
Theory of magnetic-field-induced phase transitions in quasi-one-dimensional 
conductors 

V. M. Yakovenko 

L. D. Landau Zplstitute of Theoretical Physics, Academy of Sciences of the USSR 
(Submitted 1 December 1986) 
Zh. Eksp. Teor. Fiz. 93,627-646 (August 1987) 

A model of a layered quasi-one-dimensional metal in a strong magnetic field perpendicular to the 
layer is investigated. Renormalization-group equations for the model are derived in the "fast 
parquet" approximation. Numerical solution of these equations shows that for either sign of 
electron interaction a charge-density wave (CDW) or spin-density wave (SDW) arises in the 
system. If the sign of the interaction corresponds to superconductivity, a sequence of phase 
transitions between the various types of CDW or SDW occurs as the magnetic field strength 
increases. The type of CDW (SDW) is defined by its wave vector, the longitudinal component of 
which is quantized. The dependence of the CDW (SDW) type on the magnetic field strength H is 
determined by numerical solution of the renormalization-group equations for different values of 
H. The results can explain the experimental fact that the sequence of phase transitions in the 
(TMTSF) ,X compounds is induced by a magnetic field from the superconducting phase only. 
The spin structure of the ordering, which may combine both CDW and SDW, is discussed by 
taking into account Zeeman splitting. 

1. INTRODUCTION 

The present article is devoted to a theoretical explana- 
tion of the anomalous behavior of the quasi-one-dimensional 
conductors (TMTSF),X, where X = PF,, CIO,, ReO,, in a 
magnetic field lying along the axis c* of lowest conductivity 
(see the reviews of Refs. 1 and 2) .  For low temperatures 
T 5  1 K in a weak magnetic field, H < H,, - 0.1 T the materi- 
als are superconductors; in the region of fields 
H,, < H < H,,, -4T, they aremetals. InfieldsH> H,,, they 
go into a semimetallic or an insulating phase, in which, ac- 
cording to the NMR data," spin-density wave (SDW) ap- 
pears. The appearance of this phase is accompanied by a 
sequence of phase transitions, according to the magnetic 
field, between different types of SDW. As the magnetic field 
changes the phase transitions occur approximately periodi- 
cally in H -' with a frequency H, : l/H=n/H,. This is indi- 
cated by abundant data on the measurement of magnetore- 
s i~ t ance , ,~~  Hall cond~c t iv i t y ,~~ '~  magnetization13 and 
specific heat.14 The effects described depend only on the sign 
of the projection of H on the c* axis, which testifies to their 
orbital origin. 

It is remarkable that the sequence of phase transitions 
in a magnetic field is observed only if the material is super- 
conducting in a zero magnetic field: for X = PF, (Refs. 4, 
l l ) ,  X = C10, (Ref. I ) ,  X = ReO, (Ref. 7) .  In fact, 
(TMTSF) ,PF, and (TMTSF) ,ReO, are superconducting 
only under pressure. The sequence of phase transitions in a 
magnetic field is observed in these materials only at the same 
pressures as superconductivity, The quasi-one-dimensional 
conductor (TMTSF) ,ClO, can be prepared in the two dif- 
ferent phases R or Q; only the R phase is superconducting. 
The sequence of phase transitions is observed only in the R 
phase. 

A theory of magnetic-field-induced SDWs was first 
proposed by Gor'kov and Lebed'.2s15-'7 It was further devel- 
oped in Refs. 18-2 1. This theory explained the series of ob- 
served effects in terms of the ladder approximation. How- 
ever, from the theoretical work mentioned it follows that the 
SDW in a magnetic field and superconductivity in the ab- 

sence of a magnetic field are mutually exclusive, since their 
appearance would require opposite signs for the electron- 
electron interaction. Moreover, in Ref. 15 it was shown that 
in a magnetic field electrons are to some degree aligned, 
which leads in the ladder approximation to an increase in 
SDW instability. But it is well-known that in one-dimension- 
a1 systems the electron-hole instability competes with super- 
conductivity.22 For a complete description it is necessary to 
employ the parquet approximation used in Refs. 23 and 24. 

In Refs. 25 and 26 Brazovskii and the present author 
developed a perturbation-theory approach to the electron 
hopping amplitude between stacks. It was shown that in very 
strong magnetic fields a SDW or CDW (charge-density 
wave) develops for both signs of the electron-electron inter- 
action. If the interaction has the sign favorable to the appear- 
ance of superconductivity in the absence of a magnetic field, 
then in a very strong field electrons and holes on neighboring 
stacks pair For the opposite sign of interaction (favor- 
able to development of a SDW without a magnetic field) the 
pairing takes place on a single stack.25 Unfortunately, this 
theory is inapplicable to the region of intermediate magnetic 
field where the sequence of phase transitions takes place. 

In this work we use the parquet approximation to solve 
the problem. Within this approximation it is shown that in a 
broad range of magnetic fields a SDW or CDW forms for 
both signs of the electron-elec&on interaction. In the models 
( 1 ) and (2)  discussed below, the sequence of phase transi- 
tions takes place only if the sign of interaction corresponds 
to superconductivity, in agreement with experimental data. 
By numerical solution of the parquet equations we find the 
parameters of the SDW phase appropriate to the different 
values of magnetic field. For very strong fields the results 
obtained agree with the conclusions of the theory of Refs. 25 
and 26. 

2. DERIVATION OF THE PARQUET EQUATIONS 

In the (TMTSF),X compounds the electron hopping 
amplitude between stacks is relatively large in one direction 
(b  axis) and small in the other (c* axis). Therefore we ne- 
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glect hops between layers. We look at a system of parallel 
stacks in a single ( x ,  y )  plane, at a distance b from each 
other. The magnetic field H lies perpendicular to the plane 
fprme: by tke stacks. The model Hamiltonian has the form 
H =  H, + Hi,,,, 

a A Ho = I dx [ -iahuj+ (x. N.  a )  - q ( x .  N ,  a )  
X,OL=* ax 

Here v is the Fermi velocity, x is the coordinate along the 
stacks, and N is the number of stacks. The index a = + 
denotes electrons with momenta near K + k,, where k ,  is 
the Fermi momentum. The hopping amplitude between 
neighboring stacks is t ,  G is the amplitude of the electron 
interaction, e is the charge on the electron, a ~ d  c is the speed 
of light. The exp( f ik,x) factors in the $-operators are 
separated out and cancelled. The oscillatory factor in the 
second term in ( 1 )  appears in the gauge A, = H,, 
A, = A ,  = 0. For simplicity, we will look at spinless fer- 
mions and CDW formation. The role of spins will be dis- 
cussed in Sec. 7 .  

