2, ( 1 9 )  

where Uo is the height of the barrier formed by the potential 
( 1 ) . The second trajectory depends explicitly on the time, 
and in an analysis of the motion along it it is convenient to 
distinguish between the two characteristic cases of weak and 
strong dissipation. In the case of weak dissipation, the nonlo- 
cal term in ( 14), which describes dissipation, can be treated 
as a perturbation. As the trajectory we can take the extremal 
trajectory which is obtained in the dissipationless regime 
and which is found from the equation 

This approach leads to the following law of motion along the 
trajectory: 

It(x)I n x -- - - - arctg [(-) "'1 + [ z ( i - r )  l L ,  
Tc 2 1-2 

(20) 

Here x = R /R,, and T, = ( IApl/p) (pR 2/2~7)"~. Substi- 
tuting R (T)  according to (20) into ( 14), we find an extre- 
ma1 action A ( T), which can be written in the form 

A ( T )  =Ao+A,(T).  (21) 

Here A, is the value which is found if there is no dissipation 
in the medium': 

The quantity A ,  ( T) is determined by the dissipative term in 
the effective action ( 14) : 

(23) 
The transition from the quantum-mechanical regime (21) 
to the activation regime ( 19) occurs at the temperature To 
determined by the relation 

At this point, the argument of the exponential function in the 
quantum-mechanical regime becomes equal to the argument 
of the activation exponential function. The temperature To 
of the transition to the activation regime is lower than that in 
the dissipationless kinetics by an amount ATo on the order of 
A, ( To)/Ao; the slope of the A ( T) curve changes at To. 

In contrast with problems with a constant mass, in 
which the time of the motion along the trajectory is infi- 
nite,'' in the problem at hand the extremal trajectory has a 
finite temporal dimension of TT,. Since we have 
Z-T~ To = # < 1 according to (20) and (24), expression 
(23) as a function of the temperature does not depend on the 
integration limits; i.e., we can write 

In the low-temperature limit ~ T T ,  < 1 ( T 4  To), the kernel 
of the integral in (25) can be expanded: 

The last integral can be evaluated easily; it is 

We introduce the temperature TI, the temperature at which 
the mean free path / (T I )  is equal to R,. In the Knudsen 
limit, corresponding to temperatures T 4  T, or I (  T) % R, , 
we then have 

where 
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Here 6 = T/T, is the dimensionless time on the trajectory 
(20). The quantity Jk is a constant, which depends on none 
of the physical parameters except the exponent k in expres- 
sion ( 17) for y (R ) . In the Knudsen case we have k = 2 and 
J,  = 1.49 . . . . In the opposite (hydrodynamic) limit, with 
T) T, or I( T) R, , we have 

We turn now to the case of strong dissipation. In this 
limit the tunneling is determined entirely by the viscous 
term, and the kinetic energy (2)  should be ignored in the 
effective action. The extremal trajectory is found from the 
effective action 

812 6/2 

with the periodic boundary conditions R ( - P/2)  = R (P/ 
2). The argument of the exponential function in (9), A ( T), 
reduces in both the hydrodynamic and Knudsen regimes to a 
universal function which depends on only a single variable, 
the temperature in reduced units: 

This universal function is related in the following way to the 
nature of the regime in ( 17) : 

wherex, is the extremal trajectory of functional (30), and k 
is the exponent in the functional dependence y(R ) - Rk . 
The reduced temperature t used in (29) is also determined 
by the particular regime in (17). It is proportional to the 
ratio of the friction to the height of the potential barrier: 

Figure 1 showss, ( t )  as a function of the parameter t for 
the Knudsen regime (k  = 2) and the hydrodynamic regime 
( k  = 3;/2); it is also shown for the case of linear dissipation 

FIG. 1 .  The reduced effective actions, versus the dimensionless recipro- 
cal temperature l / t .  The temperature t = 4(3/2) k -  * /rrkZ is the point of 
an absolute instability of the classical trajectory. 

