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We examine the effect of thermal vibrations of atoms on the scattering and radiation of 
ultrarelativistic electrons and positrons in crystals. Equations are derived which describe the 
incoherent scattering and radiation of fast particles, and which hold for arbitrary orientations of 
the crystal axes relative to the incident beam. The analysis of the radiation process includes the 
effects of radiative reaction. We show that for motion along the crystallographic axis, the cross 
sections for incoherent scattering and radiation from superbarrier electrons is independent of the 
transverse energy of the particles, and differs only by the Debye-Waller factor from the scattering 
and radiation cross sections in an amorphous medium. For positrons, the incoherent scattering 
and radiation cross sections in a crystal oriented to the beam are found to be much smaller than 
the corresponding cross sections in an amorphous medium. Our results generalize the 
corresponding results of Ter-Mikaelyan [Zh. Eksp. Teor. Fiz. 25,296 ( 1953); Vliyanie sredy na 
elektromagnitnye protsessy pri vysokikh energiyakh (Effect of the Medium on Electromagnetic 
Processes at High Energies), Armenian Academy of Sciences, Erevan ( 1969) ] to the situation in 
which the Born theory for the coherent interaction of particles with atoms in a lattice (in the Born 
approximation for electrons and positrons, the radiation and scattering cross sections are the 
same for both types of particles) is no longer valid. 

1. INTRODUCTION 

When an ultrarelativistic electron or positron moves in 
a crystal at a small angle with respect to one of the crystallo- 
graphic axes or planes, coherent and interference effects oc- 
cur during radiation which give rise to sharp maxima in the 
spectral density of the radiation, and which produce high 
intensity and polarization of the radiation at the maxima.14 
These effects result from the periodic arrangement of the 
atoms in the crystal lattice. 

Because of thermodynamic fluctuations, however, the 
positions of the atoms in the crystal always have a certain 
spread about their equilibrium values, so it is important to 
know how this factor affects the interference radiation of a 
particle in a crystal. Ter-Mikaelyan' was the first to carry 
out such an investigation, working within the scope of the 
Born approximation in quantum electrodynamics. He 
showed that taking thermal vibrations of atoms into consi- 
deration leads to a reduction of radiation intensity at the 
interference maxima, and to the appearance of a term in the 
expression for the radiation spectrum which describes the 
incoherent effects taking place during emission. The latter 
term makes a critical contribution to the radiation at high 
frequencies. 

The results obtained in Refs. 1-4 are valid if the field in 
the crystal weakly perturbs the particle motion, i.e., if parti- 
cle motion in the crystal can be assumed to be almost recti- 
linear, and furthermore, if the scattering angle per unit co- 
herence length is small compared to the characteristic 
radiation angle of a relativistic When these con- 
ditions fail to hold, new effects occur in the radiation. 

The way the radiation is affected by particle-trajectory 
distortion in the discontinuous potential of either an array of 
atoms in a crystal or the crystallographic planes has recently 

been the subject of a great deal of work (see the reviews in 
Refs. 7-9 and references therein), in which it has been 
shown that for motion along the crystallographic axes and 
planes, particle radiation spectra differ significantly from 
the corresponding results obtained with the Born theory of 
coherent radiation. 

In the present paper, we study the effects of thermal 
vibrations of atoms on the radiation and scattering of ultra- 
relativistic particles in crystals when the Born theory for 
coherent interaction of particles with the atoms in the lattice 
is no longer valid. It should be pointed out that some aspects 
of this problem touching on the radiation process of the par- 
ticles have also been studied in Refs. 10 and 1 1 using classical 
and quantum electrodynamics. The main results in those 
papers, however, pertain to low frequencies, where the equa- 
tions for the spectral density and angular-spectral density of 
the radiation simplify considerably. This constraint is lifted 
in the present paper, which makes it possible to investigate 
the influence of thermal vibrations of atoms in the lattice on 
the high-frequency radiation emitted by fast particles (the 
frequency w is of the order of the particle energy E ) ,  as well as 
on the total radiative energy losses by particles in the crys- 
tals. 

In Sec. 2, we present general equations for the spectral 
and angular-spectral radiation densities, enabling us to take 
radiative reaction into account when considering radiation 
from fast particles in a crystal. 