The eigenfunctions of the operator H~ are easily found: 

$,-, ky, a ( x ,  I\[, t )  =exp{i[-&t+k,x+k,N-a)i. sin (k. ,-qx) I ) ,  

The dispersion relation ( 5 )  has a purely one-dimen- 
sional form; the energy does not depend on k,, . Therefore itjs 
possible to transform the eigenfunctions of the operator Ho 
to the Wannier representation, by Fourier-transforming ( 4 )  
in k, : 

( 6 )  
Here J,, (2) is a Bessel function. The wave function ( 6 )  is 
localized near stack with the label m,  which is a quantum 
number. 

We introduce the operators r i+ ( k ,  , m,  a )  and B ( k ,  , m, 
a )  which create and annihilate electrons in the states (6).  In 
this representation the Hamiltonian has the form 

Ro= afiuk,si ( k ,  m, a)ii(k., m, a ) ,  
m,k,,a 

( 7 )  

tem. The integer quantum numbers m ,  m,-m, in ( 7 )  and 
( 8 )  can be interpreted as the numbers of the stacks on which 
electrons are distributed. We will call them the numbers of 
the Wannier stacks, and denote them by small Latin letters 
to differentiate them from the stack numbers in the initial 
Hamiltonian ( 1 ) and ( 2 ) .  In contrast to the case in ( 1 ) and 
( 2 ) ,  hops between Wannier stacks are absent in ( 7 ) ,  but in 
return the interaction term ( 8 )  is nonlocal in Wannier stack 
number. 

The model (7)  and ( 8 )  can be investigated with the 
help of the method of summation over parquet  diagram^^^.^' 
or equivalently by the single-loop approximation in the re- 
normalization-group (RG) method (see the review of Ref. 
28) .  In the model defined by ( 7 )  and ( 8  ) we have two dia- 
grams that are logarithmically divergent in the infrared: the 
Peierls and the Cooper. The problem of summing these dia- 
grams reduces to writing down the RG equations for the 
renormalized interaction amplitudes g ( m  ,, m,, m,, m,, a), 
where w is the infrared cutoff energy. These are the electron 
interaction amplitudes which have energy E - w and momen- 
tum k,  -w/ f iv .  In place of w one can also use the tempera- 
ture T. The expression ( 9 )  is the interaction amplitude for 
w = E ~ ,  where E~ is the energy of the ultraviolet cutoff, hav- 
ing the scale of the Fermi energy E,. 

The RG equations have an intrinsically different form 
in the regions w > fl and 

where fl is the characteristic magnetic field energy. We will 
look initially at the region w > R. Let A  = 2t /a k 1 .  In this 
case the Bessel functions J,  (A ) in ( 9 )  attain their maximum 
for n -A; thus in ( 8 )  the characteristic values of m  ,, m2, m ,  
and m, -A. It follows that for w > t we can neglect the term 
( m ,  + m ,  - m ,  - m,)q-Aq-t  /fiv in the argument of the 
8-function in ( 8 )  in comparison to the term 
( k ,  + k ,  - k ,  - k , )  - a / % .  Then, transforming to the new 
operators 

a ( x ,  IV. a )  = ii (k.. m. a )  J ~ - ~  (-ah) erp (ik,~) , 

we find that the H~miltonian ( 7 )  and (8)  takes the form 
& = H,,,,, where H, and H ~ , ,  look like ( 1 )  and ( 2 )  with 
t  = Oin ( 1 ) and the substitution ofii(x, N, a )  for 4 ( x ,  N, a ) .  
Thus, in the region of energies o > t the model described by 
( 7 )  and ( 8 )  reduces to a purely one-dimensional model of 
spinless fermions. In this model there is only one interaction 
amplitude G [Eq. ( 2 ) ]  for which to write down the RG 
equation. However, it is known29 that in this model the G- 
renormalization does not exist due to the mutual cancella- 
tion of the Peierls and Cooper diagrams. Thus, there is no 
renormalization in the energy interval ( t ,  E,). 

The region (R, t )  of energies cannot be accurately in- 
vestigated; therefore we confine ourselves to the condition 

The expressions ( 7 )  and ( 8  can be considered as the 
Hamiltonian of an effectively quasi-one-dimensional sys- 

In this case renormalization in the interval of energies (R,  t )  
can be neglected due to condition ( 11 ) on the logarithmic 
narrowness of this interval. For fixed t and R the relation- 
ships ( 11 ) can be fulfilled for sufficiently small 1 G I. The 
condition ( 1 1 ) is equivalent to the inequality 
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where T,, is the superconducting transition temperature for 
H = 0. Therefore, when ( 12) is fulfilled renormalization in 
the energy interval (R, E,)  can be neglected. The case 
/Z = 2t /R g 1 is treated in analog with the difference that the 
energy interval (0, t )  is in general absent. 

We now look at the energy region ( 10). The amplitudes 
g(m,,m,, m,, m,, w )  in (8) withm, + m2#m3 + m,donot 
conserve the momentum k, ; therefore the logarithmic cor- 
rections to them are cut off at energy R. For w < R these 
amplitudes remain small ( - G )  and can be neglected. The 
remaining vertices with m, + m, = m, + m, can be para- 
metrized in the following form: 

Lint=- C 2 (m. l ,  W )  6. ( z ,  n+m, 1 )  h ( r ,  TI, 1 ) .  (13) 
n,m,I 

g(m, 1, o)=g(n+m, n+Z, n+m+L, n, o ) ,  (14) 

where & ( x ,  n, a )  result from the Fourier transform in k, of 
2 (k, , n, a). The operator ( 1 5 )  creates an electron-hole pair 
with separation I between the particles. The operator ( 13) 
describes a hop of this pair at distance m. It is evident that in 
a hop the dipole moment el of the pair is conserved. 