(k  = 1 ), in which case an exact solution has been found." 
At low temperatures ( T < T, ) there is a Knudsen regime, 
since the mean free path I increases without bound as T- 0. 
At temperatures T 2  T,, the regime changes to hydrody- 
namic. This change occurs if the temperature of the transi- 
tion to the classical regime satisfies To k T,. If, on the other 
hand, we have To 5 T, , then the Knudsen regime persists to 
the temperature To. 

In the strong-dissipation regime, the temperature To 
found by equating the argument of the quantum-mechanical 
exponential function in (29), A ( T) , to the argument on the 
classical trajectory (19), is found from the solution of the 
equation 

The index here is k = 2 if To < T,. For To > T, we have 
k = 3/2. At large values of t > to, the classical trajectory 
( 18) is extremal. At t = to (this value depends on the index 
k) ,  there is a transition to the quantum-mechanical trajec- 
tory. To study the stability of classical trajectory (18) with 
respect to small fluctuations, we expand the effective action 
S,, (R (T)  ) around the classical trajectory R,: 

R (a) =Ro+ x (t). (33) 

We retain terms of up to fourth order in x ( r )  : 

The expansion for U(R) does not contain a term with the 
first derivative, since the trajectory Ro passes through a max- 
imum of the potential. For the same reason, we have 
U" (R,) < 0. We switch to the Fourier representation: 

( a )  = T x ~ - ~ ,  x =  o.=2n Tn. (34) 

We can then write 
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At high temperatures all the coefficients of the quadratic 
terms, a, (nZO), are positive. The only exception is 
a, = - I U l  I < 0. As has been shown el~ewhere,~ however, 
a negative value ofa, does not imply that the trajectory R (7) 

in ( 18) is unstable with respect to fluctuations x,. The fact is 
that we can assume at a purely formal level that the coeffi- 
cient C,, = UfV'/12 is positive in the expansion (35). The 
term C d ;  > 0 then stabilizes the trajectory, since at large 
values of x, we have a,+: + C,x: > 0. To calculate the 
fluctuational contribution from x, it is sufficient to displace 
the contour of the integration overx, into the complex plane, 
onto the imaginary axis. When we then let C,, go to zero, we 
find that the result is totally independent of Coo, and is deter- 
mined by the analytic continuation of the quantities to the 
imaginary axis. 

As the temperature is lowered, the coefficients a,, 
vanish at T = TI: 

Below the temperature TI, the classical trajectory (18) be- 
comes absolutely unstable with respect to fluctuations of the 
modex * , . There are two ways to make a transition from the 
classical trajectory to the quantum-mechanical regime, con- 
tinuous and discontinuous. The nature of the transition de- 
pends on the sign of the coefficient of x4, , in expression ( 3 5 ) 
for the effective action S,,. If this coefficient is positive, the 
transition will be continuous. If the coefficient is negative, 
the transition to the quantum-mechanical regime is discon- 
tinuous. To find the coefficient of x z  , at the point T = TI 
we need to consider, along with the fluctuations of x, , , 
fluctuations of the modes x, andx . , . All of the other modes 
x, with In 1 >3 contribute in the limit T+ TI to terms with 
powers higher than Jx, , 14. Near T = T,, the effective ac- 
tion (35) thus takes the form 

A minimization of (37) with respect to x, and x T 2  leads to 
an effective action which depends only on the mode x * , : 

IfD < 0, the action is absolutely unstable below the tempera- 
ture T = TI, and the transition occurs discontinuously, with 
finite (nonzero) components x , , . For D > 0, the action un- 
dergoes a continuous change from the value x, = 0 to the 
value lx,l = - aI/(2D) > 0. 