In Secs. 3 and 4, we average these equations over the 
thermal vibrations of atoms and the various particle trajec- 
tories in the crystal. Our main focus is on the features of 
radiation by superbarrier electrons and positrons in a crys- 
tal, which make the major contribution to emission over a 
wide range of particle angles of incidence $ relative to the 
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crystallographic axes, and it is shown that at small enough 
angles $, the incoherent parts of the electron and positron 
radiation cross sections are significantly different. In Sec. 5, 
we study the effect of thermal vibrations of atoms on the 
scattering of fast particles in crystals. 

All of the results in the present paper are based on the 
assumption that particle motion in the crystal can be treated 
by classical mechanics. This requires that the effective inter- 
action constant of the particle with the atoms in the lattice be 
large compared with unity, and that the number of levels of 
transverse motion also be large. These conditions hold at 
sufficiently high particle energies (E R 100 MeV) .6,8 

2. SPECTRAL DENSITY OF RADIATION 

The radiation of an ultrarelativistic electron (or posi- 
tron) develops over a large spatial region aligned parallel to 
its momentum vector, whose extent grows with energy. At 
high energies many collisions can take place between the 
electron and the atoms of the medium within this region. If 
the motion is then at a small angle to one of the crystallo- 
graphic axes, and the coherence length1' I = h ' / m 2 w  (E 

and E' are the initial and final electron energies, m is the 
electron mass, and w is the frequency of the emitted photon) 
is much larger than the lattice constant a, then the effective 
interaction constant of the particle with the atoms in the 
lattice will be large. The motion and radiation of the particle 
in the crystal can then be described by a quasi-classical ap- 
proximation.6.'2 The angular-spectral radiation density, 
with radiative reaction taken into account, can be expressed 
in terms of the particle's trajectory in the medium.'' To 
terms of order m / ~ ,  this quantity (see Eq. (20.3 1) of Ref. 
12) can be written as 

where E' = E - w ,  n is a unit vector in the direction of 
radiation, and 

w 

E 
I= j dtv (t) exp[ i a (f-nr ( t )  ) 1, 

- rn E 

the 

Here r ( t )  is the particle trajectory in the medium ignoring 
radiation, and is governed by the equation 

where u(r - r, ) is the potential energy due to interaction of 
the particle with an atom located at r,. 

If within a coherence length the scattering angle 8, is 
small compared with the characteristic radiation angle 
- m / ~  for a relativistic particle, we can expand (2.1 ) in the 
parameter ~8~ /m. To first order in this expansion (corre- 
sponding to the dipole approximation), the spectral density 
of the radiation takes the form 

w 

W (v) = j dt v,(t) erp (ivt) . 
where6 = wm2/&&', vI ( t )  is the particle velocity at time t in 
the plane orthogonal to the initial velocity v(v, 4 v), and the 
variable v is related to the emission angle 9, by 
Y = 8(1 + ~ ~ 8 , ~ / m ~ ) .  

We consider the case in which the radiation is produced 
over a length I which is much greater than the lattice con- 
stant a. In calculating the quantity W(v) in (2.3 ), we can 
then assume that the particle velocity changes discontinu- 
ously as a result of collisions with individual atoms. We then 
have 

where 2P, is the scattering angle for a collision with the nth 
atom: 

1 a a,, z j dtu(r(t)-r.), 
8~ - w  

t, is the time at which the collision takes place, and p is the 
impact parameter. 

Equations (2.1) and (2.3) generalize the correspond- 
ing equations of the classical radiation theory of a charged 
particle in an external field (see Ref. 13, for example) to the 
case in which radiative reaction is important. 

3. EFFECT OF THERMAL OSCILLATIONS OF ATOMS ON THE 
RADIATION FROM A PARTICLE MOVING IN A CRYSTAL 

Equation (2.1) must be averaged over the thermal 
spread in atomic positions in the lattice, and over particle 
trajectories in the crystal. In the dipole approximation, aver- 
aging of the spectral density of the radiation is simplified 
considerably, extending only to the quantity I W (v)  12. 

