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All superconducting structures which are possible from the viewpoint of gauge symmetry and 
which exhibit nontrivial violation of gauge symmetry are determined. These are 58 
nonmagnetic structures, 73 ferromagnetic structures, and 113 antiferromagnetic structures. 
Some new effects are predicted for "exotic" superconductors. 

INTRODUCTION 

As is well known, the phenomenon of superconductivi- 
ty is conditioned by a spontaneous breakdown of gauge sym- 
metry. The Hamiltonian of the electrons in the metal is in- 
variant with respect to a gauge transformation of the 
electron creation and annihilation operators. This is simply 
a mathematical expression of the conservation of electron 
number. A superconducting state changes under such a 
transformation and is transformed into another equivalent 
state. Therefore a superconductor is characterized by a com- 
plex function $, the phase of which is the degeneracy param- 
eter. In normal superconductors the $ function does not un- 
dergo any change for pure crystal transformations 
(rotations, reflections, and translations). Recently Gor'kov 
and Volovik [ 1 ] have called attention to a new class of su- 
perconductors, in which the order parameter changes under 
some crystal transformations. It was shown in [ 11 that quite 
unusual physical properties will be observed, properties 
which are determined by the nontrivial way in which gauge 
symmetry is violated. Gor'kov and Volovik [ 1 ] have given 
an extension of the Landau-Ginzburg theory for this new 
class of superconductors and have formulated the general 
problem of determining all possible ways in which the gauge 
symmetry can be violated. The method of solving this prob- 
lem proposed in Ref. [ 1 ] is, however, cumbersome and, as 
will follow from the results to be presented below, it needs to 
be augmented. 

In place of a formal search for the set of combinations of 
usual and gauge transformations which make up the symme- 
try groups, in the present paper the complete solution of the 
problem posed in Ref. [ 1 ] is obtained by a method developed 
by Andreev and the present author [2] for the investigation 
of the exchange symmetry of magnetic materials. This sim- 
plifies the problem considerably, since it suffices to consider 
the one- and two-dimensional representations of the symme- 
try group of the crystal. It was shown that many supercon- 
ducting structures which would be possible from the point of 
view of their symmetry turn out to be in principle unstable. 
This is a general effect for systems with continuous degener- 
acy (e.g., exchange magnetic materials, liquid crystals). An 

space. Thus we will deal with the exact magnetic-gauge sym- 
metry of the superconductors. 

GAUGE SYMMETRY 

A derivation of the gauge symmetry groups and the in- 
vestigation of a series of general properties of states with 
broken gauge symmetry is possible without having a detailed 
knowledge of the structure of the space of arguments 7 of the 
function $ which characterizes the superconductor. What is 
important is that these arguments (for example, the electron 
momenta) should be subject to definite changes under the 
action of crystallographic transformations. Let the group G 
be the group of crystallographic symmetry of the supercon- 
ductor, i.e., the symmetry group of the microscopic charge 
density, and in general of all the physical characteristics 
which do not change under gauge transformations and un- 
der a change of the sign of time, R. We call attention to the 
fact that, in general, the group G differs from the symmetry 
group of the normal state. Thus, for instance, if the phase 
transition of the second kind into the superconducting state 
(cf. [ 1 ] ) corresponds to a three- dimensional representation 
of the symmetry group of the normal state, then the crystal 
symmetry is necessarily lower after the transition. 

We expand the function $(v) in terms of physically 
irreducible representations (cf. [4] $96) of the group G 

where the functions $,, (q) transform according to the nth 
representation and the index a labels the functions belong- 
ing to this representation. The following remark must be 
made about the functions +,, (7). According to the rules of 
quantum mechanics the state described by the function $ 
goes over into the state described by the complex conjugate 
function $* under time reversal R. In the case when there 
exists a gauge transformation C, = exp(iM/dq) for which 
its action together with R does not modify the wave function 
$ the state is nonmagnetic. This is possible only when the 
function $ has the form 

equivalence is established between many structures of coex- 4=x(rl) e", 
istence of ordinary superconductivity with some type of 

(2)  

magnetic ordering, coexistence which has been discussed in where the functionx(7) is real. Such a state cannot be char- 
the literature long ago. acterized by nonvanishing expectation values of the physical 

Since the phenomenon of superconductivity is observed quantities which are invariant under gauge transformations 
only at low temperatures there is no hope of obtaining supe- but change when the sign of the time changes, such as the 
conductors with especially small relativistic effects. There- current density or magnetization density. If the function $is 
fore we shall not consider independent rotations of the spin intrinsically complex, i.e., 
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$={x'(q)+ix"(q))e'lp, ( 3 )  

where the real functions X' and X" are linearly independent, 
then the state will be magnetic. Therefore the functions $,, 
in the expansion ( 1 ) may appear either in the form (2)  or in 
the form (3), where in the latter case the functions x;, and 
xia which realize the same representation, transform inde- 
pendently. 