The nature of the transition can be seen easily in two 
limiting cases. In the dissipationless case, with 
D = & T 3  U;/R, < 0, the transition from the classical acti- 
vation trajectory to the quantum-mechanical trajectory oc- 
curs discontinuously. In the case of strong dissipation we 
haveD= JT3U;(k2 - d3)/R i, whereki~theex~onentin 
the functional dependence y(R ) - R k  in ( 17). In the hydro- 
dynamic limit we have k = 3/2 and D >  0. The transition 
thus occurs continuously. In the Knudsen case we have 
k = 2 and D < 0, and the transition is discontinuous. In this 
case there is a change in the slope of the s, ( t )  curve (Fig. 1 ). 
The exponent k, = 3'" is a critical value. For k < k,, the 
transition from the classical trajectory to the quantum-me- 

chanical trajectory is continuous. Fork > k,, thes, ( t )  curve 
undergoes a change in slope, and the transition occurs not at 
the point t,, determined by T, = I U; 1/2rp0 in (36) but 
slightly earlier, at the point to > t ,  [see (32) 1. Figure 1 shows 
the curve ~ : ' ~ ( t )  which separates these two regions of the 
parameter k. 

In the hydrodynamic regime we have A = U,/T above 
To, and below it we have 

i.e., the derivative aA /dTis continuous, but, as in the case of 
a linear dissipation,'' there is a discontinuity in the second 
derivative, d 2A /aT 2. As the temperature is lowered, A ( T) 
increases, along with the viscosity of the medium. 

4. OVERALL PICTURE OF NUCLEATION IN A SYSTEM WITH 
DISSIPATION; POSSIBILITY OF OBSERVING IT 
EXPERIMENTALLY 

Figure 2 shows the typical behavior of the formation 
energy of a stable-phase nucleus of radius R in a homogen- 
eous metastable system. The behavior U(R ) at large radii is 
proportional to the volume of the nucleus and is related to 
the extent to which the stable phase is preferred energetically 
to the metastable phase, because of the difference in the 
chemical potentials of the two phases. At small values of R, 
the value of U(R) is determined by the surface tension a 
which arises at the interface between the two phases. The 
competition between these two components determines the 
basic parameters of the potential energy: the barrier height 
U, and the size of a critical nucleus, R,. At high tempera- 
tures, the probability for a transition of the system is propor- 
tional to the activation exponential function exp( - U,/T), 
which stems from the finite probability for the system to be 
in an excited level with an energy U, at a high temperature. 
As the temperature is lowered, the argument of this expo- 
nential function, U,/T increases rapidly, and at To another 
process becomes predominant: the tunneling of a nucleus 
from a zero energy level through the barrier. The decay of 
the metastable system as a result of the quantum-mechanical 
motion of the nucleus through the barrier differs substantial- 
ly from the activation decay. In this case the probability for 
the decay is determined not only by the potential energy but 
also by the kinetic energy. The argument of the exponential 
function in this case is equal to the Euclidean action 
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Equating S, to the arugment of the activation exponential 
function, we find the characteristic temperature To for a 
transition from the activation regime to the quantum-me- 
chanical regime. 

As the nucleus grows, the energy of its interaction with 
its surroundings comes into play, in addition to its potential 
energy and its kinetic energy. The growth of the nucleus 
causes a nonequilibrium perturbation of the medium. The 
relaxation of the medium to a homogeneous equilibrium 
state is accompanied by a dissipation of the energy of the 
nucleus. This energy dissipation vanishes at a zero growth 
velocity of the nucleus; along with the kinetic energy, it char- 
acterizes the motion of the nucleus through the barrier. Spe- 
cifically, it retards the transition of the nucleus, i.e., effec- 
tively increases the mass of the nucleus. Despite this 
analogy, the dissipation of energy is fundamentally different 
from the kinetic energy. The tunneling violates conservation 
of energy, which is transferred to other degreees of freedom, 
associated with the medium. 