Because of thermodynamic fluctuations, the positions 
of atoms in the lattice will always have some spread u, rela- 
tive to their equilibrium positions r: : 

The quantity IW(v) 1' appearing in (2.3) must be averaged 
over u, . 

From here on, we will be interested in the radiation 
from a particle moving at a small angle qh to one of the crys- 
tallographic axes (the z-axis), where the most important 
orientational effects of particle radiation and scattering are 
manifest. In that case, it is well known14 that the particle 
trajectory is basically determined by the average continuous 
potential of the array of atoms in the crystal and by the lat- 
tice potential averaged over the z-coordinate: 

where L is the crystal thickness and p = ( x , y )  is a point in a 
plane orthogonal to the z-axis. The deviation of the lattice 
potential from the mean (3.2), SU = U, ( r )  - U(p), will 
then be determined by fluctuations of the particle trajectory 
relative to its trajectory in the field U(p). If these fluctu- 
ations are small, then we can expand (2.4) in SU.2' To first 
order in this expansion, IW(v) 1' can be written in the form 
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1 I w (v) = -r, j d2g d2gf ggl B. (g )B . , . (g l )  

.exp[i(gu,-g'u,.) +iv ( tn- tn . )  I ,  (3.3) 
where 

p(t)  is the particle trajectory in the continuous field due to 
the array of atoms in the crystal, and pj: is the position of a 
line of atoms in the x-y plane. 

Assuming for simplicity that the u, -distribution of 
atoms in the lattice is Gaussian, with each atom having a 
mean squared displacement z, we find after averaging 
(3.3) over u, that 

where 

d is the distance between atoms along the z-axis, and U, (p)  
is the continuous potential of an isolated array of atoms: 

In the case we are considering, where particle motion 
takes place at a small angle $ to one of the crystallographic 
axes, the time interval At = t, + , - t, between successive 
particle collisions with atoms of the lattice is3' d /u. To order 
of magnitude, the change in the function p(t, ) during this 
time interval is 

where 6, - 2Ze2/&R is a typical angle for a fast particle to be 
scattered by an individual atom, Z [el is the charge on an 
atomic nucleus, and R is the screening radius of an atom. 
Thus, for small $ and large E,  the change in p(t, ) between 
successive collisions of a particle with the atoms of the lattice 
is small; the functions being summed in (3.4) then vary 
smoothly with increasing n, and these sums can consequent- 
ly be replaced by the corresponding integrals over time. As a 
result of this replacement, Eq. (3.4) takes the form4' 

where p(t) is determined from the equation 

and U( p) is the continuous potential (3.2) of the atoms in 
the crystal. 

Thus, taking the effect of thermal fluctuations of atoms 
on the radiation from a particle moving in a crystal leads to a 
change in the continuous potential of chains of atoms in the 
crystal, and to the appearance of a term in the radiation 

spectrum [first term in (3.6) ] which governs incoherent ef- 
fects during radiation. 

4. MEAN SPECTRAL DENSITY OF THE RADIATION FROM A 
PARTICLE BEAM TRAVERSING A CRYSTAL 

To find the intensity of the radiation due to a particle 
beam traversing a crystal, Eq. (3.6) must be averaged over 
various particle trajectories in the crystal. In general, such 
averaging is difficult. We therefore consider some limiting 
cases. 

If the mean field U(  p) of the crystal lattice only weakly 
perturbs the particle motion, a solution of (3.6) can be found 
in the form of an expansion in the p~ ten t i a l .~  To lowest order 
in this expansion, the particle trajectory in the x-y plane, 
orthogonal to the z-axis, is rectilinear: 

where p, is the entry point and n, is a unit vector in the x-y 
plane in the direction of particle motion. In that event, Eq. 
(2.3) must be averaged over the entry points: 

where L, and L, are the linear dimensions of the crystal 
along the x and y axes. The mean spectral density of the 
radiation (4.2) is then entirely consistent with the corre- 
sponding result given by the Born theory for coherent radi- 
ation by fast particles in crystalsz9': 

where n is the atomic density in the crystal and ddB)/dw and 
duAB)/dw are the coherent and incoherent parts of the radi- 
ation cross section (see the equations of $8 in the review of 
Ref. 2). 

