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Singularities in the characteristics (the potential p, the field strength E, and the electric 
displacement D)  of the quasistatic electric field associated with elastic waves propagating near 
"acoustic axes" are analyzed. The "acoustic axes" are the directions in which the phase velocities 
of isonormal waves are degenerate. When the wave normal m = m, + Am ( /Am1 1 ) is scanned 
around the direction of the acoustic axis m,, the elastic displacement vectors of the degenerate 
waves, ui (m) ( i  = 1,2), rotate in the plane orthogonal to the vector u,(m,). Correspondingly, 
the quantities IE, (m) / and pi (m) vary from zero to certain nonzero values (by no means small, 
in general) when m is scanned in this way over an infinitely small contour around the degeneracy 
point m,. Along the direction of the acoustic axis, m,, the same thing happens when an arbitrarily 
oriented vector ui (m,) is rotated in the degeneracy plane. In contrast with the field Ei (m) Ilm, 
which has an amplitude singularity but not an orientational singularity near m,, the electric 
displacement Di (m) l m  forms a plane vector field with a singular point m, in the degeneracy 
region. An expression is derived for calculating the rotation of this field (the index of the singular 
point). It is shown that in the case Di (m,) #O the indices of the vector fields Di (m) and ui (m) at 
the point m, are equal in magnitude but may differ in sign. At the same time, in the case mollg, for 
example, with Di (m,) = 0, the rotation of the field Di (m) around m, turns out to be twice the 
rotation of the field ui (m) and opposite in sign. General expressions are derived for determining 
the limits of the absolute value I Di (m,) 1 on a contour I Am I = const ( 1 [or form = m, when the 
vector ui (m,) is rotated in the degeneracy plane]. 

INTRODUCTION 

As an elastic wave propagates through a piezoelectric, 
it is known to generate a quasistatic electric wave field, char- 
acterized by a potential p, a field strength E, and an electric 
displacement D. These characteristics depend on the orien- 
tation of the elastic displacement vector u, which in turn 
exhibits singular behavior for wave normals m which lie near 
acoustic axes. A detailed study of the topology of the vector 
field u(m) near the directions of acoustic axes was carried 
out in Refs. 1 and 2. In the present paper we extend the 
results of Refs. 1 and 2 to discuss the singularities in the 
characteristics p (m) ,  E(m), D(m) of the accompanying 
electrostatic wave near acoustic axes in piezoelectrics. 

INITIAL RELATIONS 

A coupled acoustic-electric wave in a crystal lacking a 
center of symmetry is described in the quasistatic approxi- 
mation by the system of equations (Ref. 3, for example) 

where the subscript specifies a differentiation (i-6' /axi ); p 
is the density; and 6, Z, i., and 2 are respectively the mechani- 
cal stress tensor, the piezoelectric-constant tensor, the elas- 

Here we are using the notation e = mZm, E = m&m. A dot 
between vectors means the scalar product. The characteris- 
tics p a ,  E, , and D, of the accompanying quasistatic elec- 
tric-field wave are given by 

cpa=qaO COS Xa, Ea=EaO sin Xa, Da=DaO sin x,, (4)  

where 
cpa0=4nCa (eAa) Is, Eao=kaqaom, ( 5  

Da0=4nCakaBAa, B (m) =ern-^Em.e/e; ( 6 )  

i.e., they are related in a linear way to the vector amplitude 
C, A, of the corresponding elastic wave. 

Let us examine the orientational properties of the polar- 
ization vectors near the acoustic axis m, [we assume, for 
example, u,, = vO2 # uO3, v,, = v, (m,) 1. According to ( 3 ), 
at m = m, the polarization of the degenerate elastic wave u 
can be arbitrary in the plane orthogonal to the vector 
A, (m,) r A,,. Setting m = m, + Am, solving ( 3 ), and mak- 
ing use of the small quantity I Am1 ( 1, we find the approxi- 
mate result2 

A,=Ao, cos mi+Ao2 sin @,+Ao~( tiAm), i= l ,  2, (7)  

tic-modulus tensor, and the dielectric tensor. According to 
where A,,, A,, is any pair of unit vectors which form a right- 

( 1 ), in any direction m (m2 = 1 ) three elastic waves can 
handed orthogonal triad with the vector A,,: 

DroDaszate: 
L x u  tg 2@,, 2= (2qAm+AmGAm) /(2~AmfAmPAm), (8)  

ua=CaAa cos xa, ~a=ka(mr-vat), a=i, 2, 3, (2)  ti=2v0, (q"' cos @,+q'" sin @,)I( v ~ ~ ~ - v ~ ~ ~ ) .  
(9) 

with amplitudes C,, mutually orthogonal unit polarization Here and below, the index i = 1, 2 is used for quantities 
vectors A,, and phase velocities v, given by the equation4-' which refer to the characteristics of the wave branches 
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which are degenerate in terms of velocity along an acoustic 
axis. In ( 8) and (9)  we have introduced the following nota- 
tion: 

In a derivative with respect to the components mj, the latter 
are assumed to be independent; i.e.,the condition m2 = 1 is 
ignored. 