While the probability for a transition in the case of mac- 
roscopic quantum-mechanical tunneling in the absence of 
dissipation is essentially independent of the temperature, 
tunneling with dissipation depends strongly on the tempera- 
ture. The reason is that, in contrast with the thermodynamic 
properties (the density, the surface tension, and the differ- 
ence betweeen chemical potentials), which characterize the 
decay in the dissipationless case and which depend only 
weakly on the temperature as T- 0, the dissipation of energy 
depends on kinetic properties, in particular, the mean free 
path of the excitations, I( T), which depends strongly on the 
temperature and which diverges as T-0. For Fermi excita- 
tions, whose number falls off in proportion to T, we have 
I( T) - T -2 .  For the Bose branches of excitations, the tem- 
perature dependence of the mean free path is much stronger. 
Depending on the particular scattering mechanism, one of 
several temperature dependences may h ~ l d ' ~ , ' ~ :  a power law 
I( T) - T- " with a power n = 5 or 9, or an exponential law 
I( T) - eAIT ( A  - w, , where w, is the Debye frequency). 

As long as I( T) is not too large (I  < R, ), we can take the 
hydrodynamic approach, and the viscosity12 7-pvl in- 
creases with increasing mean free path. As a result, the basic 
temperature dependence in the argument of the exponential 
function stems from the dependence r ]  ( T) . In addition to 
this dependence on T, there is another one, which stems 
from the particular nature of the extremal trajectory R (7): 

expressions (27) and (29) and Fig. 1 (k  = 3/2), respective- 
ly, in the cases of weak and strong dissipation. At a certain 
temperature T, (R, ) the mean free path I( T )  becomes equal 
to R, , and in the limit I( T) R, ) the argument of the expo- 
nential function acquires a quantity ~ / 1  -pv, which does not 
depend on the mean free path. For various types of excita- 
tions, this quantity has very different temperature depen- 
dences. For Fermi excitations, pv is essentially independent 
of the temperature. For excitations of the Bose type, pv de- 
pends strongly on the temperature and varies with the par- 
ticular type of dispersion of the excitations. For phonons, for 
example, we find pv- T4/c2. When excitations of several 
types are involved, pv has a complicated temperature depen- 
dence. The nature of the extremal trajectory also contributes 
an additional temperature dependence: expressions (26) 
and (29) and Fig. 1 (k  = 2), respectively, in the cases of 
weak and strong dissipation. Consequently, when dissipa- 

FIG. 3. Phase diagrams of nucleation regimes in the plane of the tempera- 
ture and the critical size. I-Activation regimes; II-quantum-mechani- 
cal, weakly dissipative hydrodynamic limit; 111-quantum-mechanical, 
weakly dissipative Knudsen regime; IV-quantum-mechanical Knudsen 
regime. 

tion is present the argument of the exponential function will 
have a significant temperature dependence, because of the 
dependence of r ]  or r]/1-p/v on T. In this case there exists a 
characteristic temperature T, (at which I = R, ), at which a 
transition occurs from one temperature dependence (which 
holds in the hydrodynamic regime) to another one (which 
holds in the Knudsen regime). Figure 3 shows a typical 
phase diagram of the various decay regimes. 

The primary difficulty which arises in planning an ex- 
periment to study the kinetics of the decay of a metastable 
system is the very sharp dependence of the decay probability 
on the size of the critical nucleus, R, . Specifically, the prob- 
ability for nucleation contains, in addition to an exponential 
function, a large factor which multiplies the exponential 
function: 

( Vis the volume of the system). For a system with N- lo2' 
particles, for w, - 1013 s-', and for R, -a, we would have 
W,-ego s-'. If the typical observtion times are to be on the 
order of a second or an hour, the argument of the exponential 
function would have to be Az80.  A deviation by no more 
than 10% from this value ofA would change the characteris- 
tic observation time by four orders of magnitude. Here we 
need to note that the value of A depends nonlinearly on R, : 
A - R ," n = 2 - 4). As a result, the tolerable variation in R, 
would be no more than 2-3%. A change in R, by, say, a 
factor of 1.5 would lead to a catastrophic change in the ob- 
servation time, in either direction. One way out of this diffi- 
culty might be a dynamic (time-dependent) form of the ex- 
periment. By gradually increasing the supercooling of the 
system, we could go from relatively large values of R, to 
relatively small values, and at the instant at which the argu- 
ment A becomes comparable to the factor multiplying the 
exponential function there would be a transition. In this case 
we would naturally have R, )a, and we would remain in the 
region within which the theory is applicable at all times. We 
wish to stress the problem which we have outlined here is not 
peculiar to quantum-mechanical tunneling. It also occurs in 
a classical situation. A 10% change in the temperature in the 
activation regime changes the decay probability by four or- 
ders of magnitude. Another possibility for overcoming this 
difficulty is to use microscopic particles with N- 101° atoms 
to analyze the nucleation process. This approach would soft- 
en these functional dependences greatly. The same com- 
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ments apply to a study of phase transitions on a surface, since 
in this case the number of nucleation centers is reduced from 
N to N * ' ~ .  