The quantity doiB)/dw differs solely by the Debye- 
Waller factor [ 1 - exp( - g2 2) ] from the corresponding 
cross section for a fast particle and an isolated atom: 

As a result, the incoherent part of the radiation cross section 
for a particle in a crystal is found to be somewhat smaller 
(5%-25%, depending on the crystal temperature) than the 
radiation cross section from an isolated atom in an amor- 
phous medium. 

The expansion (4.1) is valid if $)$, , where 
$c = (2U&) 1'2, with UO = 2Zez/d [ U, defines the order of 
magnitude of the potential energy U( p) 1. When this condi- 
tion fails to hold, the effect of trajectory deviations from a 
straight line must be taken into account. The influence of 
this factor on the coherent part of the radiation cross section 
has been investigated in a great many papers in recent years 
(for example, see Ref. 15 and the reviews in Refs. 7-9). We 
will now show that when $5 $:, the deviation of a particle 
from a straight-line trajectory can have a significant effect on 
the incoherent part of the radiation cross section as well. 

First, we note that there is a wide frequency range over 
which the incoherent part of the radiation cross section 
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makes a critical contribution to the radiation from a particle 
beam traversing a crystal. Thus, the Born theory of coherent 
radiation tells us that in the frequency range for which 2R / 
$96- ')d, the cross section duAB)/du is the major contrib- 
utor to the radiation (in this frequency range, d ~ : ~ ' / d u  is 
small). Clearly, the analogous situation must also hold for 
$5 $c, where one must take account of the effect of nonrec- 
tilinear particle motion on the radiation. When $ 5 qC,  parti- 
cle motion in the crystal can either be finite (channelization) 
or infinite (superbarrier motion) with respect to the z-axis. 

In moving through a crystal, a superbarrier particle en- 
counters different chains of atoms lying parallel to thez-axis, 
and if the motion is then far from the close packed atoms of 
the crystal planes, these collisions can be treated as random 
(in which case there is a sizable spread in impact parameters 
for successive collisions). If the distance 1 over which the 
radiation is produced is then small by comparison with the 
mean free path of the particle between successive collisions 
with chains of atoms, 1. -& /$, where & is the mean distance 
between atomic chains, we can ignore interference of the 
radiation from different chains. The mean value of the quan- 
tity I W ( v )  l Z  in (2.3) is then determined solely by the pecu- 
liarities of particle interaction with the field Ur (p)  due to an 
individual chain of atoms: 

where Nr is the number of collisions with chains of atoms, b 
is the impact parameter of a chain, and p,  ( t )  is the particle 
trajectory in the field of an individual chain of atoms. 

The major contribution to the first term in (4.5) comes 
from small values ofp (p 5 R ) . With p in this range, the po- 
tential of a chain can be taken to be cylindrically symmetric. 
To exploit this symmetry of the potential, it is convenient to 
transform (4.5), using the relation dt = dp/p, where 

from an integration over time to an integration over the vari- 
able p (see Ref. 15, for example). In the present case, the 
quantity A ( p,  ) depends only on the distance I pr I between 
the particle and the axis of a chain. 

Noting further that N, = ~ n @ d ,  we obtain after inte- 
grating over b 

OD 

where p* = 0 for electrons [and for positrons with 
E~ > Ur (0) 1; when E~ < U, (0) for positrons, p* is deter- 
mined from the equation E~ = U, (p* ). 

Thus, according to (2.3), (4.5), and (4.6), the mean 
spectral density of the radiation from a superbarrier particle 
moving through a crystal can be written as a sum of two 
terms, giving the incoherent and coherent radiation effects: 

where - 

In the frequency range where 2R /$)a- ' )d, the sec- 
ond term in (4.7) is vanishingly small. In that range, the first 
term in (4.7) gives the most important contribution to the 
radiation, and is responsible for incoherent effects during 
emission. 

For electrons [and for positrons, when E~ > Ur (0)  I, we 
can carry out the integration overp in (4.8). It is then easy to 
prove that the incoherent part of the spectral density is the 
same as the result from the Born theory: 

For positrons with E~ < U, (O) ,  according to (4.8), the 
mean spectral density rapidly decreases with decreasing $, 
and when $4$, , it is found to be significantly less than the 
corresponding results from the Born theory. This is related 
to the fact when $ < qC positrons cannot approach too close- 
ly to the axis of a chain, where the gradient of the potential is 
a maximum. 