It can be seen from ( 7 )  and ( 8 )  that near mo the vectors 
A, have a singular dependence on m. When m = mo + Am is 
scanned around m, in a cone with an infinitesimal vertex 
angle, the vectors A, undergo large rotations. On the other 
hand, the components of the vectors A, LA, along the direc- 
tion A,, remain small (on the order of I Am I ) . Near m,, the 
vectors A, (m) can thus be replaced approximately by their 
projections a,,, (m) ,  onto the plane orthogonal to A,,: 

ai (m) =A01 cos @if Aoz sin mi. (11) 

It is not difficult to show that, according to ( 8 ) ,  we have 
tg@, tg @, = - 1.  Hence @, = @, + a /2  and a,la2 hold. 
The change in the angle ai (m) as the point mo is circum- 
vented on the sphere m2 = 1 along a small contour r deter- 
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FIG. 1 .  The vector polarization field a, (m),  i = 1,2, near isolated acous- 
tic axes m, of various types [top view of the plane orthogonal to 
A,, = A,(m,); the point corresponds to the direction ofm,]. Cases a, b, h, 
and i are degeneracies of the tangency type; c, e--of the conical type; d, f, 
g--ofthe wedge type. The values ofthe index n of the singular point m, are 
as follows. a:n = 1; b:n = - 1; c, d:n = 1/2; e, En = - 1/2; g, h:n = 0, 
y($)+O; i:n = 0, y ( $ )  =O. 

mines the rotation of the polarization fields ( 1 1 ) near an 
isolated degeneracy point m,. The complete change in the 
angle Qi when this contour is traced, expressed in units of 
2a, is called the "PoincarC index" n of a singular point of a 
plane vector field: n = y(2n),  where 
y($)  = [a($) - @(0)]/2a,  and $ is the angle through 
which the vector Am is rotated on contour l?. According to 
Refs. 1 and 2, the only possible values of this index are n = 0, 
+ 1, + 1.  The configuration of the polarization fields near 

an acoustic axis also depends on the geometry of the contact 
of the velocity regions u ,  (m)  <v2 (m),  which is determined 
by the properties of the vectors p, q: conical contact in the 
case pllq, "wedge" contact in the case pllq, and tangency in 
the case p = q = 0 (Ref. 1 ). Figure 1 shows various types of 
singularities of the polarization fields near isolated degener- 
acy points. Incorporating the piezoelectric effect does not 
expand the class of degeneracies of elastic waves in crystals.' 
Except for renormalization of the parameters ( l o ) ,  incor- 
porating the piezoelectric effect does not change the explicit 
form of the equations derived in Ref. 1 for calculating the 
indices n corresponding to degeneracies of various types. 

POTENTIAL AND ELECTRIC-FIELD WAVES NEAR AN 
ACOUSTIC AXIS 

We first consider the properties of a wave of the electric 
potential q7 which arises when a degenerate elastic wave u 
propagates strictly along the acoustic axis m,. We write the 
polarization vector A, with an arbitrary orientation in the 
degeneracy plane, as 

A=Aol cos '$+Aoz sin Y. (12) 

We wish to emphasize that the quantity \I, in ( 12) itself de- 
pends on the choice of the orientation of the vector A, in 
contrast with the angle @, in (7) ,  ( 1 1 ), which is function of 
m [see ( 8 )  ] and which specifies the orientation of the vector 
ai (m).  According to ( 5 ) ,  in the case m,Pm,- e,((A,, we 
have p = 0 and E = 0 for arbitrary A in ( 12). A situation of 
this sort arises, for example, for degeneracy directions which 
coincide with symmetry axes. In this case we have 
e,((A,,~~rn,. We now consider the case of symmetrically ori- 
ented degeneracy directions, for which we have eollAo3. 
Making use of the arbitrariness in the choice of the vector 
A,,lA,,, we choose A,, 1 1  [e,A,,] for convenience. Substitut- 
ing (12) into ( 5 ) ,  we then find 

4xC 
(pO (mo) = - E o LeoZ- (eoAo3) '1 'I2 sin Y. (13) 

h 

For a given form of the matrix A(m,) with degenerate eigen- 
values, the orientation of the vector A,, is determined from 
the known formulas.' 