The parquet equations for the model (7), ( 13 ) and 
( 15) are easy to derive using the method of Refs. 23 and 30. 
It is necessary to take account of the two diagrams depicted 
in Fig. 1: 

The initial conditions for these equations, in accordance 
with (9) and ( 14), and taking account of the lack of renor- 
malization in the energy interval (R,  E , ) ,  has the form 

3. ANALYSIS OF THE EQUATIONS 

The Eqs. ( 16) represent an infinite system of ordinary 
differential equations. It is convenient to talk of f as the 

FIG. 1. The logarithmically divergent diagrams in the model described by 
( 7 ) ,  ( 1 3 ) .  The f signs signify electrons with momenta near + k,. The 
letters signify the numbers of the Wannier stacks on which the interacting 
electrons are located. 

"time" for the system, and the solution T ( n ,  1, S) of the 
equations can be considered as the evolution in time starting 
from the initial condition ( 17). 

In Ref. 24 equations analogous in form to the Eqs. ( 16) 
were investigated. Following this work, we take the Fourier 
transform of (16) and (17) in the first argument: 

dki dk ,  d f ( k u . 1 7 6 ) = ~ ( k  dE 
11, I , e l -  ~ ~ j - - - f ( ~ , . 1 , , 5 ) f ( k , , 1 2 , ~ ) .  I , . I ~  -n (an) 

,f(k,, 1 , O )  =gJ12(2h cos $) . 
For an approximate solution of the Eqs. ( 18) we neglect for 
the time being the second term on the right-hand side. The 
remaining equations have the general solution 

for some function C(k, ,I). The transition temperature T, is 
determined by the minimum of C(k, , I), which is reached at 
a point (k,, 1,) : 

In the neighborhood of the transition point the singular part 
off (k, , I ,  g) can be rewritten in the form 

with coefficients A -  1 and B- lgl - I .  Substituting (22) in 
( 18), we find that the first term on the right side of ( 18) is of 
order T - ~ ,  and the second of order lglr-I (the singularity is 
weaker due to the integration over k, and k,). Thus for 

the above approximation is self-consistent. A solution of the 
type (22) is called a "moving pole" since the location of the 
pole depends on a continuous parameter, the momentum. 

If we neglect the first term on the right side of Eqs. ( 18) 
we get a "stationary pole" type solution: 

where O(k,, I) is some function. This is shown in Appendix 
A for the case g < 0, that is, when the interaction sign corre- 
sponds to superconductivity. This approximation is not self- 
consistent, since when (24) is substituted into (18) both 
terms on the right side of ( 18) are of the same order: T-'. Of 
course, a stationary pole can in principle arise also when 
both terms in ( 18) are calculated simultaneously. Jumping 
ahead, we note that for numerical solution of the Eqs. ( 18) 
with both terms forg < 0 in the intermediate region of values 
off the behavior off (k, , I, f )  is essentially like a stationary 
pole. However as 6 increases it sooner or later is converted to 
a moving pole. From this we can conclude that the station- 
ary-pole solution is unstable, and the only stable asymptotic 
solution is the moving pole (22). 

We now discuss the character of the ordering that arises 
in the system for T< T,. The singular behavior of the extre- 
mum f (k,, I,, f )  in (22) leads to a singular growth of the 
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corresponding generalized susceptibility for T- T, .24,30 The 
structure of the order parameter for the low-temperature 
phase is determined by the structure of the moving pole (22)  
[see ( 1 3 ) l :  

The order parameter Y,,,, ,,, ( x ,  n )  is characterized by the 
distance I ,  between the electron and hole in the direction 
perpendicular to the stack, and by the center-of-mass mo- 
mentum k ,  of the electron-hole pair in that direction. The 
distance I ,  takes discrete integer values, but the momentum 
k ,  takes on a continuous range of values within the Brillouin 
zone. The dependence of Yk0, ,,, ( x ,  n  ) on ( x ,  n  ) describes the 
fluctuations of the order parameter at large distances. The 
quantity el, is the dipole moment of the electron-hole pair. 
This is a purely microscopic parameter, with no relation to 
the macroscopic dipole moment of the system 

wherep ( r )  is the deviation of the charge density at the point 
r  = ( x ,  N )  from a uniform distribution. A pairing with I, # 0  
does not lead to the appearance of d # O ,  since, as will be seen 
below,p(r) has the form (59)  or (60) .  

We now determine the CDW wave vector described by 
the order parameter Y,,,, ,<, . This can be measured with the 
help of x-ray or neutron scattering. The CDW wave vector is 
equal to the change of photon or neutron momentum upon 
scattering. The scattering of interest to us is described by the 
Hamiltonian 

R,= 1 d s i +  ( x ,  ~)^h( r ,  N )  <$ ( r ,  N ,  -a)$(x ,  N ,  a )  ) 
N,a  

x exp (2 iakFx) ,  (27)  

where 6 + (x, N )  is the creation operator for photons or neu- 
trons. Using the formula ( 6 ) ,  the determination ( 1 5 )  and 
(25)  of the order parameter, and the sum rule for Bessel 
functions, we find 

= z <i+ ( x ,  m,,  -a )  

XZ (2,  m?, a )  )I,-,, (ah )  1,-,,, (-ah) 

xexp  {2iak,x+i (ml-m,)  yx) 

=Y,,,,,>F (k,, lo,  h)exp[i(2kF+l,q)x+ikoN]+ comp. conj., 

(28)  
where the scattering amplitude F(k,, I,, A) has the form 

F(ko, I,, h )  =(-l)'0J,,(2h cos(ko/2))  exp (-ik,lo/2). (29)  

Having substituted the expression (28) in the scattering 
Hamiltonian (27)  and carried out a Fourier transform in x ,  
N, we find 

A,= ;+(K,) T(K , )  6 ( K ~ - K , - K ( ~ ~ ,  k,) ) 
%,Kz 

Yh,i,F(ko, I,, h )  +e.f., (30)  

where the momentum K(I,, k,) = (K,, K, ) transferred to 
the photon or neutron is equal to 

Thus, the longitudinal component of the CDW wave vector 
takes quantized values in accordance with ( 3  1 ), and the per- 
pendicular component equals k,. The quantization of k, is 
described in References 2, 17 and 19. We shall see that this 
effect is tied to the quantization of the perpendicular dipole 
moment el, of the electron-hole pair. We note also the non- 
trivial form of the scattering amplitude F(ko,  I,, il ) in (29 ) .  
For k ,  =  it goes to zero for all 10#0, which makes it diffi- 
cult to observe a structure with such parameters. 

