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The probability for the decay of a current-carrying state of two coupled Josephson junctions 
exhibits essential singularities as a function of the temperature and the magnitude of the current. 
The reason is that the two-dimensional system contains close-lying classical trajectories in the 
imaginary time. These trajectories may merge, smoothly or discontinuously, to form a single 
trajectory at certain values of the current and the temperature. The behavior of the probability for 
the decay of a metastable state near such singularities is analyzed. 

1. INTRODUCTION 

Research on the decay of current-carrying states of Jo- 
sephson junctions has spurred new developments in the 
physics of long-lived metastable states.'-l3 A Josephson 
junction is a quantum-mechanical system with one degree of 
freedom, when the system overcomes a potential barrier. In 
this case the decay probability is known to be determined in 
the exponential approximation by the action on an extremal 
trajectory in imaginary time. The coefficient of the exponen- 
tial function is found through functional integration along 
trajectories to the extremal trajectory. 

In the physically interesting case of two coupled Jo- 
sephson junctions (a  two-junction interferometer) the cor- 
responding two-dimensional quantum-mechanical system 
may differ from a one-dimensional system qualitative. Spe- 
cifically, there may exist several spatially separated trajec- 
tories on which the action is extremal (instantons). As the 
parameters of the system are varied, two such instantons 
may approach each other, and at certain critical parameter 
values they may merge. Near this critical point the fluctu- 
ations are large, and the coefficient of the exponential func- 
tion grows. 

In this paper we analyze a system of two identical Jo- 
sephson junctions. If the coupling between these junctions is 
sufficiently strong, the phases of the junctions vary in identi- 
cal ways on the extremal trajectory. As the coupling be- 
comes weaker, the symmetric solution always remains, but 
at the critical point two close solutions split off from it, and 
the decay ceases to be symmetric. 

This picture prevails at essentially all temperatures 
T <  T *. Because of the numerical coefficients, the tempera- 
ture T * is very close to the temperature To at which the 
quantum-mechanical regime gives way to a classical regime. 
For temperatures T * < T <  To the situation is analogous to a 
first-order phase transition. In this region, the splitting off of 
a trajectory from the symmetric trajectory occurs discontin- 

where p, and p2 are the phase differences at the junctions, 

Here Lo and C are the inductance and capacitance of each 
junction, and a, = &/e is the magnetic flux quantum. 

The Lagrangian ( 1 ) corresponds to a zero external 
magnetic flux a, through the interferometer. In the oppo- 
site case, the Lagrangian would acquire another term 

If the external flux is equal to an integer number of quanta 
#,, the Lagrangian can still be reduced to the form in ( 1 ) 
through a simple change of variables. 

In this paper we assume that the external magnetic flux 
through the interferometer is either zero or equal to an inte- 
gral number of quanta. If this condition does not hold, the 
interferometer acquires an effective asymmetry, but the 
splitting of the instanton still occurs. 

In general the action is proportional to the parameters 
V/&,  which is generally large. Experimentally, therefore, a 
macroscopic quantum-mechanical tunneling is studied at 
currents close to the critical value, 21, - I g I , ,  where the 
potential barrier is substantially lowered. In this approxima- 
tion the potential energy is approximately cubic. 

The general expression for the probability for the decay 
of a metastable state at a nonzero temperature is14-l6 

uously at a finite distance. 
We will derive the probability for the decay of a meta- where the partition function Z is defined by the functional 

stable state in the two-dimensional case for T <  T *. We will integral 

study the behavior of the system near the point T *. 
= .I ~ r p ,  09, ex, (-S) . 

2. EXPRESSION FOR THE ACTION; BEHAVIOR OF THE 
TRAJECTORIES The functional integral ( 3 )  involved periodic functions p ,,, 

We restrict the discussion to the. case in which the vis- ( t )  with a period of fi/T. 
cosity is negligible. In this approximation the Lagrangian of Transforming to dimensionless variables, we write the 
a system of two identical junctions is known to be action in terms of the imaginary time as 
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( ~ p o / ~ ~ ) 2 = ~ o n s t + 2 p ~ - p o 3 3  

Solving Eq. (9) ,  we find 

L 
where cn(z,k) is the Jacobi elliptic function, and the quanti- 

where tiess,,,, are the roots of the right side of Eq. (9) .  The quanti- 

it ii 2  'v2 ty k in ( l o )  is given by 
T = -  , t o = - - - -  t; = - - &) - I h  , 

2Tt0 ' o2 to k= [ ( sL-s2 ) / ( s , - s3 )  ] I b .  