We now assume that elastic wave ui is propagating 
along the direction m = m, + Am, which is close to an 
acoustic axis. If m, does not coincide with a symmetry axis 
(eo(lAo3), by choosing A,, ( 1  [e,A,,] , as before, we find 

4nCi 4nCi 
rpio (m) = - e 0 a. 1 = ---- Leuz- (e,A,,) I "' sin [Qi (m) I .  

The behavior of the electric potential near such degeneracies 
is therefore determined by the function a ,  (m).  Let us con- 
sider the most typical example of an asymmetrically orient- 
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FIG. 2. Amplitude of the electric potential, q :versus the propa- 
gation direction m = m, + Am of isonormal elastic waves 
( i  = 1 ,  2 )  near asymmetrically oriented acoustic axes m, of the 
conical type. Here $is the angle through which the vector Am is 
rotated around m,, measured from the orientation of Am corre- 

Zz 9 sponding to Q, = 0, i.e., a, )I [e,A,,]. The solid and dashed lines 

i /' refer to the cases n = 1/2, - 1/2, respectively; q, :,, = (4?rC/ 
R' 

E,) [ei  - (A,seo)Zl ' I 2 .  

ed acoustic axis: a zonical degeneracy (n = + 1/2), which 
occurs for a tensor A(m,) of "general positioc and which is 
stable with respect to small perturbations AA (Ref. 1). In 
this case the angle @, takes on all values from zero ton. sign n 
as Am is rotated completely about m, (Fig. 1, c and e); here 
we have a, ( - Am) = Qi (Am) + (7r/2) sign n. We thus 
find the plot of q, P versus the angle ($) through which the 
vector Am is rotated around mo, shown in Fig. 2. 

Near such a degeneracy the amplitude of the electric- 
potential wave q,?(m), like that of the field-strength wave 
Ey(m) = k,q,p(m)m, has a singular behavior. As we let 
m-m, along various paths (i.e., for various orientations 
Am +O, these quantities tend toward different limiting val- 
ues, so that as the wave normal m sweeps around m, in a cone 
of infinitely small vertex angles the amplitudes q, P(m) and 
IEy(m) / vary from zero to nonzero-definitely not small- 
values. The corresponding "amplitude" singularity in the 
vector field EP(m) near m, is shown in Fig. 3a. 

In the case e,llA,,, in particular, for acoustic axes which 
coincide with symmetry axes of the crystal, this singularity 
disappears, since we have 

4nC, 
(m) = - [ (moe^Am+Ame^mo) ai+ I eo I (tiAm) 1, ( 15) 

Eo 

as follows from (5)  and (7 ) ,  and the quantities q,Y(m), 
Ep(m) tend toward zero as Am -0, regardless of the orienta- 
tion of Am, remaining continuous at the degeneracy point m, 
(Fig. 3b). There is of course the possibility of a situation in 
which the linear term will also vanish when q, y(m) is ex- 
panded in powers of Am. For example, in the case mo((8 we 

FIG. 3.  The vector electric fields EP near acoustic axes. A 
single wave branch, i = 1 or 2, is shown. a-asymmetri- 
cally oriented acoustic axis m, of the conical type; b- 
m,)I O O , ~  (the branch corresponding to a quasitransverse 
elastic wave is shown in the case cam, 6mm and to th_e 
purely transverse wave in the case 002, 622); c-mo116. 
For convenience, different scales have been used in draw- 
ing the lengths of the vectors Ey in parts a s .  

have 

4nCl 
(pi0 " - I Am 1 (e,, sin 3$3-e,, cos 3$), 

Esa 

(Fig. 3c). Furthermore, by virtue of the symmetry all the 
terms in this expansion may vanish. For example, we have 
q, p(m) = 0, EP(m) = 0 for any propagation direction m of a 
purely transverse elastic wave in the classes 6mm, UJ m and 
for a quasitransverse wave in the classes 622, CG 2. 

