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We investigate the behavior of the I-V characteristics of a normal tunneling contact, and the 
critical current of a Josephson S-N-Sjunction, in the vicinity of a point where there is a change in 
the topology of the metal Fermi surface, for finite temperature and impurity concentration. We 
show that by studying anomalies in the I-V characteristics of tunneling contacts, we can evaluate 
the singular behavior of the electronic density of states near the topological transition; likewise, 
critical-current anomalies of the S-N-Scontact let us study the behavior of the relaxation time. 

1. Recently, the kinetic properties of metals near the 
electronic topological transitions (ETT) predicted by I. M. 
Lifshits' have been widely studied, both theoretically and 
experimentally. Anomalies have been observed in the ther- 
moelectric power, conductivity, absorption coefficient of 
sound and other physical characteristics of the alloys 
Li, - , Mg, , Cdl , Mg, , and BiSb, as well as in whiskers of 
Bi and A12-', as the topology of the Fermi surfaces of these 
systems changes. The experimental data agrees fairly well 
with model theoretical  calculation^.^-'^ 

Upon first examination, it seems that the primary con- 
tributions to the singular part of the kinetic coefficients must 
come from anomalies in the density of states near special 
points in momentum space (e.g., points where a "bridging 
section" is broken, producing a gap). However, the kinetic 
coefficients are proportional to the squared electron velocity 
as well as the density of states; the former vanishes near a 
special point and thereby compensates for the corresponding 
singularity coming from the density of states.I3 From this we 
conclude that in real systems, anomalies in the characteris- 
tics listed above occur because of a singularity in the elec- 
tronic relaxation time, which behaves as an inverse square- 
root near the ETT. This singularity comes about because 
electrons can reach the vicinity of the singular point from 
everywhere on the Fermi surface as a result of scattering, a 
fact which also applies to the inverse processes. The second 
section of this paper is devoted to a detailed analysis of 
anomalies in the relaxation time for various types of transi- 
tions. 

In addition to investigating the kinetic properties of 
metals near an ETT, there is much interest in studying the 
characteristics of tunnelling into these metals; such charac- 
teristics provide information about singularities in the metal 
electronic ~ ~ e c t r a . ' ~ - ' ~  Thus, if a tunneling contact is made 
whose electrodes (or at least one of them) undergo an ETT, 
it is possible to derive information about the behavior of the 
single-particle states near this transition from the corre- 
sponding I-V characteristics, taking into account "smear- 
ing" of the transition induced by finite temperatures and 
impurity concentrations. 

On the other hand, by studying the dependence of the 
Josephson current on the parameter z which characterizes 
how close the metal is to the transition, we can determine the 
electronic relaxation-time singularities within the S-N-S 
when the N metal layer undergoes an ETT. The third and 
fourth section of this paper are devoted to these questions. 

2. Changes in the Fermi-surface topology of real metals 
and alloys can occur in many different ways: the formation 
or disruption of "bridge" sections, the appearance or disap- 
pearance of new "sheets" (disconnected sections), etc. In 
the "broken-bridge" ETT model presented earlier in Refs. 
11, 12, the Fermi surface was taken to be a hyperboloid of 
revolution, so that the dispersion law had the form 

E (p) -p=plz/2ml-p,2/2m,-z (1) 

(Z = ,u - Ec , where Ec is the critical value of the energy 
corresponding to an ETT at T = 0 and in the absence of 
impurities; p = CpX ,p,) is the electron momentum, ,u is the 
chemical potential), The following expression was obtained 
for the relaxation time of an electron due to impurity scatter- 
ing: 

where ZR (w,z) is the self-energy part of the electronic 
Green's function averaged over the impurity positions. 

Here, 

where T,  is the relaxation time of electrons due to impurities 
far from the ETT, E, = p, */2m, ,p, is the limiting value of 
the longitudinal momentum," and w is the energy of the 
electronic state under discussion measured from the level of 
the chemical potential. 

Expression (2)  was obtained on the basis of a one-band 
model in which the ETT formally corresponds to a transi- 
tion from a two-sheeted ( z  < 0)  hyperboloid to a one-sheeted 
(Z  > 0)  hyperboloid. As is clear from (2),  the relaxation time 
is finite, while the primary contribution to T,  is determined 
by scattering processes which take electrons from peripheral 
states of the Fermi surface (p-p, ) into the same types of 
states [process 1 in Fig. 1 (a)  1. The small square-root cor- 
rection r06(z + ~ ) / 2 ,  which also describes how the kinetic 
coefficients vary close to the ETT, comes from scattering 
processes which take electrons from the peripheral regions 
into the singular region of the bridge (the vicinity of the 
point p = 0)  , and conversely [process 2 in Fig. 1 (a )  1. 