I 1'" 3 3x 
(11) 

i 2  [ ( I  - ) [ * - I] - - ( 5 )  We will be expressing all quantities in terms of this param- 2  
eter. In particular, we can write 

The parameter a is a measure of the interaction of two de- s , = ~ / $ [  I f  ( I + k 2 ) / ( l - k 2 + k 4 ) ' 1 r I ,  
grees of freedom, p + q and p - q: 

S , = ~ / ~ [ I +  (1 -2k2) / (1 -kZ+k' ) '" ] ,  
(12) 

2'" 
( 6 )  s,=~3[l+(k2-2)/(l-k2+k4)"]. 

The decay probability is assumed to be small; accord- 
ingly, the semiclassical parameter 

must be large: g) 1. 
Figure 1 illustrates the behavior of an extremal trajec- 

tory as a function of the interaction parameter a. At a = 0, 
the variablesp + q andp - q separate in Fig. la, and a tran- 
sition occurs independently in terms of each of them. For 
a > 1 the potential has only a single saddle point. The solid 
lines are levels of a potential with a total energy such that the 
time of the motion between the separate lines would be 7,. At 
a given temperature T, two close trajectories, 1 and 2, then 
split off from the trajectory q = 0 as the parameter a de- 
creases (Fig. lb).  This bifurcation of instantons occurs at 
a = a, (T). The critical value of the interaction parameter, 
a, ( T) , will be derived below. 

This picture is valid at temperatures T <  T *. At higher 
temperatures, the transition to the asymmetric trajectory oc- 
curs discontinuously as the coupling parameter a is reduced. 
The temperature T * will be derived in Sec. 8. 

3. DERIVATION OFTHE INSTANTON 

The classical trajectories of motion in imaginary time 
are found from the system of equations 

For a > a, ( T), the solution of this system which is periodic 
with a period of 27, is p = po,q = q,, where go = 0, while p, 
satisfies the equation 

The temperature dependence of k is determined by the 
condition that the solution be periodicp,(~) = p0(7 + 2 ~ , )  : 

Here K(k)  is the elliptic integral of the first kind, and at the 
critical temperature To which separates the quantum-me- 
chanical regime from the classical regime, is given by 

The instanton is thus determined by Eqs. ( 10) with the 
implicit temperature dependence which follows from ( 12) 
and (13). 

4. TEMPERATURE DEPENDENCE 

To evaluate the functional integrals in (2 ) ,  we expand 
the deviations of the functions) = p - p, and ij = q fromihe 
classical solutions in eigenfunctions of the operators P, Q: 

P = - a " d ~ ~ + 2 - 3 p ~  (T) , Q ( a )  =p+2a .  (15) 
A 

According to the general representations,I5 the operator P 
has, in addition to a zero eigenvalue, one negative eigenval- 
ue, which gives rise to an imaginary part in the partition 
function. The value of a, ixfound from the condition that 
adding 2ac to the operator P d i s p l a ~ s  the negative level to 
zero. The eigenvalue of the operator Q which corresponds to 
this "dangerous" mode is 2 ( a  - a, ) . The corresponding ei- 
genfunction is 

where 

I 
I/ 

FIG. 1 .  a-Decay during a weak interaction; b--splitting 
off from the main trajectory, q = 0, of two trajectories, 1 

* 
P 

* and 2, which lie close to the main trajectory. Solid lines) 
Curves at constant potential; lines with arrows) trajector- 
ies. 
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and dn(z) is the elliptic Jacobi function. For the critical val- 
ue of the coupling parameter, a , ,  we then find 

From ( 13 ) and ( 18) we find a temperature dependence 
a, ( T). In the low-temperature limit T 4  T, we find 

~ ,=~ / , -90  exp (-2nTo/T). (19) 