ELECTRIC-DISPLACEMENT WAVE NEAR AN ACOUSTIC 
AXIS 

By virtue of the condition div D = 0, the displacement 
vector D always lies in the plane orthogonal to m, and it 
rotates, according to (6), along with the polarization vector 
A as m is scanned around the acoustic axis m, or in the case 
mllm,. Why are rotations of the vectors D and A coupled? 

Let us consider the vector field A defined in the plane 
orthogonalA to A,, and also the vector field 
Do = 47rCkB(m,)A, defined in the plane orthogonal to m,. 
We use the convention that the directions in which the vec- 
tors A and Do are rotated are determined by looking at the 
rotation plane from the tips of the vectoLs A,, and m,, re- 
spectively. kccording to (6) we kave mB(m) = 0, so that 
9 e  matrix B is degenerate: det B = 0. We assume Rank 
B = 2. It is also natural assume that the vector x is the 
eigenv~tor  of the matrix B which corresponds to zero eigen- 
value: Bx = 0 (not orthogonal to A,,). Indeed, each of the 
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conditions Rank B < 2, xA,, = 0 represent: an additional where x, I( [xA,,] . In this case we have DO(Y 1 = 0 and 
equation for the components of the matrix B. These condi- dp(m) = 0 for A(Y)llx and a, (m))Jx, respectively. 
tions can be satisfied only if the material constants of the The method proposed above for constructing 5nonde- 
crystal satisfy certain special relations, even in the case of generate matrix, through the use of (6) in place of B, is not 
acoustic axes which coincide with high-symmetry directions the only method possible. In particular, we could take the 
of the medium [more on this be1ow;Jhe only exceptional 2 x 2 matrix 
case is the 6 axis, along which we have B(m,) = 01. If any of 
these conditions nevertheless is satisfied by chance, then the Bvv=DOiBAoj, i, j=i, 2, (20) 
vector field Do will degenerate into a straight line. 

The rotation of the plane vector field produced by a 
nondegenerate mapping of the original field can be calculat- 
ed quite easily on the basis oflhe appropriate the or ern^.^ In 
this case the transformatgn B turns out tohbe degenerate. 
Howyer, wezan replace B(m,) by a matrix B ' such tkat we 
have B 'A = B A for any AlA,,, but we also have det B '#O. 
These conditions are satisfied by, for example, the matrix 

A h h 

Indeed, wekave det B ' = A,,Bm, (Ref. 8 ) . The matrix B, 
the dual %f B, is proportional to xm,, as can be shown, so we 
have det B ' # 0 for xA,, # 0. Now using Ref. 9, we can easily 
find a result which we will formulate below separately for the 
cases of propagation directions strictly along the acoustic 
axis m, and in its vicinity. 

A) mJJm,. When the polarization vector of a degenerate 
elastic wave, A(*) [see ( 12) ] is rotated through an angle of 
2n in t k  plane orthogonal to A,,, the vector DO(Y) 
= 4 d k B  (m,)A (Y) also undergoes a complete rotatio%in 

the plane orthogonal to m,, through an angle 2n sign det B ', 
without vanishing in the process: DO(\Y) +O holds for any Y. 

B)m=m,+Am, lAml<l.Wedenotebyn, thePoin- 
car6 index which characterizes the rotation of plane vector 
fields a, (m)lA,, [see ( 11 ) 1 near m,. Discarding terms - IAml, we replace the vectors DP(m) in (6) by the vector 
field 

d: (m) =4nCikiB(m,)ai(m), 
(18) 

which lies in the plane orthogonal to m,. The following as- 
sertion holds: Near an acoustic axis, the plane vector fields 
d,,, (m) lm, do not contain null vectors, and when m is rotat- 
ed around m, their rotation is characterized by the index 

n~=n* sign (let 8'. (19) 

It should be noted that, in contrast with the mutually 
orthogonal vectors A, (m) (a = 1, 2, 3), the three vectors 
D, (m)lm are coplanar and generally nonorthogonal in 
pairs. At the same time, it is easy to see that in the case 
xA,#O the vectors Dl (m), D,(m) are not collinear with any 
m. Consequently, the two vector fields d,(m), d2(m) are 
homotopic with each other; i.e., they correspond to the same 
value of the index n,. We might also note that along an 
acoustic axis or in its vicinity, for orientations of the vectors 
A(Y) or a, (m) parallel to (1 - Ao3.Ao3)x, we have 
Do( Y) JJD! (m,) or dp(m) JJD! (w), respectively, where 
D! (m,) is the amplitude of the displacement field which 
corresponds to a nondegenerate elastic wave propagating 
along m,,. A 