Integrating (4.7) over frequency, we obtain the total 
radiative energy losses At7 of superbarrier particles in a 
crystal. If then &&m2d, these energy losses will be governed 
mainly by the first term in (4.7), which is responsible for 
incoherent radiative effects. The $-dependence of A 8 will 
then have the same factor as the $-dependence of (d8 , /  
d u )  . 

These equations hold if fluctuations of the integrals of 
the motion which determine the particle trajectory are small 
throughout the thickness of the crystal, compared with the 
integrals of the motion themselves.') If the fluctuation 
growth process develops adiabatically (as must essentially 
happen over a coherence length), and the particle distribu- 
tion function is known in terms of the quantities which deter- 
mine the particle trajectory in the crystal, then the formulas 
derived can also be used to study radiation in thicker crys- 
tals. To do so, we need only average the radiation spectrum 
over the given particle distribution. For superbarrier parti- 
cles, we then arrive at the following expression for the spec- 
tral density of the radiation: 

L 

where L -'(dg/dw) is the spectral density (4.7) per unit 
length of the radiation of a superbarrier particle with a fixed 
value of E ~ ,  and f (E, p )  is the particle distribution function 
over cl at a depth z. 

As noted above, the high-frequency radiation spectral 
density for superbarrier electrons is determined by the inco- 
herent part of the radiation cross section, which is indepen- 
dent of E ~ .  Therefore, even when there is a significant redis- 
tribution of such particles in transverse energy, their 
radiation spectrum is given by 
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do?' ( E) L=Lno - . 
d o  

We emphasize that this result holds if a particle is above 
the energy barrier over its whole path through the crystal, 
and furthermore, if over the whole path of an electron in the 
crystal one can neglect the radiative contribution of the term 
responsible for coherent radiative effects. 

For positrons moving along one of the crystallographic 
axes in a crystal, significant redistribution of particles over 
E, takes place in a distance which, to order of magnitude, is 
equal to the dechannelization length. This distance is much 
greater for positrons than for electrons; thus, for 1 GeV par- 
ticles in a silicon crystal, the dechannelization length for 
positrons is several millimeters, while for electrons, it is of 
the order of several tens of micrometers. 17'18 Therefore, even 
for fairly thick crystals (several hundred micrometers 
thick), the spectral density of radiation from positrons will 
be determined by the initial transverse energy distribution of 
the particles. Thus, if a collimated beam of positrons enters a 
crystal along a crystallographic axis (z-axis), the E, -distri- 
bution of particles will be given by 

where pO(&, ) is the positron entry point on the crystal, 
which is related to&, in the present case by E, = U, (p,), and 
S is the area of a basis cell in a plane perpendicular to the z- 
axis. With this distribution function, the positron high-fre- 
quency radiation spectral density will take the form 

rn 

The major contribution to this integral comes from val- 
ues of po of the order of the screening radius of the atomic 
potential, p, - R. It is then easy to demonstrate, making use 
of this estimate, that to order of magnitude, the positron 
high-frequency radiation spectral density (4.14) is nR 2/S 
times less than the radiation spectral density (4.10) for su- 
perbarrier electrons. In particular, for particles passing 
through a silicon crystal along the (100) axis, TR 2/Sz 1/ 
30. 

Note that for electrons a moderate, and for positrons a 
considerable, reduction in high-frequency radiation spectral 
density for a crystal oriented along the beam, compared with 
the Bethe-Heitler result, has been observed experimental- 
ly.19-25 The results obtained above account for these experi- 
ments: the observed behavior is due to the effect of thermal 
vibrations of atoms on the incoherent part of the radiation 
cross section of a fast particle in a crystal, and to the redis- 
tribution of particle flux density in the crystal as a function 
of impact parameter. 