The gauge symmetry of the superconductor is com- 
pletely determined by the set of functions $,, which appear 
in the expansion ( 1 ) . The maximum number of such sets is 
severely restricted. Indeed, let us form out of the functions 
$,, the scalar quadratic forms $, $% + $:a $, . These do 
not change under gauge transformations and under a change 
of the sign of time, since in an equilibrium state they must be 
invariant with respect to the group G. On the other hand, 
these quantities transform under the direct product of the 
representations n and m. Since only unitary representations 
participate in the expansion ( 1 ), the representation n 8 m 
contains the identity representation only if n coincides with 
m. Therefore 

$ncz$m~*+$na*$m~=an (q) GnmGcrg, (4) 

where the a, (q  ) are some functions which are invariant un- 
der the group G. The condition (4) is satisfied in the follow- 
ing three essentially distinct cases: 

1 ) The function $of the form (2)  transforms according 
to the identity representation. This is the usual supercon- 
ducting state. 

2) The function $ of the form (2)  transforms according 
to a one-dimensional representation different from the iden- 
tity representation. The gauge symmetry group of this super- 
conductor consists of the crystallographic transformations 
which do not change the function $, and the products of a 
gauge transformation C,, by a crystallographic transforma- 
tion which changes the sign of the function $. These groups 
are obviously isomorphic to the magnetic symmetry groups 
of antiferromagnetic materials. 3) The function ICI has the 
form ( 3 )  where the functionsx' andx" transform according 
to either the same two or according to two different one- 
dimensional representations, or they realize a two-dimen- 
sional representation. Such a superconductor is character- 
ized by magnetic ordering. Of the two components of the 
$-function 

$ q x e $" (q) =ixN(q)e" 

one can form the gauge invariant quadratic form 

which changes sign under a change of the sign of time and in 
the above cases transforms according to a one-dimensional 
representation. The symmetry of the form (5) obviously de- 
fines a magnetic symmetry group of the state described by it. 
We note that in superconductors in which the symmetry of 
the form (5)  allows for magnetization, in Landau-Ginzburg 
theories one must introduce the magnetic field into the ener- 
gy not only in the usual manner, via the vector potential, but 
also directly, by means of a term im, Hi (*I$"* - *I*$" ). 

Then one can convince oneself that a situation becomes pos- 
sible where in a magnetic field superconductivity appears 
earlier than without the magnetic field (cf. the A ,  -phase in 
superfluid He3). 

Many magnetic superconductors do not satisfy a stabil- 
ity criterion analogous to the well known Lifshitz criterion 
in the theory of phase transitions of the second kind. We 
represent the functions $' (q  ) and $" (q  ) in the form 

= x ,  $ " ( q ) = $ l ~ ~ ~ l ( ~ ) ,  

where the real functionsxl(q) andx" (q  ) transform accord- 
ing to the appropriate irreducible representations and $' and 
$" are parameters which do not depend on q. Further we 
assume, as usual, that the parameters $' and $" (and not the 
functionsx' andx" ) realize the representation under consi- 
deration. Then for small long-wave deviations from equilib- 
rium the energy of the system can be expanded in powers of 
the variations S$' and S$". The structure will be unstable if 
there exists an expression invariant with respect to the group 
G of the form 

where ai denotes differentiation with respect to the coordi- 
nates. Indeed, let us consider a small deviation from the ho- 
mogeneous state of the form 

G$=i$h (r ) ,  

where S p  is a slowly varying function of the coordinates. 
Since at each point of space such a variation reduces to a 
gauge transformation, the change of the local part of the 
energy (i.e., the part that does not contain spatial deriva- 
tives) must vanish. The principal part of the variation of the 
energy is therefore determined by terms linear in the deriva- 
tives, such as those of Eq. ( 6 ) ,  terms which obviously can 
always take on negative values. We note that the invariant 
(6) always exists when the magnetic quantity (5)  trans- 
forms according to a representation contained in the vector 
representation of the group G, i.e., the symmetry would not 
forbid the existence of a spontaneous current. 