We note that the initial conditions ( 19) are symmetric 
under the interchange ky - - ky and I -  - I.  It is easy to 
verify that the derivative d  f ( k y  , I ,  g ) /dg  in ( 1 8 )  is likewise 
symmetric, if f ( k ,  , I ,  g) is. Therefore the solutions of Eqs. 
( 1 8 )  will also be symmetric in ky and I.  This means that at 
the transition point electron-hole pairs of four types will 
condense simultaneously with different combinations of 
signs of k ,  and I,. The degeneracy in the sign of k ,  and 1, is 
connected with the specific form of the Hamiltonian ( 1 ) . It 
can be shown that if in expression ( 1 )  electron hops to 
farther stacks with M = + 2  are considered, then the sym- 
metry of the initial conditions in ( 19) under the I -  - I in- 
terchange is lost. The symmetry in ky  disappears when the 
structure of the electron hopping integrals is calculated ac- 
curately in a crystal with a triclinic cell. But, so as not to 
complicate the discussion, we will discuss only the simplest 
model ( l o ) ,  which has high symmetry in ky and I. 

The region of applicability of Eqs. ( 18) is limited from 
the small-T side by the growth of critical f l~c tua t i ons .~ ' . ~~  
Using the results of Refs. 3  1,23, and 32 we can evaluate the 
coefficients of the Ginzburg-Landau functional, and find 
that in the two-dimensional system discussed, the critical 
fluctuations are small under the condition 

Therefore, expression (22)  applies in the region given by the 
inequalities (23 )  and (32) .  They are compatible if 

Fulfillment of the inequality (33)  is one of the necessary 
conditions for the applicability of the theory developed. 

After the general analysis carried out in this section, the 
problem reduces to the following: what are the parameters 
k,, lo, Jc of the moving pole for the given initial conditions 
(19) ,  in particular for the given magnetic field H? It is not 
possible to find in explicit form the exact solution of the 
system ( 18) of differential equations, although it is possible 
to make a set of exact statements, which are collected in 
Appendix B. These statements, however, do not help to an- 
swer the question set forth. Two methods have been used to 
solve the problem: perturbation theory for small A (Sec. 4) 
and numerical solution of the system of Eqs. (18)  (Sec. 5).  

4. THE PERTURBATION THEORY 

The system of Eqs. (18)  does not contain any param- 
eters, although the initial conditions ( 19) depend on the pa- 
rameteril. In this section we discuss the case of small il. We 
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drop from expression ( 19) terms higher than second order 
in A, carry out a Fourier transform in k, and turn again to 
Eqs. ( 16). The initial conditions have the form 

Expression (34) has a simple physical interpretation. In a 
strong magnetic field (for small A) electrons and holes can 
pair up only on a given (I  = 0)  or on neighboring (1 = + 1 ) 
Wannier stacks and can hop no farther than neighboring 
Wannier stacks: T(m, I, 0 )  = O(il 4,  for (m 1 > 1,II I > 1 [see 
Eq. (1311. 

The hierarchy of scales in the initial conditions (34) is 
preserved for evolution given by the Eqs. ( 16), for a certain 
range of 6. Therefore for not too large we can choose which 
small terms in Eqs. ( 16) to keep. We substitute (34) in ( 16) 
and discard on the right-hand side of (16) terms in A of 
degree greater than two. Then these equations take the form 

They have the solution 

It is obvious that, as in the purely one-dimensional case, the 
electron interaction amplitude on a single Wannier stack, 
r (0 ,0 ,  <), is not renormalized. With evolution in time{ the 
hopping amplitude between neighboring Wannier stacks 
grows for a pair with I = 0 (for g >  0 )  or for a pair with 
1 = + 1 (for g <O). Growth continues as in (36) until ( 
reaches a certain value El, for which the renormalized quan- 
tities r ( f 1,0, <) or r ( + 1, + I,{) are no longer compar- 
able to r (0 ,0 ,  g): <,=ln[2(3 - y)/A 2]/ylgl, where y = 2 
for g > 0, and y = 1 for g < 0. For { > 6, we cannot use the 
equations above. 

For a qualitative understanding of the further behavior 
of the system we can connect (36) directly with the moving- 
pole solution (22) : 

!(kg, 1, E) =-lglhz exp(y l g l  E)cos k,6,~,,~-1 
X [ ~ - Y +  (5-Si) JgIh2ex~(~IgIE)cosk,I-'. (37) 

We see that for either sign of g the pole in { is most rapidly 
reached at k, = a .  There {, - <, - Ig(-I and 

From the analysis above we can draw the following con- 
clusions. For both signs of the interaction g in strong mag- 
netic fields (small A )  a CDW arises. For positive g it forms 
with parameters I, = 0, k, = a ,  and for negative g, which 
corresponds to superconductivity, with parameters 
1, = f 1, k ,  = T. Thus, for g >  0 the electron-hole pairing 
occurs on a single Wannier stack, and for g < 0, on neighbor- 
ing Wannier stacks. In both cases the order parameter 
changes sign with a transition to the neighboring Wannier 
stack (ky = a). The transition temperature is given by Eq. 
(38). In this formula the exponent is exact, and the expres- 
sion raised to this power is determined to within a constant. 
The transition temperature decreases with increasing H.  All 

these conclusions agree with the results in Refs. 25 and 26, 
which were obtained by perturbation theory in t ,  applied 
directly to the Hamiltonian in Eqs. ( 1 ) and (2) .  

5. NUMERICAL SOLUTION 

In the most interesting case, A 2 1, perturbation theory 
is inapplicable; therefore numerical methods were used. For 
numerical solution it is convenient to Fourier-transform 
(18) in the second argument and to exclude the coupling 
constant g from the critical conditions: 

f (k , ,1 ,E)+h(k , ,qu ,5) / lg l ,  %=lg lE,  -n&qufn,(39)  

d'L(kv' qu' ') = j $ [h(k,, p, 5) h (k,, q,-p, 5) 
d5 - n 

Since the function h (k,, q,, f )  is symmetric in k, and 
qy (see Sec. 3) it was investigated only in the first quadrant 
of the Brillouin zone: 

In the region (42) a grid of 51 X 5 1 points was introduced, 
and Eqs. (40) were discretized on the points of the grid. The 
resulting system of 2601 ordinary differential equations 
were solved by the fourth-order Runge-Kutta method, with 
several values of the parameter V and both signs of g. The 
step in time f was 0.1. The functions h(ky , q,, f )  of the 
variables k, and q, were represented in the k, -qy plane with 
the help of contour lines. 