As we have already mentioned, if the relation det B ' = 0 
holds by chance, then we have xlA,,, and the vector fields 
Do(* ), dP(m) degenerate into the straight line LlIBx,, 

which sends the column of coordinates of the vector A(Y) or 
a, (m) in the orthonormal basis A,,, Ao21A03 into the col- 
umn of coordinates of the vector DO(Y) or dp(m) in the 
orthonormal basis Do,, DO2lm,,. The 2 X 2 matrix B; is obvi- 
ously not degenerate in~enera l  (fgr xA,,#O); it is easy to 
verify that we have det B " = det B '. Conseq~?ently, all the 
results obtained with the help of the mapix B 1 [including 
( 19) ] continue to hold when we replace B ' by B ". 

Let us examine the question of determining extreme 
values of the absolute value of the displacement vector Do 
near an acoustk axk. We noy %eed to study the bilinear 
form ~o (B A, B A) = ABTBhA for extrema under the 
conditions A2 = 1 and A&, = 0 (BT is the transposed ma- 
t r i ~ ) ~  hConstructing the Lagrange function F  
= ABTB A - A( AZ - 1) - 2p(AAo3), and equating the 

derivative a F / a  A to zero, we find the folkwing equation, 
making use of the symmetry of the matrix BTB: 

Expanding A in the basis vectors A,, and A,,, we multiply 
(2  1 ) from the left by Aoi, i = 1,2. Making use of the condi- 
tions &,A,, = 0, we find that the extreme (maximum and 
minimum) values of this bilinear form are realized for orien- 
tations of the vector A whichzo~espond to the eigenvectors 
of the 2 x 2 matrix TV = Aoi BTBAoj (i, j = l , 2 )  and which 
are equal to the eigenvaluesA ,,, >O of thishmatrix (in partic- 
ular, Dm, vaniskes, even in the case of det T = 0; we evident- 
ly alsohavedet B1=O) .  

Consequently, near an acoustic axis of general position 
the vector fields DP(m) have not only an orientation singu- 
larity but also an amplitude singularity, since the limiting 
value of DP(m) I in the limit Am -0 depends on the orienta- 
tion of Am. This singularity, as in the case of the field Ey(m), 
disappears for directions of the acoustic axes which coincide 

TABLE I. The amplitude of the electric displacement wave, Do, 
versus the orientation of the polarization vector A(Y) in (12) of a 
degenerate elastic wave which is propagating along a principal sym- 
metry axis in a peizoelectric. 

I 
Symmetry class I D0/4nCk 

m m ,  6mm, 4mm, 3m 
0 0 2 ,  622, 422, 32 
m ,  6 ,  4 ,  3 
23 (mo 11 21, 43m, 42m (mo 11 4 )  
62m, 6 
4 
23 ,  43m (mo 11 3 )  

Note. When A ( V )  is replaced by ai (m) as in ( 1  I ) ,  these expres- 
sions approximately (to within terms a lhml) give the displace- 
ment vectors Dy(m) near the acoustic axes; see also (22) for the 
case m0116. 
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TABLE 11. Rotations of the vector polarization fields of elastic 
waves (index n, ) and of the amplitudes of the accompanying elec- 
tric displacement waves (n, ) near acoustic axes which coincide 
with symmetry axes N of piezoelectric crystals. 

I I I 

*The sign of n, in these cases is calculated from the equations given 
in Refs. 1 and 2. 

with symmetry axes of the crystal. It is not difficult to show 
that for such directions the 2 x 2 matrix Tv is proportional to 
the unit matrix; i.e., its two eigenvalues are equal, so that the 
quantity 1 DP(m) 1 under the condition I Am 1 4 1 does not de- 
pend on the orientation of Am, and IDP(Y) I does not depend 
on the orientation of the polarization vector of the degener- 
ate wave, A. Nevertheless, the orientational singularity of 
the vector field DP(m) persists even near symmetry axes. 
Tables I and I1 show calculated values of the displacement 
vector for directions of the acoustic axes coinciding with 
symmetry axes of various piezoelectric classes. 

An interesting configuration of the vector fields DP 
%rises near an acoustic axis mol18. In this case we have 
B(m,) = 0 and 

where e,, = 0 for the class 8 2m. It is not difficult to verify 
that the vectors Dy, in (22) lie in the plane perpendicular to 
m, and are mutually orthogonal, while their absolute value is 
proportional to 1 Am 1 and does not depend on the orientation 
$ of the vector Am. It follows directly from (22) that the 
singular point m, which we have been discussing is charac- 
terized by an index n, = - 2. The corresponding configu- 
ration of the vector fields DP is shown in Fig. 4. 