The representations of the space groups can be realized 
by means of functions of the form 

uq (q') eiqr, ( 7 )  

where q'  consists of the set of variables 7 with the exception 
ofthe coordinate r. Indeed, as is well known [4], these repre- 
sentations are realized by functions of the form u, (r)eiq: 
where uq ( r )  are functions periodic in the crystal lattice, but 
from the viewpoint of symmetry the dependence of uq on r is 
necessary only for defining the transformation properties of 
u, with respect to rotational elements of the group. We are 
interested only in one- and two-dimensional representations. 
Such representations can be characterized by wave vectors q 
which occupy a general position in the reciprocal cell only 
for crystals of the triclynic system. In crystals of the mono- 
clynic system representations can be realized with wave vec- 
tors occupying a general position in the plane. Representa- 
tions with a wave vector in general position on a symmetry 
axis are possible for noncubic crystals. In all these cases the 
representation is necessarily two-dimensional and the pair of 
corresponding functions ($', $" ) transform under transla- 
tions like the pair of functions sin q.r and cos q.r, i.e., the 
coordinate dependence of the $-function ( 3 )  is determined 
by the factor eiq.', as it should be. The appearance of any 
other incommensurate structure will necessarily destroy the 
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spatial periodicity of the crystal. The other structures can 
only be characterized by a wave vector q corresponding to 
distinguished points of the reciprocal cell. 

From the analysis carried out by Lifshitz (Ref. 5) it is 
known that invariants of the form (6)  are absent (for q#0) 
only in representations which are characterized by wave vec- 
tors the components of which are definite fractions (1/2, 
1/3, 1/4) of the periods of the reciprocal lattice. For incom- 
mensurate structures, however, the existence of invariants of 
the type (6)  does not in all cases signify that there is an 
instability (cf. Ref. 2). Thus, if the wave vector q occupies a 
general position on the symmetry axis or a general position 
in the symmetry plane, then the invariants which are danger- 
ous are those that contain derivatives with respect to the 
coordinate perpendicular to the symmetry axis or symmetry 
plane, respectively. We note that for some magnetic super- 
conductors a peculiar piezo-effect becomes possible. Let the 
functions (*I, $") be such that there exists an invariant of 
the form 

KtklutR ($'dlI$"'+$"dl~ -$'"d1$'-~"d,~'*), , 
where u,, is the strain tensor. Then the deformed crystal will 
exhibit the instability described above, and the functions $' 
and $" acquire a phase factor e "", as is easily seen, where the 
vector q-u,, is small as long as the deformations are small. 
Since there is no anisotropy which fixes the phase, the effect 
must lead to observable consequences, most conspicuously, 
to a Josephson current. 

These simple rules for the derivation of the gauge sym- 
metry groups and the stability criterion are completely anal- 
ogous to the corresponding results in the theory of exchange 
symmetry (Ref. 2). In [2], in addition to the crystallo- 
graphic symmetry a role was played by the group of three- 
dimensional rotations of spin space, whereas here we deal 
with rotations of a two-dimensional space (gauge transfor- 
mations). Therefore it is not surprising that the gauge sym- 
metry groups under discussion are isomorphic to a certain 
class of exchange symmetry groups, specifically, the struc- 
tures characterized by one function $(q)  (cases 1 and 2)  are 
associated with collinear magnetic materials, described by 
one magnetic vector, whereas those characterized by two 
functions q ( q )  and $" (7 )  (case 3) correspond to noncol- 
linear magnetic materials, characterized by two perpendicu- 
lar magnetic vectors (cf. Ref. 2).  Making use of this corre- 
spondence it is easy to effect a classification of all possible 
superconducting structures with q = 0 (cf. Ref. 2). 

As an example we consider the crystalline class D,. The 
group D, has three irreducible representations: the identity 
representation A ,  (the corresponding parameters will be de- 
noted by $, in the nonmagnetic case and by $6 and $[ for 
magnetic structures); the one-dimensional representation 
A, according to which the coordinate z (represented by the 
parameters $= and $:, $:, respectively) transforms; the two- 
dimensional representation E, according to which the co- 
ordinates~ and y transform (the parameters are $: and $.;') . 
The possible combinations of the representations are the fol- 
lowing: Al:  $o; A2: tjZ; (AIAl 1: ($6, k $[I; (A2A2 1: ($:, 
+ - $:I; E: ($;, + $.;'I; (A,A,): ($6, k $f ). In the mag- 

netic cases the notation ($: _f $;) corresponds to a two- 
fold degeneracy produced by a violation of the &+ - t invar- 
iance. In this case there exist two Lifshitz invariants (6): the 
first 

leads to an unstable E structure; the second 

leads to an unstable (A,A, ) structure. Thus, the group D, 
has six structures which are admissible from the viewpoint of 
symmetry. However, only the following four among them 
are stable: Al,A2, (A,Al ), (A,A,). 