It must be pointed out that the finiteness of T at the 
transition point can be proved without reference to any spe- 
cial features of a given model. Thus, e.g., in the "sheet-gener- 
ation" type of ETT, the new sheet always appears near a 
rather large pre-existing section of the Fermi surface [Fig. 
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FIG. 1 .  Topological transitions: type a is the 
"broken bridge," type b is the "sheet genera- 

()&---& m- @ tion." Because of scattering processes, l -e lec-  
trons arrive at the periphery of the Fermi sur- 
face from other peripheral regions; 2--electrons 

-+ - - ---- - -+- - - - arrive in the vicinity of the Fermi surface singu- 

' ; I \ I 
I \ i 

lar point from peripheral regions; 3--electrons 
Pxo 80 remain at the limits of the singular regions of the 

Fermi surface. Here p,  is the limiting value of 
a b longitudinal momentum, E, = p,  '/2m, 

1 (b)  ] except for the case of a metal-insulator transition; an 
example of this is the overflow of electrons from two ellip- 
soids into a third in Bi,, Sb,, .4 Therefore, just as in the case 
of the broken bridge, comparatively low-probability scatter- 
ing processes involving a small group of electrons (processes 
2,3) are superposed on normal electron scattering processes 
which take electrons across the extended (large) section of 
the Fermi surface (process 1 ). In this case the relaxation 
time for electrons due to impurities is determined by a sum of 
the probabilities of all three processes, and is found to be 
finite. The proximity of the system to the ETT, as also in the 
case of a broken bridge, affects the relaxation time by intro- 
ducing a small square-root correction. 

3. Let us first consider a symmetric tunneling contact, 
both of whose electrodes undergo an ETT at the same time. 
The tunneling current which flows through the contact is 
determined by the expres~ion'~: 

d3k 6 1rn G " ( ~ ,  o f e v )  - 1m G1(k, o), ( 3 )  
(2n)" 

where RN is the ohmic resistance of the contact; the one- 
electron Green's function for the spectrum ( 1 ), taking into 
account scattering processes, was found earlier": 

After coupling the imaginary part of the Green's function, 
integrated over momentum, with the self-energy part by us- 

ing the self-consistency equation," we are led to the follow- 
ing expression for the tunneling current 

m 

XIm ZR (o+eV) Im ZR (a). ( 5 )  

Differentiating expression (5 )  with respect to the voltage V 
in order to evaluate the additional differential contact resis- 
tance SR,, which arises from the closeness of the system to 
ETT, we find 

where 
m 

dx 
F ( E )  =2-" J--;-- {[ ( 2 ~ r ) - Z +  ( x + ~ ) ' ] ' ~ -  (z+g))%. (7) 

- m ch x 

Expression (6) describes the behavior of the differen- 
tial resistance of a symmetrical tunneling contact, both of 
whose electrodes undergo an ETT at finite temperatures and 
in the presence of electrons scattered by impurities. 

In the case of a low impurity concentration ( TT) 1 ) , 
the asymptotic form of the integral F({) takes the form 

Analysis of expression (6) shows that for z 2 0 the function 
R ( V) has only a weakly expressed minimum at V = 0 [Fig. 
2(a) 1. In the negative-z region this function is found to be 
considerably less trivial: even for z 5 z* = - 1.1 T, the mini- 
mum at V = 0 which occurred for z 2 0 has gradually been 
converted into a maximum [Fig. 2(b) 1, while at specific 
values of voltage f V,,, there appear two characteristic 
minima in the function R (  V )  [Fig. 2(c)] .  In the case 
2-4 - T, the positions of these minima can be found analyti- 
cally from the condition (6)  that the function R ( V )  be at an 
extremum; taking advantage of the asymptotic representa- 
tion for the function F ( 6 )  : 

lz/+(T/2)ln(2nlz//T),  T<IZI<T(TT)', 
*eVnlin = { I 1 + ( 1 z 1 / ~ T ~ ) I / ~ ,  1 z 1 BT (TT) '. 

(9 )  

Let us now turn to the case of an impure metal ( TT 4 1 ) . 
Then the slowly-varying function S in equation (6) can be 
taken outside the integral sign, because ch-*(w/2T) varies 
much more rapidly than the second factor; after doing this, it 
is easy to show that 

GRaN/RN='/2[G ( z f e V )  +S(z-eV) 1. (10) 

The function S(x)  which enters into this expression was de- 
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FIG. 2. Dependence of the relatlve contribution to the differential resis- 
tance of a tunneling contact on voltage for constant parameter values z: 
( a ) z = 4 T , ( b ) z =  - l . l T , ( c ) z =  -4T. 

termined above; in the interest of clarity we will write it here 
in asymptotic form: 

We see that, as in the case of a pure metal, for sufficiently 
large lzl ( - TZ< 1) the function R( V )  has two subsidiary 
minima at the voltages 

We note that this expression accurately reproduces the 
second asymptotic form for + eV,,, in equation (9) when 
lzl is large. This implies that even in the case Ti-) 1 we can- 
not ignore impurity scattering anywhere, because of the ex- 
ponential decrease in the function F ( { )  for 1 S; { S; 1nTr. 
Even in a pure metal (TT) I ) ,  for sufficiently large 
I z I  ( I z I  > T3?) the situation turns out to be fully analogous 
to the impure-metal case ( TT 4 1 ) . 