CONCLUSION 

In summary, this analysis of the characteristics of 
acoustic waves in piezoelectrics shows that near degeneracy 
directions the vector field EP(m) has an amplitude singular- 
ity, the polarization field Ai (m) has a rotation in a plane, 

FIG. 4. Vector electric displacement fields Dy, i = 1,2, near the acoustic 
axis mol16 (top view of the plane orthogonal to m,; the point corresponds 
to the direction of m,). 

and, finally, the displacement field DP(m) has singularities 
ofboth types. It has been shown that the amplitude singular- 
ities are retained only for acoustic axes which do not coin- 
cide with symmetry axes, while the orientational singulari- 
ties of the vector fields Ai (m) and Di (m) exist near any 
degeneracy directions. Singularities of the latter type have a 
close analog in the theory of liquid crystals, namely, the dis- 
tribution of directors in the vicinity of disclinations in nema- 
tic liquid crystals. In both cases, vectors differing in sign are 
physically equivalent, so that the planar fields of undirected 
segments which we have been discussing here have a rotation 
which is a multiple of .rr near singular points. This circum- 
stance, combined with the classical definition of the index of 
a singular point, which measures the rotation of the vector 
field in units of 212 (the PoincarC index), allows us to use a 
definition in which the index is equal to the rotation in units 
of .rr (the Frank index). 

If we speak in terms of the polarization field, and when 
we note that the vectors A, (a = 1,2,3) are nondirectional, 
we see that the topologically equivalent configurations of the 
triad {A,, A,, A,) near a degeneracy are distinguished from 
each other by a rotation around the vector A, through an 
angle which is a multiple of 12/2. In other words, instead of 
the vector fields A,,, we could examine a distribution of the 
orthogonal pair {A,, A,), whose rotation (the index of the 
singularity, n+ ) would naturally be measured in units of .rr/ 
2. From this point of view, it would appear that the mini- 
mum possible index of the singular point of such a distribu- 
tion would have to be n+ = f 1 (n = f 1/4). However, 
this is not the case. According to Ref. 1 (see also Fig. 1 ), the 
minimum possible rotation around an isolated singular 
point corresponds to rotations of the eigenvectors Ai not 
through f ~ / 2  but through f .rr (n, = f 2 ,  n =  + I ) .  
There is nothing paradoxical at all here, since each of the 
vectors A,,, belongs to its own neighboring branch ("fast" 
or  slow^'), and no transition occurs between these branches 
on a contour enveloping the degeneracy point. In a sense we 
are dealing with an orthogonal pair which is formed in var- 
ious ways by colored vectors. A rotation of the triad {A,) 
through an angle of + ~ / 2  near the degeneracy point thus 
corresponds to a physically inequivalent configuration. 

Near an acoustic axis, the tensor characteristics of elas- 
tic waves also have singularities. For example, let us examine 
the strain tensor associated with the elastic wave u, in (2):  

( a ' -  1 k ,  
Uln - - 2 ( U , ~ , ~ + U ~ ~ , ~ ) =  - - 2 T,, (a) sin x,, (23) 

where = m*A, + A, .m. It is not difficult to show that 
the matrix ?'"' has the eigenvalue ylf;' = (A,m) f 1, 
y?' = 0 and theeigenvectorsl' tif;'llAa f m, tp)ll [mA, 1. It 
follows in particular that near an acoustic axis the triads of 
eigenvectors {tli',t~",t$") for each of the wave branches 
i = 1, 2 which are degenerate along m, rotate along with 
A, (m) when the vector Am circumvents m,. In this case, 
however, we are dealing with something quite different from 
a two-dimensional rotation. 

We have seen that the singular behavior of the elastic 
displacement field of a sound wave propagating along a de- 
generacy direction leads to several singularities in the elec- 
trical characteristics which are related to u in a linear way. 
These results also suggest that near an acoustic axis there 
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may be singularities in other physical properties which are 
linear in u, e.g., the parameters of the acoustooptic interac- 
tion, which should result in a singular response to a rotation 
of the elastic displacement vector of a reference sound wave. 

"Here we are assuming [A,m] f 0. In the opposite case, we would have a 
degeneracy yi"' = y y '  = 0, and the corresponding eigenvectors would 
be oriented in an arbitrary way in the plane orthogonal to tia'llm. 
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