For electrons with $ < finite motion as well as infi- 
nite motion is possible in the field of one (or a few) chains of 
atoms in the crystal. A channelized electron more frequently 
comes close to the axis of a chain, and when it passes through 
the region occupied by the atomic nuclei of the lattice, 
spends more time there than a superbarrier electron (to or- 
der of magnitude, the time spent by electrons passing 
through that region is At, -2( ?)lJ2/v1, where 
v, =v$, X ( 1 + el/U0) 'I2 is the transverse velocity of the 

electron in the region in question; since v, increases with 
increasing E, , the time interval At, is greater for a channel- 
ized electron (el <0 )  than for a superbarrier electron 
(E, > 0).  This is the reason why for electron channelization, 
the yield of inelastic processes associated with small impact 
parameters, such as electron reactions with nuclei, second- 
ary electron emission, and others, should be greater than for 
superbarrier particle motion. (Existing experimental data 
on the strong dependence of the yield of electron-nuclear 
reactions1' and secondary electron emission from crystals of 
various thicknessesz6 tends to confirm the existence of such 
an effect at small particle penetration depths into a crystal. ) 
The incoherent part of the radiation cross section of a chan- 
nelized electron should therefore be greater than that for a 
superbarrier particle. 

Note that at high energies, practically all of the particles 
in a beam will execute motion whereby a channelized elec- 
tron passes through the region occupied by the lattice atomic 
nuclei. This is related to the fact that at high energy, so- 
called Retherton motion, in which particles do not approach 
the axis of a chain, is unstable to asymmetry in the potential 
of the channel2' (the potential of a chain of atoms in a crystal 
is always asymmetric at large distances from the chain), and 
to particle scattering from the electron subsystem of the 
crystal lattice.16 

An extended stay of a channelized electron in the region 
of the lattice atomic nuclei, however, leads to significant 
fluctuations in the particle trajectory relative to its behavior 
in the field U(p). Specifically, one finds that even when an 
electron passes through the indicated region only once, the 
change in the energy of transverse motion SE, is comparable 
to the magnitude of E, .I6 A description of particle motion 
under these conditions, where over certain parts of the tra- 
jectory, the particle is subjected to significant field fluctu- 
ations, is beyond the scope of the present paper, and we will 
therefore not dwell in detail on an analysis of the incoherent 
part of the radiation cross section for channelized electrons. 
We only note that due to multiple scattering from thermal 
vibrations of atoms in the lattice, there is an extremely rapid 
dechannelization of the particles, wherein they switch from 
subbarrier to superbarrier states. Experimental data pres- 
ently which tend to confirm that this process devel- 
ops at particle energies of order 1 GeV over a length of the 
order of some tens of micrometers. This means that in crys- 
tals much thicker than the dechannelization length, super- 
barrier particles will make a definite contribution to the in- 
coherent part of the radiation cross section. 

5. MEAN SQUARED ANGLE FOR MULTIPLE SCATTERING OF 
A FASTCHARGED PARTICLE IN A CRYSTAL 

In the preceding sections, we considered the effect of 
thermal vibrations of atoms on radiation by relativistic par- 
ticles in crystals, and showed that in the dipole approxima- 
tion, the only influence that this factor has shows up in the 
quantity JW(v) 12. At v = 0, this is the square of the scatter- 
ing angle of a particle in the crystal: 

n.k 

so the results obtained above can also be used to analyze the 
influence of thermal vibrations of atoms on the mean 
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squared multiple-scattering angle of a particle moving 
through the atomic lattice. We now examine this process, 
assuming as before that particle motion in the crystal takes 
place at a small angle zl, to one of the crystallographic axes. 

In that event, according to Eqs. (5.1 ) and (3.6), the 
square of the particle-scattering angle in a crystal, averaged 
over thermal vibrations of the atoms in the lattice, can be 
written in the form 

where A ( p )  is defined by Eq. (3.5), and 6:) is the particle- 
scattering angle in the field of the continuous potential of the 
nth chain of atoms. 

The first term in (5.2) governs the incoherent scatter- 
ing of particles from thermal vibrations of the atoms in the 
lattice, and the second governs scattering in the field of the 
continuous potential of the chains of atoms. 