The appearance of these subsidiary minima in the func- 
tion R ( V )  has its origin in a phenomenon which we may call 
"electrical breakdown" of the Fermi surface, in analogy 
with the phenomenon of "temperature breakdown."" In es- 
sence, this phenomenon can be described as follows: as z 
increases from the region of large negative values, the closed- 
off Fermi surface approaches the edge of the Brillouin zone; 
if we apply a voltage eV- lzl to the tunneling contact in this 
case, then in a sense this voltage "opens up" the Fermi sur- 
face, changing its connectivity and thereby causing an ETT. 
As z grows (i.e., for z z  - max [ r - ' ,  TI ) these subsidiary 
minima gradually disappear, since in this region---even 
without an electric field, simply because of smearing of the 
Fermi surface due to temperature or impurities-the ETT is 
smeared out and begins earlier than it does at T = 0." In the 
positive-z region, the Fermi surface is already open, and ap- 

plying an electric field does not change its topology. There- 
fore, the differential resistance shows no anomaly of any 
kind. 

We now can draw some conclusions about the way the 
I-V characteristics change with temperature. At high tem- 
peratures, for T)T-' and when z belongs to the region of 
greatest interest, i.e., - T(Trl2 < Z  < - T, the I-V charac- 
teristic of the tunneling contact has the form chosen in Fig. 
2(c) .  As the temperature decreases, according to (9) the 
subsidiary minima approach each other smoothly, remain- 
ing close to the points eVmin - f IzI. When the temperature 
reaches -T-', a transition occurs to the case of an impure 
metal. The motion of the minima comes to an end, and they 
fade away at the position eVmin z I z I  + (jzI/82) 'I3. 

We now discuss the case of an asymmetric contact, one 
of whose electrodes is a normal metal while the other, under 
the influence of an external stimulus, undergoes an ETT. 
Here also the tunneling current flowing through the contact 
is determined by expression (3); however, we now identify 
one of the functions GR as a normal-metal Green's function. 
Analogously, we obtain for the relative contribution to the 
differential resistance of the contact 

[the asymptotic behavior of the function F ( 6 )  in the pure 
and impure cases is determined by expressions ( 8), ( 7  and 
(1111. 

We note that in contrast to (6) ,  for this case the correc- 
tion depends strongly on the sign of the voltage applied to 
the contact. In the region of large positive voltage (eV 
) max [ T,T- ' ] ) the contact resistance increases as a square 
root, while in the region of large negative voltage the result- 
ing ETT correction falls off as - (eV)-'I2. In this case we 
observe a kink in the dependence of the resistance on voltage, 
which occurs in the region eV-z, in agreement with the 
considerations discussed earlier regarding "electrical break- 
down." In this case, when the voltage on the contact is 
changed, we can shift the transition; this changes the topo- 
logical connectivity of the Fermi surface independent of the 
value of z. 

4. We now turn to a discussion of another tunneling 
structure: a superconductor-metal-superconductor (S-N- 
S) contact whose metallic layer undergoes an ETT. It is the 
impure contact ( TT< 1 ) which is most interesting here. 

In order to calculate the critical current density of the 
S-N-S contact, we make use of results analogous to those 
obtained in Refs. 20, 2 1 : 

j c  (z )  =Ajc (co) (on2+Ai2)  - I h  (on2+A;) -'I1 

n 

where the characteristic temperature is given by TI = p i r d  
6n-azm:, and a is the contact thickness. The quantities A ,  
and A, which enter into this expression denote the supercon- 
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ducting gaps of the superconducting electrodes. Here 
II (q,w, ) is the polarization operator for electrons in the me- 
tallic layer averaged over the impurity positions, and 
on = 2aT(n + 1/2) is the Matsubara frequency for fer- 
mions. We note that expression ( 14) is correct only at high 
temperatures, T )  TI. 

Analogously, l4 the polarization operator II(q,o, ) 
averaged over impurity positions in the layer can be ex- 
pressed in terms of the single-electron Green's function: 

(we have directed the hyperboloid axis perpendicular to the 
contact plane). 

The single-electron Green's function entering into this 
expression corresponds to (4); however, it is evaluated at the 
Matsubara frequencies. Performing the integration in ( 15), 
we find 

where 

1+20n2 
X arctg 

2t(z+eot2) ' 

here I = p, r/m, is the mean free path of an electron in the 
metallic layer far from the ETT; v, = p, /m, . 