Finally, we note that dissipation not only has a strong 
effect on the coefficient of the exponential function during 
nucleation but also has a fundamental effect on the coeffi- 
cient of the exponential function. In the absence of dissipa- 
tion, this coefficient contains the characteristic oscillation 
frequency o, in the potential U(R) (Fig. 2) .  When there is a 
strong dissipation, w, is replaced by the quantity - w : / v ,  
where 11 is a measure of the damping in the system. While a, 
does not depend on the temperature, ?,I does, and strongly, 
because of I( T ) .  Accordingly, even in the region of the acti- 
vation exponential function there will be a change in the 
temperature dependence of the nucleation probability be- 
cause of the coefficient of the exponential function. 

We wish to thank Yu. Kagan for many discussions of 
questions pertaining to the formulation of this problem. We 
are deeply indebted to K. A. Kikoin, A. N. Kozlov, L. A. 
Maksimov, N. V. Prokof 'ev, and the participants of a se- 
minar on macroscopic quantum-mechanical tunneling led 
by A. R. Larkin for their interest in this study and for discus- 
sion. 

APPENDIX 

Substituting velocity distribution (3)  into the energy- 
dissipation expression14 

q d v .  dv, 8=--j('+-) d S r ,  

2 ax, axi  

we find ( 7 ) .  
As the mean free path I increases, and it becomes com- 

parable to the characteristics radius of the nucleus, R,, the 
hydrodynamic equations break down, and we are forced to 
solve the kinetic equation under certain boundary condi- 
tions which characterize the interaction of the gas of excita- 
tions with the surface. In the Knudsen limit, in which colli- 
sions are rare (I) R ,  ), the problem simplifies substantially, 
since the excitations which have collided with the surface 
relax in the medium itself, in a process independent of the 
presence of the nucleus. In this case the rate of energy dissi- 
pation can be written in the form E = $ F u d j  The integra- 
tion here is over the surface of the nucleus, and Fis  the force 
associated with the motion of the gas of excitations in the 
metastable liquid with respect to the nucleus. This force is 
determined by the momentum flux which is transferred from 

the gas of excitations to the nucleus, and it is proportional to 
the magnitude of the velocity: Fi = 8, v k .  The coefficient 
8, depends only on the properties of the gas of excitations 
and the nature of the reflections of the excitations from the 
surface of the nucleus. Under the assumption that the excita- 
tions scattered by the solid wall have time to reach a com- 
plete thermodynamic equilibrium with the wall, which is 
moving at a velocity R, we find 8, = p*vF by analogy 
with Ref. 13 (8, is the normal component of the tensor Oik ). 
For Fermi excitations we would have p* = pm*/m, where 
m* is the effective mass, and UF is the Fermi velocity. For 
photon branches of the spectrum, the relation for 8, contin- 
ues to hold, butp* becomes p, , the density of phonon exci- 
tations, and uF becomes the sound velocity c. Substituting 
the velocity distribution (3)  with r = R, into these expres- 
sions, we find expression (8 )  for the energy dissipation, 
where the coefficient a is expressed in terms of the normal 
component of the tensor 8, alone, and it depends only on 
the properties of the gas of excitations and the accommoda- 
tion coefficient, which reflects the extent to which the colli- 
sions of excitations with the nucleus are inelastic. The dissi- 
pation rate does not depend on the mean free path I; it is 
proportional to the quantity (Ap/p)2. 
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