The Appendix lists the results of an analogous analysis 
for all 32 crystal classes. In fact this "table" is constructed on 
the basis of the analogous "table" contained in our paper on 
exchange symmetry [2]. Here we have added only the two- 
parameter structures not taken into account in Ref. 2, struc- 
tures which transform according to one one-dimensional 
representation (they are unstable only in polar crystals, 
when the identity representation is contained in the vector 
representation). The first number after a class symbol refers 
to the total number of structures which are possible from a 
symmetry viewpoint, the second gives the number of stable 
structures. The ferromagnetic structures, i.e., those for 
which the symmetry of the form (5) allows for a magnetiza- 
tion, are labeled with superscript F, whereas the antiferro- 
magnetic ones are labeled by the superscript A. It  should be 
kept in mind that the representations B,, B,, B, in the class 
D, ; the representations B,,, B,,, B,, and B,, , B,, , B,, in the 
class D,, ; B, , B, in the classes C,,, C,,, D,, D,, C,,; and B,, 
, B,, and B,,, B,, in the classes D,, and D,, are equivalent 
in the sense that they go over into each other under rotations 
of the coordinate axes. The replacement of these structures 
by one another leads to equivalent structures. 

The total number of structures with q = 0 which are 
possible from the standpoint of symmetry is 343. Of these 
276 are stable. These are the 32 structures of normal super- 
conductivity, the other structures with nontrivial violation 
of gauge symmetry-58 nonmagnetic structures, 73 ferro- 
magnetic ones, and 113 antiferromagnetic structures. The 
other structures with q#O correspond to highly degenerate, 
really exotic superconductors. It is clear that for Cooper 
pairing the restructuring of the electron spectrum in such 
superconductors can occur only in certain bands on the Fer- 
mi surface, so that, on the one hand all Cooper pairs should 
have identical total momentum q, and on the other hand, the 
electrons in the pairs should remain close to the Fermi sur- 
face. 

We stress the fact that all the results obtained here do 
not depend on specific models of the structure of the super- 
conductors; therefore the picture developed here is common 
for any cases of breakdown of the gauge symmetry. Thus, for 
example, the possibility of Bose-Einstein condensation of 
bound states of four (or in general, of any even number) of 
electrons in a metal is in principle not excluded; neither is 
superlluidity in the system of null defects in a quantum crys- 
tal, or superfluidity of hydrogen dissolved in a metal. In the 
case of superconductors with Cooper pairing further impor- 
tant conclusions are possible (Ref. 1) regarding the one- 
particle spectrum of the electrons. The modulus of the $- 
function determines the gap in the electron spectrum. The 
symmetry of the $-function might imply its vanishing at cer- 
tain points or along whole lines on the Fermi surface. This in 
turn implies power-law dependence on the temperature in 
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thermodynamics (Ref. 1 ), in contrast to the exponential 
laws encountered in usual superconductors. We note that 
the topology of the Fermi surface can be such that the elec- 
tronic states for which symmetry would dictate a vanishing 
gap are absent altogether. Such a superconductor would be 
hard to distinguish from a usual superconductor. 

We also note that it is possible to describe magnetic 
superconductors ($', $"), in the cases where $' and $" 
transform according to one-dimensional representations, in 

two essentially equivalent ways. On the other hand, they can 
be represented as the result of coexistence of two types of 
superconductivity, as was done above. With the same suc- 
cess one could have chosen as the order parameter another 
pair ($', M), where M is a purely magnetic characteristic 
which transforms like the form (5) .  Thus, this symmetry 
also corresponds to the coexistence, e. g., of an ordered state 
of localized spins and superconductivity of conducting elec- 
trons. 

APPENDIX 

Ci.  2; 1. A. 
C,. 5; 4. A,; A,; (A,A,)'; (AUAu)'. 
C.. 5: 2. A': A" .  

. . 

( - 43%)  '. 
C2,. 10; 5. Ai; Az, Bi; (AiAz)', (BiBzIF. 
Dz. 6; 4. A ;  Bt; (AA)";  
DZh. 17; 14. Ag; Big, AU, Biu; (AgAg)"; ( B i s B ~ g ) ~ ~  (AuAu)", ( B i ~ B i u ) ~ ;  
(A,Bo)', (ApA,) A, ( B i g B ~ g ) ~ ~  ( BigBLu) ( AuBiu)", (BiuBzu)". 
S,. 6: 5. A: B: (E)': (AA)';  (BB)'. 