The primary contribution to the integration over mo- 
mentum in ( 14) comes from the region of small momentum, 
where, as was shown in Ref. 14, the integral J ,  has the form 

In this way, we obtain the following expression for the criti- 
cal current of the contact: 

This integral can be calculated using the explicit expres- 
sion for T [see (2) 1 and keeping the first terms in the sum 
over frequency [since the terms of the sum in ( 18 ) decrease 
exponentially as w, grows] : 

jo(z) =jc(eo) erp {-2a(6nTzom,/eo)"(i/z-l/to)) 
=jc(eo) exp [(T/Ti)'"6(~)/21, (19) 

where the asymptotic behavior of the function S(z) is deter- 
mined by expression ( 1 1 ). 

Thus, as a function of distance from the ETT, the criti- 
cal current has a singularity which is far sharper (exponen- 
tial) than the singularities in the kinetic properties discussed 
earlier (Refs. 8-1 5; see Fig. 3). This result has a simple phys- 

FIG. 3. Dependence of the critical current density on the parameter z 
which characterizes closeness of the S N S  contact to the ETT. 

ical explanation: Cooper pairs which traverse the layer of N- 
metal are scattered by impurities. In a Type 1 scattering pro- 
cess (Fig. 1 ), the momenta of the electrons which form a 
pair does not change in order of magnitude and is deter- 
mined by the large value po- ( 2 r n ~ ~ ) " ~ .  Therefore, such 
electrons tranverse the layer in almost the same way as the 
usual case (i.e., a metal without an ETT) . However, for scat- 
tering of electrons in the N layer, Type 2 scattering processes 
are also possible (Fig. 1).  As a result, electrons can then be 
scattered into the small-momentum region ( (pl - 0). Corre- 
spondingly, the "time in residence" of a Cooper pair made 
up of such slow electrons in the normal-metal layer increases 
markedly; because of this, the Cooper pair disintegrates, and 
does not contribute to the critical current of the Josephson 
contact. 

At high temperatures ( T%-T-'), the role of impurity 
scattering is unimportant, and during a transit time of the N 
layer, practically all the usual Cooper pairs can avoid con- 
version into slow ones. In this temperature region j, (z, T) is 
almost independent of the distance from the ETT, and coin- 
cides with jc ( E ~ ,  T) . As the temperature falls ( T 5  T- ' ), the 
"slowing down" mechanism mentioned earlier begins to 
make itself felt on the Cooper pairs in the N layer, and j, (2) 
begins to depend significantly on the degree of closeness to 
the ETT [Eq. (19)].  

Thus, at temperatures T-T- ' the dependence of the 
relative critical current density j, (z, T)/jc (E,, T) has a 
smeared-out step whose magnitude exp[ ( T,ro) - "*S(z) ] 
for some ratio (SZ/(Tlr) ) 1) can turn out to be quite size- 
able. 

5. In conclusion, let us formulate the basic results ob- 
tained in the paper: 

1 ) The electronic relaxation time due to impurities at 
the ETT remains finite, and its value is determined primarily 
by scattering processes for which the singular region of mo- 
mentum space, i.e., the region where the transition occurs, is 
irrelevant. The closeness to the ETT appears in ~ ( z )  only 
through a weak square-root singularity which is caused by 
scattering of slow electrons by impurities, with their subse- 
quent ejection to parts of the Fermi surface far from the 
singular part (likewise the inverse processes). However, it is 
this singularity which gives rise to the anomalies observed in 
the kinetic coefficients. 

2) The relaxation time r (z )  can be directly extracted 
from the dependence of the critical current of an S-N-S Jo- 
sephson contact on distance from an ETT which takes place 
in the normal metal layer under study. It was shown that the 
critical current in such a contact is extremely sensitive to the 
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ETT, and can itself vary in the vicinity of the transition by an 
order of magnitude. This fact is due to the possibility of unu- 
sual (i.e., compared to a normal metal) scattering of super- 
conducting electrons when they tunnel through the normal 
layer, in the process of which the electrons enter the singular 
region and slow down. Their diffusion time in the layer thus 
increases significantly, destroying the Cooper correlation. 

3) Study of the I-V characteristics of a tunneling con- 
tact whose electrons undergo an ETT allow us to ascertain 
the behavior of the density of states near the ETT. It was 
shown that as the closed Fermi surface approaches the edge 
of the Brillouin zone under the action of a voltage applied to 
the contact, the phenomenon of "electric breakdown" of the 
Fermi surface can occur, in which the connectivity of the 
latter decreases. This phenomenon is accompanied by char- 
acteristic minima in the I-V characteristics of the tunneling 
contact. 

In conclusion, the authors express their profound grati- 
tude to A. A. Abrikosov, B. L. Al'tshuler and M. I. Kaganov 
for their interest in the work. 
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