As an illustration, typical moments in the evolution are 
represented in Figs. 2-4 for the case V = 16, g < 0. In Fig. 2 
the initial conditions h(ky , q,, 0) are represented; in Fig. 3 
the initial derivative dh (k, , q,, f)/df =, , that is, the 
right-hand side of (40), is calculated at h (k, , qy , 0). In Fig. 
4, the function h(ky , q,; 3.5) is shown for 6 = 3.5, near J,. 
The contours in these drawings are constructed in the fol- 
lowing way. The maximum and minimum values are found 
for the represented function of two variables R (k ,  , qy ). For 
example, in Fig. 2, R,,, = 0.4, R,,, = - 1; in Fig. 4, 
R,,, = 19, R,,, = - 23. In an interval (R,,,-R,,, )/12, 
11 contours are produced. The direction of decrease is indi- 
cated by the cross-lines. Figure 4 shows conclusively that a 
singularity arises in the form of the loth harmonic of q, for 
specified k, = k,, that is, in the form of the moving pole 
(22) (in Fig. 4, lo = 3, k, = 0 . 3 8 ~ ) .  It was especially veri- 
fied that for 5 = 3.5, 3.6, that is, near the singularity, the 
shape of h (k,, q,, , f )  with q, for fixed k, = k, is nearly a 
cosine. Note that for 1, = 3 it would have been natural to 
expect k, = ~ / 3 .  The modest deviation in the value found, 
k, = 0 . 3 8 ~ ,  is associated with the errors due to the discrete 
approximation to Eqs. (40). 

The behavior of the system near the singularity has the 
character of the moving pole (22) for all cases studied. Be- 
low, the parameters of the moving pole are cited as a func- 
tion of V and sign (g) : 
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FIG. 2. The initial conditions of Eq. (41 ) for V = 16, g < 0. 

V 0.5 2 10 0..5 2 4 7 10 13 16 
sign (g) + + + - - - - - - - 
ko/n 1 1 1 1 1 0 0 0 0 I 038  
lo  0 0 0 1  1 0 1 2  0 3  
5, 1.3 0.8 0.6 2.6 1.8 2.8 3.8 3.4 3.3 3.6 

The value off, here is the "time" at which the solution of the 
system (40) reached the singularity. It is related to the tran- 
sition temperature by the formula 

A more detailed survey in Vwas not undertaken, due to the 
high cost in machine time. The same applies to large V, since 
in this case a decrease in grid mesh size is necessary due to 
the rapid'oscillations in the initial conditions. 

Consideration of the table above allows us to draw the 
following conclusions. The numerical solutions for V = 0.5 
and 2 agree with the results of perturbation theory for 
A = V/4< 1 (Sec. 4).  Furthermore, in the case g > 0 the 
same state with I, = 0, k, = a is formed independent of mag- 
netic field value. In agreement with (3 1 ), it has a corre- 

FIG. 3. The initial derivative (40) for V = 16, < = 0. 

FIG. 4. The function h ( k ,  , q,; 3.5) obtained from evolution of the initial 
conditions of Fig. 2 in accordance with Eqs. (40). 

sponding wave vector K = (2k,, + a ) ;  i.e., there is cou- 
pling with the complete nesting vector. Obviously, a CDW 
of this type forms even for H = 0; in the model ( 1) and (2)  
studied,there is complete nesting in the absence of a magnet- 
ic field. Therefore, for the given model in the caseg > 0 it is in 
general impossible to speak of the magnetic field inducing a 
CDW. The CDW exists for H = 0 and continues to exist 
unchanged for any value of H. We note, however, that ac- 
cording to the table and Eq. (38), the transition temperature 
decreases as H increases: T, (H) - 0 for H- eel ( V- 0) .  

In the g < 0 case for a zero magnetic field, superconduc- 
tivity obviously exists. A sufficiently strong [satisfying con- 
dition (12) 1 magnetic field induces a CDW. As seen from 
the table, the type of CDW formed changes according to the 
magnitude of H, that is, a succession of phase transitions 
takes place as a function of magnetic field. Phases with non- 
trivial values of k,, I,, occur; for example, pairs can form not 
only on nearest neighbors (I, = 0, l )  but farther apart 
(I, = 2,3). According to the table, the phase transitions oc- 
cur approximately periodically with magnetic field although 
there is, evidently, not strict periodicity. 

The transition temperature has a maximum for V = 2. 
We now consider the question of the stability of the 

results when the initial conditions depend slightly from Eq. 
(41 ). These deviations can be, for instance, due to renormal- 
ization in the energy range (R, t)  for R < t, which we have 
neglected until now. Figures 2 and 3 are fairly typical pic- 
tures of the initial state for V>4. We see that the initial deriv- 
ative dh(k, , q,, O)/df (Fig. 3) has a sharp maximum for 
k, = a ,  uniform in q, . Forg > 0 there is a similar maximum 
in the initial conditions h (k, , q, , 0)  (Fig. 2) .  Thus it is 
natural that forg > 0 there is always a final state with k, = a 
and a zero harmonic in q,, which corresponds to I ,  = 0. 
Small corrections scarcely change the type of final state. 

For g <  0 the situation changes. The initial derivative 
has the sharp maximum formerly mentioned; however, 
h (k, , q, , 0 )  now has a sharp minimum in this location due to 
the change in sign of g. The final state is determined by a 
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nontrivial interplay of small terms on a background of two 
large factors acting in opposing directions. Therefore small 
changes in the initial conditions for a change in Vproduce a 
change in the type of final state, which is reflected in the 
table. Deviations in the initial conditions from Eqs. (41 ) for 
g < 0 can, evidently, change the types of final states in the 
table. They do not, however, change the fact that the succes- 
sion of phase transitions occurs only for a sign of interaction 
corresponding to superconductivity, since this phenomenon 
is directly linked to the sensitivity of Eqs. (40) to initial 
conditions for g < 0. 