5. DEPENDENCE OF THE DECAY PROBABILITY ON THE 
COUPLING CONSTANT NEAR THE CRITICAL REGIME 

Since the eigenvalue of the dangerous mode is small 
near a , ,  in evaluating the functional integral in (2) it is not 
sufficient to consider in the action only the terms quadratic 
in the deviations from the extremal trajectory. Singling out 
the integration over the dangerous mode, we find 

rn 

r - 1 dx exp [ -g (a-a.) x2-g6x4] eeAol (20) 
- - 

where A, is action (4)  calculated on the extremal trajectory 
( 10) (corresponding to the point a = a, ): 

Along with ( 13), expression (21) describes the temperature 
dependence A,( T). To find the x4 term in the argument we 
need to consider the cubic terms in the action: 

The corresponding calculations are extremely labori- 
ous, since it is necessary to calculate sums over all matrix 
elements. However, an expression for the unknown quantity 
S in (20) can be found in a far simpler way, by noting that 
under the condition g'12(ac - a)  ) 1 this equation yields a 
renormalization of the action: 

The action (22) corresponds to the split-off trajectory 1 or 2 

in Fig. lb. The quantity A -A, can thus also be found from 
(4)  with the help of (8)  : 

g A-A. + - (a-a.) d r  q2. 
2 

(23) 
-ro 

Comparing expression (22) and (23), we can find the coeffi- 
cient 8. An explicit expression has been derived for it. 

At small values of q,p -po and a, - a ,  we find from 
(10) 

P(p-po) =3/2qz, (24) 

A solution of Eq. (25) is the function 

where the function +(T)  is given by ( 16). 
To find the normalization factor c we need to integrate 

Eq. (25 ) with a weight +(T). Setting 
7" I n  

we find 

Substituting (26) and (28) into (23 ), we find the following 
result for 6: 

The functionp -po which appears in (27) is found from the 
inhomogeneous equation (24) with the function q ( r )  as in 
the (26), on the basis of the parity and periodicity require- 
ments on T. The quantities a, and b, are found in the Ap- 
pendix. 

6. EXPRESSION FOR THE PROBABILITY FOR THE DECAY OF 
ASTATE 

Near the singularity a, the probability for the decay of 
a metastable state can be writen 

whereA,is given by (21), andFby 
DD 

dx 
F = 5 --exp{-g[ n l~ t  (a-a.)x2+ bx']). (31) 

0 

In some limiting cases we have 

I--- 
The coefficient B is expzssed $! terms of a product of eigen- The prime in (32) and (33) means that the zero eigenvalue 
values of the operators P and Q (Ref. 15 ) : is omitted. 

so 

g d7 dp We use the familiar method for calculating the ratio of B = - I J - ( - )  D,D,(". (32) the determinants in the problem with periodic boundary 
to -Tm n dz 

conditions and with an even potential 
Here 

det(2-a2/dz2) 
Di = aa 

det' (2-3po-d2/dz2) ' 
(33 1 

det (2+2a,-d2/dz2) d W, dz (34) 
Dz = 

det' (2+2a,-3po-d21dr2) ' 
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where $,,, are even solutions, and q, ,,, odd solutions, of the 
equation - d 2 f / d ~ ~  + V1,2 (T) f = 0,and W , , ,  arethecorre- 
sponding Wronskians. 

Singling out the zero eigenvalue, using (34), we find 

where 

Expressions for the functions J , , ,  (k) in terms of complete 
elliptic integrals are given in the Appendix. 

The integral 

in (32) cancels the same integral in (35). 
Substituting (35)-(37) into (32), we find an expres- 

sion for the coefficient of the exponential function: 

g 
32 I "' sh (nTo/T) sh[nTo (If u,)"~/T] 

B=-[ 
to 3nakJ, (k) J2 (k) 1-k2+kh 

(38 
The decay probability is thus given by (30), where the 

argument of the exponential function, A,, is given by expres- 
sion (21 ) , and the coefficient of the exponential function is 
given by (38). The function F i n  (30) describes a transition 
from one decay regime to another. The quantities a, and S 
which appear in it are given by (18) and (29), and the tem- 
perature dependence of k is found with the help of expression 
(13). 

Here are the values of these quantities in the low-tem- 
perature limit T <  To: 

At some temperature T * below T,, the coefficient 6 vanishes. 
The behavior of the decay probability near this point re- 
quires a special analysis, which is the subject of Sec. 8. 