C,. 3; 1. A. 
S,. 7;  6. A,; A,; (En)', (E,)'; (AgAg)'; (Au-4u)'. 
C3,. 6; 4. Ai; Az; (E)'; (AiAz)'. 
D3. 6; 4. A,; A,; (A2A2)A. 
DSd 16; 14. Aig; -428, Aiu, Atu; (Eg)', (Eu) '; (Ai#Ai#) "; 
(A2,A2,)A, (AiuAiu)A, (A~uAzu)"; (AigA2g)R1 (AiuAzu)F, (AigAiu)") (Az~A2ulh- 
C3,. 7 ;  6. A'; A" ; (El)', (Er')=; (A'A')'; ( A n  A") A. 

Dab. 16; 14. At'; A,', Ai", A?; (E')', (E " )'; (Ai'Air) A. 

(A2'AZf)", (A('A2 " ) A ,  (AZ1'A/)";  (AI 'AZ1) P,  ( i , '~~  )A, (A2'A2") ", 
(AI  " A;)'. 
C,. 7 ;  3. A;  B;  (dB)".  
C,,. 18; 16. A,; Bg, Au, Bu; ( E I ~ ) ~ ,  (Ezg)', (Elu)', 
(EzU) '; (AgAg) '; (BgBg) ', (AuAu) ? (BuBu) p; 

(-488) (AuBu) ", (AaBu) (Bg.4.) "a 

C,,. 12; 9. Ai; A,, Bi; (Ez)', (Ei)'; (AiA2)Fl ( A I B ~ ) " ,  ( A z B ~ ) ~ ,  (BrBi)'. 
D,. 12; 8. Ai; Az, Bi; ( A ~ A I ) ~ ;  ( A z A ~ ) ~ ,  (BiBi)*; (AIBI)" ,  ( A z B I ) ~ .  
D8h. 34; 31. dip; Azn Big, Aiul A2u1 Biu; (Elr)', ( E ~ I I ) ~ ~  (Elu)'i (Ezu)'; 
(AigAig)"; (Az.42g)" 
(BigBi8)-", (~iudiu) ' ,  ( A z u A ~ u ) ~ ,  ( B ~ u B i u ) ~ ;  (A18A28)'1 ( A t g B t ~ ) ~ ,  (A~BBW)" ,  
(BigBzB)', (AiuAzu)F, (AiuBiU) ( AzuBiu) ( B I U B ~ ~ ) ~ ,  ( A~pAiu)"~ (AigB~u) "1 

( A ~ ~ A Z ~ ) ~ ,  (AzgBiu)", (BigAiu)", ( B ~ t A z u ) ~ ,  ( B I B B I u ) ~ .  
T .  3; 3. A;  ( E ) A ;  
Th. 7 ;  7. As; A,; (Es)", (E,)"; (A tAJA;  ( A d d A ;  (AgAU) A. 
Td. 6; 6. Ai; AZ; (E)";  (AtAiIA; (AzA2)A; (AiA2)". 
0. 6; 6. Ai; Az; ( E ) A ;  (AiAIIA; (A2AzIA; (AiAz)". 
Oh. 16; 16. At#; A2gr Aiul Azu; (En)", (Eu)"; (AigAig)"; (A28A28)A1  (Ai*Alu)"i 
(A2uAZu)A; (AigAzg)", (AiuAzu)", (AigA~u)"~ (AigA~u)"~ ( A z # A ~ u ) ~ i  (AtgA2uIA. 

'G. E. Volovik and L. P. Gor'kov, Zh. Eksp. Teor. Fiz. 88, 1412 (1985) 4L. D. Landau and E. M. Lifshitz, Statistical Physics, Part I ,  3rd Edition, 
[Sov. Phys. JETP 61,843 (1985)l. Pergamon Press, Oxford, New York, 1979. 

'A. F. Andreev and V. P. Marchenko, Zh. Eksp. Teor. Fiz. 70, 1522 'E. M. Lifshitz, Zh. Eksp. Teor. Fiz. 11,255 (1941). 
(1976) [Sov. Phys. JETP 43, 794 (1976)l; Uspekhi Fiz. Nauk 130, 39 
(1980) [Sov. Phys. Uspekhi 23,21 (1980)l. 

%. D. Landau and E. M. Lifshitz, Quantum Mechanics, 3rd Edition, 
Pergamon Press, Oxford, New York, 1977. Translated by Meinhard E. Mayer 

334 Sov. Phys. JETP 66 (2), August 1987 V. I. Marchenko 334 