6. COMPARISON WITH OTHER MODELS 

In this section we discuss the connection between the 
proposed theory and the mean-field theories, which are 
based on the ladder approximation.2.15-21 In these theories 
only the Peierls diagrams are summed over, and Cooper dia- 
grams are not accounted for. This corresponds to the remo- 
val of the second term on the right-hand side of Eqs. ( 18). 
For the model of Eqs. ( 1) and (2) ,  summation over Peierls 
diagrams alone gives the following expression: 

which can be found by putting ( 19) in place of C - ' (k, , I) in 
(20) [see Eq. (45) and, for example, Eq. ( 15) in Ref. 171. 
Having examined expression (45), we may draw the follow- 
ing conclusions. First, the pole in f in (45) exists only for 
g > 0. Second, the singularity is reached most rapidly for 
k, = r ,  1 = 0, T, in this case being independent of H; that is, 
the sequence of phase transitions is absent. To avoid the re- 
duction in H-dependence, modifications of the model were 
studied in Ref. 15. One of these was to take account of elec- 
tron hops to further stacks with M = + 2 in the Hamilto- 
nian ( 1 ) . In this case magnetic field dependence is not lost 
for any ky , I ,  and the sequence of phase transitions can be 
explained. In Ref. 15 another model was proposed, which 
was investigated in detail in Ref. 17. In it, it was proposed 
that g in Eq. (45) be not a constant, but a function of k,, 
such that the pole is achieved most rapidly fork, = 0. The 
dependence of g on ky can only be connected with the inter- 
action (2) of electrons on different stacks, which in the pres- 
ent work we have taken to be negligible in comparison with 
interaction on a single stack. 

It is clear, from the analysis in the preceding sections, 
that in the model of Eqs. ( 1 ) and (2) neglect of the Cooper 
diagrams is justified only near the transition point when the 
system enters the moving pole regime. The existence of the 
pole itself forg < 0 is guaranteed by the inclusion of the Coo- 
per diagrams in the earlier stages of evolution. This means 
that in Eq. (20), in place of C-'(k,, I), it is necessary to 
insert, not the initial conditions as in (45), but a renormal- 
ized amplitude differing strongly from ( 19). It is remarkable 
that with the Cooper pathway accounted for an explanation 
of the sequence of phase transitions and its connection with 
superconductivity can be obtained by using the extremely 
simplified model ( 1 ), (2)  without additional complication 
assumptions. It is interesting that, in agreement with the 
table, for g < 0 a CDW actually arises with k,, = 0 in a broad 
range of values of V. The method developed in the present 
work allows clarification of the reason for this phenomenon 

(the renormalization of the interaction amplitude) in the 
region of its existence (2  < V <  16). 

7. THE ROLE OF THE SPINS 

Until now we have looked at spinless fermions. When 
spins are accounted for the Hamiltonian of the model ( 1 ), 
(2 )  is modified in the following way. In Eq. ( 1 ) it is neces- 
sary to add summation over the spin indices and the Zeeman 
term: 

k,=-p B H dxoGt (x l  N ,  a, u)$(x.  N ,  a. a ) .  (46) 
N,a.a 

where o = + is the spin index. The interaction Hamilto- 
nian (2)  will have the form 

We introduce new variables $ ( x ,  N, a, g) so that the 
Zeeman term can be included in H,: 

%(x, N ,  a,  o)=Gf(x ,  N ,  a, a)esp [ i a o q , ~ ] ,  q s = ~ B H / h v .  

(49) 
In the $-representation the Hamiltonian H, has the pre- 
vious form ( 1 ) (except for the suymation over spin in- 
dices). The interaction Hamiltonian Hi,, has the form (47), 
where the scattering amplitudes are equal to 

Since H, is of the form ( 1 ) , it is possible to transform to 
the basis ( 6 ) .  In this representation the interaction Hamilto- 
nian Hi,, will be of the form (8), (9)  with the spin structure 
of (47) and (50). Since the interaction G, of Eq. (50) has an 
oscillatory coefficient it does not conserve the longitudinal 
momentum k, in Eq. (8). Thus the logarithmic divergence 
of this vertex is cut off at an energy - 4Rs = 4fSuqs = 4p, H. 
For T 4 4 Q  this vertex can be neglected. We shall show that 
in the (TMTSF),X compounds the Zeeman energy cutoff 
4Cls and the orbital R = ebHv/c of ( l o )  are of the same 
order of magnitude and must therefore be considered simul- 
taneously. In fact, using the standard formula v = aota /dfi 
and inserting the parameters for the (TMTSF),X com- 
pounds t ,  = 0.25 eV, a, = 7.3 A and b = 7.7 A, we get 

Thus, in the energy region 

it is only necessary to take account of the scattering ampli- 
tudes Ga and G,. When account is taken of the selection 
rules described the interaction Hamiltonian ( 13) will have 
the form 

IV 

, , = - , ~ ~ ( m , ) ~ + x , + m , x , , ,  n , , , , , ~  i-I (53) 

where 
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O1 (x, 7 2 ,  1)=hr+(x, n+l, -, + ) i ' ( , ~ ,  r l ,  +, +), 
OII(x, 17, l)=i '+(x, n+l, -, - ) i t ( x ,  n ,  +. -1, 

To find the RG equations for the vertices Gi ( n ,  I, .9 /2dv ,  
we must put on the lines of Fig. 1 spin indices, in all the 
possible ways consistent with the constraints on the spin 
structure of the vertices. It is found that the RG equations 
for the vertices T i  (n ,  1, l) with different i are independent 
and have the form ( 16) for each i = I, 11,111, IV. The lack of 
cross-terms in i in the RG equations is connected, aside from 
the Zeeman splitting, with the fact th? in theAHamilto$an 
(532 there are no terms of the type Or,, + 0,' and 0," 
+ 0 ,,, . Such terms are permitted by the momentum conser- 
vation law. However, they are absent in (47) due to the spin 
conservation rule, and do not arise in the renormalization 
process. 

The initial conditions for Eqs. ( 16) have the form ( 17), 
where in place of G we must put, according to (50) and (54), 
G, for i = I, I1 and Gb for i = 111, IV. In the expression 
(SO), for g ,  and g, we must take the values 
g l (0)  = g , ( l )  I ( = ,  and g2(0) = g 2 ( l )  I(=, appropriate to 
the energy R. [We recall that 6 = ln(R/T).] They can be 
found from the starting vertices g , (  - l n (~ , /R) ) ,  
g, ( - ln(&,/R) ) determined on the molecular scale E,, with 
the aid of renormalization in the energy interval (R, E, ) .  The 
RG equations in this interval have the purely one-dimen- 
sional form":30 

According to Refs. 25 and 33, in the compounds consideredz' 

Due to Eqs. (55) and (56), g, (l) dies off as increases; thus 
the renormalized value g, (0) > 0 is small, and g,(O) < 0. 
Putting these inequalities into (50), we see that 

So, when the Zeeman energy is accounted for in the spin 
case, two types of electron-hole instabilities are possil$e: 
pairing with pzrallel spins (order parameters P I '  = ( 0 ,  ) 
and rl'' = (O,, ) ) 2nd with antiparallel2pins (order pa- 
rameters T"") = (O,,, ) and r"' = (0,' ) ). The RG 
equations for each type of pairing are independent and agree 
with Eqs. ( 16) for spinless fermions when in the initial con- 
ditions ( 17) of G is replaced by G, or Gb respectively. Since 
G, < 0 and G, < 0, the sequence of phase transitions with 
magnetic field described in Sec. 5 can be observed for both 
types of ordering. However, since I G, ( > I G, I, pairing with 
parallel spins occurs at a higher temperature. 