7. DECAY PROBABILITY AS A FUNCTION OFTHE CURRENT 
AND THE TEMPERATURE 

If the coupling coefficient P -' is sufficiently small, 
there exists a threshold current I, such that at  currents I < I, 
there can be a change in the decay regime of the metastable 
state. This threshold current corresponds to the value 
a, = 5/4 and itself has the value 

It  follows that at a large value of B the characteristic cur- 
rents are close to the critical value 21,. 

The temperature T I  (I), which separates the regime of 
symmetric decay, in which we have p, = p, on the extremal 
trajectory, from the regime of the asymmetric decay, is 
found from the condition a, ( T I  ) = a.  From ( 6 )  and ( 18) 
we find a universal functional dependence of the quantity 
TIP "*/&a on ( 1 - I /21c )B 2,  which is determined implicit- 
ly by 

This functional dependence is shown by curve 1 in Fig. 2;  
curve 2 there shows To B '12/&a as a function of ( 1 - I /  
21, )P 2, according to ( 14). Figure 2 may also be regarded as 
a phase diagram. Above curve 2 the decay is activated, while 
below this curve the decay is a tunneling-activated decay. To 
the left of curve 1 the decay is symmetric; to the right the 
symmetry is disrupted. 

8. DECAY NEAR T+ 

The behavior of the decay probability described in Sec. 
7 prevails only up to the temperature T  * if we move along 
curve 1 in Fig. 2. The temperature T * is found from the 
condition S ( T * )  = 0. A numerical calculation yields for k 
the value k * = 0.454. From (43) we can then find the co- 
ordinates of the point in Fig. 2 at which we have T = T *: 

Because of the numerical parameter, the ratio T * /  
To(I * )  ~0.9879 is very nearly equal to unity. By analogy 
with phase-transition theory,I7 the point R in Fig. 2 is a tri- 
critical point, where the equilibrium curves for first- and 
second-order phase transitions converge. The classical ac- 
tion A serves as a thermodynamic potential here. Curve 1 
below the point R corresponds to a second-order transition, 
according to this analogy, while above point R it corre- 
sponds to a first-order transition. 

The behavior of the decay probability near R can not be 
determined if we restrict the expansion of the action to terms 

FIG. 2. I-T, P "2/h; 2-TOP " ' / h  versus ( 1 - 1/21, ) P 2 .  Above 
point R, the change in tunneling regime is analogous to a first-order phase 
transition. The point R corresponds to T = T *. 
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of fourth order, as we did in (20). The incorporation of the 
sixth-order terms has the consequence that an additional 
term of order x6 appears in the argument of the exponential 
function in (3  1 ), so that F is replaced by the expression 

m 

dx  
F - J exp(-g[ (a-a.) x 2 + d x 4 + p ~  I). 

0 

We can determine y by comparing the extremal action 
found for a <a, with the help of (45) with the extremal 
action calculated from (4)  and (8).  The value of y at T = T * 
is 

where the deviation of the function q from c$, which is small 
by a factor on the order of c2, satisfies the equation 

The functionp - p o  in (46) and (47) satisfies Eq. (24) and 
is determined by Eq. (A8). As a result, the value of y is given 

Evaluating the integrals in (48) numerically, we find 
y = 1.694. The quantity S in (45) is given near the point T * 
by the expression 

As a result, using the numerical values which we have found, 
we can write P a s  

rn 

Equation (30) with F from (50) thus determines the 
behavior of the decay probability near the tricritical point 
T =  T*. 

The quantity x in (50) is proportional to the distance 
between the split-off trajectory and the symmetric position. 
The action with appears in the argument of the exponential 
function in (50) can have simultaneous minima at a nonzero 
x and at x = 0 in the case T >  T *. The equality of the action 
values at these minima determines a phase equilibrium line, 
which is a continuation of curve 1 above point R: 

TIT'-1=1.353 (a-a,)'". (51) 

It follows that the equilibrium curves intersect at right an- 
gles at the point R. 

Our analysis describes the behavior of curve 1 in Fig. 2 
only if the temperature is slightly above T *. As the tempera- 
ture is raised further, it becomes necessary to consider the 

pronounced nonlinearity of the action when the trajectory 
departs from the asymmetry position. 