Equation (5.2) must still be averaged over different 
particle trajectories. If particle collisions with different 
chains of atoms can then be considered to be random, the 
results of averaging the first term in (5.2) will be determined 
by Eq. (4.5). The actual procedure for averaging the second 
term in (5.2) requires special consideration. This is because 
particle scattering in the continuous field of each chain of 
atoms takes place only along the azimuthal angle q, in a plane 
orthogonal to the axis of the plane (see Fig. 15 of the review 
in Ref. 7), so the averaging must be extended over the angle 
p. Then the mean value of q, can be of order unity. 

The overall scattering angle 6, for a particle scattering 
from N chains of atoms in a crystal is related to the azi- 
muthal scattering angle p, from these chains by 

Making use of this equation, we can determine the mean 
squared multiple-scattering angle (8 $) for a fast particle in 
the continuous field of the atomic chains. 

We note in this regard that 

where q, $ is the scattering angle from the Nth  chain. This 
angle q,$ is determined by the impact parameter of the 
chain, b, : 

m 

(5.5) 
Taking this relation into account, the mean value (9 $) can 
be written in the form 

w 

It is then easy to obtain a recursion relation for (8 $): 

where 

The solution of this recursion relation takes the form 

When (6 :) 4 2 p  and N )  1, this equation is transformed 
into6' 

< t ~ ) ~ = 2 ~ ~ [ l - e r ~ ( - 2 n d ~ $ ~  db sina*) 1. (5.9) 
2 

Thus, the mean squared value of the multiple-scattering an- 
gle for a fast particle in a crystal is of the form 

where (8  ' ) ,  is defined by Eq. (4.6). 
For superbarrier electrons [and positrons with 

E~ > Ur (011, (6 ' ) ,  can be written in the form 

When Z-D co, this equation goes into the corresponding 
result (6 ' ) ,  from the theory of multiple scattering of fast 
particles in an amorphous medium. Thus, ( t Y 2 ) ,  differs 
from the corresponding expression for an amorphous medi- 
um only by the Debye-Waller factor7 [ 1 - exp( - g2 2) 1. 
At room temperature, (a2) ,  is found to be somewhat 
smaller than (8  ' ) ,  (by 5%-25%, depending on the crystal 
in which scattering takes place). Note also that ( I Y ~ ) ,  is 
independent of $. According to (4.5), for positrons with 

< Ur (O), (8  2 ) n  decreases rapidly with decreasing $. 
As indicated by Eq. (5.9), the quantity (8  ' ) ,  is a sensi- 

tive function of the angle Ijr of particle incidence at the crys- 
tal, as it relates to a crystallographic axis, and it exceeds 
(8  ' ) ,  over a wide range of angles $ (see Fig. 16 of Ref. 7). 
This in no way means, however, that the first term in (5.10) 
can always be neglected in comparison with the second. The 
term (8 ' ) ,  is related to particle scattering in the continuous 
field of the chains of atoms in the crystal. But the energy of 
transverse particle motion E, = ~ $ ~ / 2  (Refs. 7, 14) is con- 
served in such a field, which in turn results in scattering only 
being possible along the azimuthal angle p. The term (8 ' ) ,  
controls the variation of transverse energy, and consequent- 
ly governs the broadening of the annular distribution of scat- 
tered particles in the radial direction. Such distributions 
have been observed, for instance in an experiment described 
in Ref. 17. 

"We use a system of units in this paper in which the speed of light c and 
Planck's constant f i  are equal to one. 

''We essentially require that particle trajectory fluctuations be small over 
a coherence length. 

"Allowing for fluctuations in the times t, associated with thermal spread 
of atoms in the lattice along the z-axis leads to minor corrections in 
t ,  + , - t, = d / V  of order u,/d,  which we ignore. 

4'When w ( ~  and we make use of (3.6), Eq. (2.3) is transformed into the 
corresponding equations of Refs. 10 and 11,  which were derived on the 
basis of classical and quantum considerations of radiation by a particle in 
a crystal. 

5'For superbarrier particles, this condition is satisfied over a wide energy 
range. l6 

@In that case, Eq. (5.9) can also be derived by considering particle scatter- 
ing from chains of atoms in the crystal using the kinetic equation method 
of Refs. 28 and 29. 

"A similar result was obtained in Ref. 30 in a study of multiple scattering 
of fast particles in a crystal, for motion close to the crystallographic 
planes at angles much greater than the critical angle for planar channel- 
ization. 
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