Let us calculate the modulation of charge densityp and 
spin s corresponding to the different order parameters: 

where T,,. are the Fauli matrices. Returning in (54) to the 
original operators $ of (49) and using Eq. (28), it is not 

difficult to find that for pairing with parallel spins 

+ik ,N l )F (ko , l , , ~~ )+comp .  conj., s,=s,=O, 

(59) 
where F(k,,  I,, A )  is given by Eq. (29). Thus, in this case a 
modulation of both charge and spin arises. Both spin and 
charge are modulated along the stack (the x-axis) with two 
different spatial frequencies, differing in 49, = 4p, H / f i v .  
We see that pairing with parallel spins is associated with 
features of both a CDW and an SDW. This would make it 
possible to measure the wave vector of the charge modula- 
tion with the aid of x-ray or unpolarized neutron scattering. 
From an experimental point of view, this is easier than mea- 
suring the wave vector of a spin modulation. A characteristic 
feature of this wave should be the line doublet, the distance 
between the x-components of which grows in proportion to 
H within the boundaries of one region of the phase diagram 
with fixed k, and I,. Moreover, the spin modulation will give 
rise to an inhomogeneity of the local magnetic field, leading 
to an inhomogeneous broadening of the NMR linewidth. 
This very effect is used in experimental investigations to 
identify SDW formation in a magnetic field.3' 

Since the difference in G, and G,  is not great, due to the 
small magnitude of g, (0) ,  it cannot be ruled out that order- 
ing with antiparallel spins may be favorable for some reason. 
In this case 

+ i k o N ] F ( k o ,  I,, b )  + comp. conj., p=s,=O. 

(60) 
We see that charge modulation is absent, and the spin vector 
lies in the plane perpendicular to H. 

8. CONCLUSIONS 

In the present work we have analyzed the model ( I ) ,  
(2)  of a layered quasi-one-dimensional metal in a magnetic 
field H perpendicular to the layer. It has been shown that the 
behavior of the system depends strongly on the sign of the 
interactiong. Forg > 0 and H = 0 a CDW with a fully nested 
wave vector forms. As H increases, the type of CDW does 
not change; the transition temperature decreases and tends 
to zero as H -  CQ according to Eq. (38). Forg < 0, the system 
exhibits superconductivity for H = 0. A sufficiently strong 
magnetic field [fulfilling condition (12)] induces a CDW. 
As H increases, a series of phase transitions occurs in the 
system between different types of CDW. The type of CDW is 
determined by its wave vector, the longitudinal component 
of which takes on the quantized values given by Eq. (31 ). 
The dependence of the type of CDW on magnetic field is 
presented in the table. In accordance with Eq. (44), the tran- 
sitions occur approximately periodically in 1/H. For 
H>4tc/ebu a CDW is established with electron-hole pairing 
on neighboring (I, = 1 ) Wannier stacks. For further in- 
crease i nH  the type of CDW does not change, and the transi- 
tion temperature tends to zero for H-. CQ (Eq. 38). The re- 

362 Sov. Phys. JETP 66 (2), August 1987 V. M. Yakovenko 362 



gion of applicability of the theory is limited by the condition 
JgJ4f (Eq. 33). 

The generalization of model ( 1 ) , (2)  for fermions with 
spin has also been investigated. In this model two types of 
electron-hole pairings are possible: with parallel and anti- 
parallel spins. In the first case a modulation of spin and 
charge arises along the stack with two different spatial fre- 
quencies differing by 4p, H /&I. In the second case only a 
spin modulation with a single frequency occurs. When Zee- 
man splitting is accounted for, both types of instability are 
described by the same parquet equations as the instability in 
the spinless-fermion model of Eqs. ( 1 ), (2) .  With a choice of 
signs of the microscopic constants appropriate to the 
(TMTSF),X compounds, parallel-spin pairing occurs at 
higher temperatures. 

We now discuss the connection of the proposed theory 
with experiment. We note again that in all three materials in 
which the sequence of phase transitions is observed 
[X = PF, (Refs. 3, 11, 12); X = C10, (Ref. 1);  X = ReO, 
(Ref. 7) ] a superconducting state exists for zero magnetic 
field. These facts are in complete agreement with the conclu- 
sions of our theory. We also note that the negative slope of 
the T, (H) curve predicted by the theory [Eq. (38)] for 
large H has been observed for H-25 T in resistivity mea- 
s u r e m e n t ~ . ~ ~  According to the theory developed above, this 
means that in fields H > 2 5  T the compound 
(TMTSF),ClO, goes into the metallic phase. It would be 
interesting to experimentally verify this assertion with the 
aid of appropriate methods, for instance by NMR. For a 
final verification of the theory it is necessary to carry out 
measurements of the H-dependence of the SDW wave vector 
and compare with the results of the table in Sec. 5. Compar- 
ing Eq. (44) with the experimental value H, = 76 T for 
(TMTSF),PF, (Ref. 4) and using the values of v and b cited 
in Sec. 7, we find t = t, /58 = 4.3 meV. 