At the transition from one regime to the other at 
T = TI, the argument of the exponential function in (30) is 
equal to A,- Vfl -s'2/h in order of magnitude. This cir- 
cumstance determines the choice of the most suitable cou- 
pling coefficients f l  - ' for observing these effects during the 
decay of a metastable state. 

9. CONCLUSION 

In the one-dimensional case, the decay of an activation 
nature gives way to a quantum-mechanical decay at a certain 
temperature To, because of the appearance of a nontrivial 
trajectory in imaginary time. In the multidimensional case 
the picture may become much more complicated. For cer- 
tain values of the potential parameters, two extremal trajec- 
tories may come close together. Near such a point, the fluc- 
tuations of the mode corresponding to a transition between 
trajectories are large. For this reason, the quadratic approxi- 
mation in the action is inadequate. As a result, the two-di- 
mensional case which we have studied here contains in addi- 
tion to To, another critical temperature, TI, which 
corresponds to a change in tunneling regime. 

The decay probability given by (30) can be written as 
the product of the probability T,, for a decay in the one- 
dimensional case, and some function proportional to FDk'2. 
In the one-dimensional case, for a cubic potential, the prob- 
ability r, is 

where the action on the extremal trajectory, A,, is given by 
(21 ), and the coefficient of the exponential function is 

In (53) we have to = 2'I2/w,, g = (27/2lI2. 8 )  U,/ho, and 
To = h, /27~,  where w, is the frequency of the small oscilla- 
tions near the potential minimum, and Uo is the height of the 
potential barrier. The experimental temperature depen- 
dence of the decay probability of the current-carrying state 
of an isolated Josephson junction, r , ,  is in excellent agree- 
ment with the theoretical temperature dependence." For 
the system of Josephson junctions which we have examined 
here, the ratio T/T, should increase substantially at tem- 
peratures below T,. 

Above the point R, the temperature or current depen- 
dence of the decay probability changes slope. However, this 
temperature interval would seem to be too narrow for a de- 
tailed experimental study. 

APPENDIX 

We can express the quantities which determine the life- 
time r in (30) in terms of elliptic integrals: 
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We turn now to a calculation of the function b k ,  deter- 
mined by ( 2 7 ) ,  wherep - p, is an even solution of inhomo- 
geneous equation ( 2 4 )  which satisfies the condition of peri- 
odicity with a period of 27,. This solution can be written in 
the form 

where the odd function x satisfies the equation 

and the functions c ,  and c ,  are found from the equations 

The solution of these equations should be determined from 
the condition on the parity and periodicity of the function 
p -p,. The function c , ( z )  is 

c z ( z )  =-C' {'14k2 cri8 z f 1 I 3  ( I -k2+2kLp)  crlG z 
+['12kZpZ+ ( 1 - k 2 ) p ] c n 4  Z+ ( I - k 2 ) p 2  c n Z z + ~ ) .  ( A 6 1  

The quantity x is given by 

( 1 - 2 k 2 ) E ( k )  - ( I - k 2 ) K ( k )  
2 ( l - k Z + k 4 )  E ( k )  - ( I - k 2 )  (2 -kZ)  K ( k )  ' 

The quantity p -p, can be written in the form 

where y  = cn2z and the function c , ( y )  is given by expression 
( A 6 ) ,  with cn2z replaced by y. 

Using these relations along with ( 2 7 ) ,  we find the fol- 
lowing expression for b,  : 

+ (14') p'(k'p'+2(1-k') FILS + ( l - - k ' ) ' p ' ~ ~ } ;  
here 

t 

These quantities satisfy the recurrence relation 

2(n-3)  2k2-1 2n-5 I-kz 
L, = -- L,-, + -- L .  ( A l l )  

212-7 k2 2n-7 k2 
For L, and L, we have 

L z = K ( k ) - 2 E ( k ) ,  LT=[ ( 1 - 2 k 2 ) E ( k ) -  ( I - k 2 ) K ( k )  IlkZ. 
(A121  

Expressions ( A 3 )  and ( A 9 ) ,  along with ( A 7 )  and 
( A l O ) ,  thus determine the value of 6 according to expres- 
sion ( 2 9 ) .  
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