In contrast to (TMTSF),PF,, in (TMTSF),ClO, 
(Refs. 7, 35, 36) and (TMTSF),ReO, (Ref. 7) there are, 
besides the sequence of phase transitions (the so-called slow 
oscillations), also small oscillations in the magnetoresis- 
tance. They are periodic in H - ' with a high frequency Hf 
and are called the "fast oscillations": A (  l /H) = l/Hf. The 
theory discussed in this article describes the slow oscilla- 
tions. To explain the second type of oscillations we need to 
introduce an additional physical parameter into the model. 
Brazovskir and the author proposed a theory in Ref. 26 ac- 
cording to which the fast oscillations arise due to a difference 
in the energy x of neighboring  stack^.^' This difference is 
linked to the doubling of the crystalline lattice period of 
(TMTSF),ClO, in the direction perpendicular to the stacks 
due to ordering of the ClO, anions (see details in Refs. 37 
and 25). According to the theory,25 which explains the insu- 
lating, superconducting and magnetic aspects of the 
(TMTSF),X compounds from a unified viewpoint, the in- 
equality x % t applies. Therefore the energy spectrum is split 
into two sub-bands with transverse width 4t , / x .  The theory 
discussed in the present article applies to electron-hole pair- 
ing in the same sub-band, if we replace the transfer integral t 
in Eq. ( 1 ) by an effective value: 

The fast oscillations arise because of a small interband inter- 

action. A detailed analysis of this model will be discussed in a 
separate article. We will only give the values of the experi- 
mental parameters here. From Eqs. (44) and (61 ) we find 
that the frequency of the slow oscillations is equal to 
Hs ~ 4 t  ,c/3xebv; according to Ref. 26, Hf = xc/2ebv. Sub- 
stituting in these formulas the experimental values for 
(TMTSF),ClO, (Ref. 8), H, ~ 2 3  T and Hf = 275 T, and 
using the values of v and b cited in Sec. 7, we find x = 83 
meV, t = 15 meV, t * = 2.6 meV and x/t = 5.7. 

Let us examine whether the conditions of applicability 
of the theory in Eqs. ( 12) and (33) are satisfied in real mate- 
rials. The observed phenomena lie in the range H-4-10 T. 
These fields correspond, according to Eq. (5  1 ), to charac- 
teristic energies a - 7-1 8 K. The transition temperatures 
are 1 K for superconductivity and 1.4 K for the SDW in a 
magnetic field. Obviously condition ( 12) is fulfilled, al- 
though ln(fl/T) is not too large. This means that the inter- 
actions in the system are not very small. One may expect, 
however, that the theory discussed here for small Igl will 
remain qualitatively valid for large Igl. 

In this work we have not investigated the influence of 
the hopping amplitude t ll = t, along the magnetic field on 
the system's behavior. In Ref. 17, t, is used to find H,,, (see 
the Introduction). Within the parquet approach, taking ac- 
count of t leads to the separation for w < t ,, of the Peierls 
and Cooper channels.29 In the region w < t ,, they can be con- 
sidered independent. The limiting case of large transfer 
along the magnetic field was discussed in Ref. 38, where only 
Cooper diagrams were summed. It was shown that at low 
temperatures superconductivity is not destroyed, no matter 
how large the magnetic field. Such a situation can in princi- 
ple be observed experimentally when the magnetic field is 
directed along the b-axis. 

The author thanks S. A. Brazovskii for the continuing 
interest in this work and numerous discussions; L. N. 
Shchur for help in computational work; and L. P. Gor'kov, 
I. E. Dzyaloshinskii, A. G. Lebed', V. L. Pokrovskii and D. 
E. Khmel'nitskii for useful discussions. 

APPENDIX A 

In this appendix Eqs. ( 18) are solved without the first 
term on the right-hand side. It is convenient to do a Fourier 
transform in the second argument and go to Eqs. (40). We 
perform a charge of arguments: 

Then Eqs. (40), without the first term on the right-hand 
side, will have the form 

27 

dk 
dL(k~,  kz. E)/dE=- JZ;; ~ ( k , ,  k, E) ~ ( k ,  k,, E) .  (A21 

- .7 

We now expand the integral kernel L(k,,  k,, {) in its eigen- 
functions: 

n 

The spectrum of Eq. (A3) is necessarily discrete, the inte- 
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gration having been carried out in a finite interval. Substitut- 
ing ( A 4 )  in ( A 2 ) ,  we get 

Equations (A5 have a solution of the following form: only 
the eigenvalues A, (g), but not the eigenfunctions p, ( k ,  
6 )  = p, ( k ) ,  depend on 6: 

The parameters A, and the eigenfunctions p, ( k )  must be 
found from Eqs. ( A 3 )  with the initial kernel L ( k , ,  k,, 0 ) ,  
which, according to ( 4 1 )  and ( A l )  has the form 

For g < 0  we expect that at least some of the eigenvalues will 
have A, < 0.  Then in ( A 7 )  we will have a singularity in {, 
which is determined by the negative eigenvalue A, with the 
largest absolute value. Near the singularity 

In contrast with Eq. ( 2 2 ) ,  in the denominator of ( A 9 )  there 
is no dependence on the continuous parameters k,, or k,, 
therefore such a solution is called a "stationary pole." By 
performing the inverse transformation in k ,  and k,  we get 
the expression ( 2 4 ) .  

APPENDIX B 

In this appendix a set of exact expressions relevant to 
the system of Eqs. ( 18) is collected. We introduce the two- 
dimensional vector p = ( k , ,  1)  and the vector product of 
P I  = ( k , ,  1 )  and p2 = ( k 2 ,  I ) :  

Then Eqs. ( 18) can be written in the form 

1 .  The system ( B l )  of differential equations has the 
integral of motion 

1 = p ,  5 ,  dZ(O/dE=O. ( B 2 )  
P 

The expression (B2 was used to monitor the accuracy of the 
numerical solution of Eqs. (B1 ) (Sec. 5 ) .  In the final stages 
of evolution the deviation of I ( 6 )  from the initial value I ( 0 )  
was less than 10%. 

2. The system ( B  1 ) can be rewritten in the form of equa- 
tions of dissipative dynamics: 

where the functional S has the form 

Due to Eq. ( B 3 )  the functional S grows monotonically with 
evolution time: 

The existence of such a function for the RG equations of 
two-dimensional field-theory models was proven in a gen- 
eral form by Zamolod~hikov.~~ 

3. Let us examine the functional 

It is easy to verify that, in accordance with (B1 ), ( B 4 ) ,  and 
(BS) ,  

"As in Sec. 2, we will neglect renormalization in the energy interval ( a ,  t )  
for < t, assuming condition ( 11 ) to be satisfied. 

Z'Formula (93) of Ref. 25 contains a misprint. In the expression men- 
tioned it is necessary to take the opposite sign of the inequality. 

3'In Ref. 17 the fast oscillations are connected with the transfer of elec- 
trons between stacks within a layer, and the slow oscillations with trans- 
fer between layers (along the c-axis). 
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