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A systematic method of describing developed hydrodynamic turbulence in terms of the Navier- 
Stokes equation and diagrammatic perturbation-theory methods is proposed. A solution of the 
diagrammatic equations is obtained that corresponds to the well known Kolmogorov-Obukhov 
picture of stationary spatially uniform isotropic developed turbulence, in which the unequal-time 
velocity correlators are nonuniversal and their time dependence is determined by the energy- 
containing interval. To determine the equal-time correlators the kinematic effect of transport is 
eliminated at a certain point in space, and this necessarily leads to a diagram technique that is 
nondiagonal in the momenta. The convergence of all the integrals in the scale-invariant solutions, 
both in the ultraviolet and in the infrared region of the spectrum, is proved. This gives a 
diagrammatic proof of the hypothesis that the interaction is local, and provides a basis for a 
cascade energy-transfer mechanism. The asymptotic forms of the equal-time many-point velocity 
correlators are found. 

INTRODUCTION 

It is well that in the problem of fully devel- 
oped hydrodynamic turbulence two substantially different 
interactions are present at the same time-the dynamical 
interaction of vortices with similar sizes l/k (k is the mo- 
mentum), which leads to the exchange of energy between 
them with frequency y, ,  and the kinematic effect of the 
transport of k-vortices as a whole by the almost uniform 
velocity field VT of large-scale vortices of the energy-con- 
taining size L, this effect being characterized by the Doppler 
frequency k V T ) y k .  The problem is to distinguish and 
study, in the formal apparatus of the theory (e.g., in the 
diagram technique (DT) of Wyld4) the relatively weak dy- 
namical y, interaction determining the turbulence spectrum 
against the background of the transport effect masking it. 
Unfortunately, numerous attempts to solve this problem, for 
all orders of perturbation theory, by the Lagrangian ap- 
proach of Ref. 6 with the introduction of a separating 

by renormalization-group  method^,'^'^ by an "in- 
ternal" DT (Ref. 13), and by the introduction of "ballistic" 
modesI4 have not led to success. 

In Sec. 1 of this paper we give a functional formulation 
of the Wyld DT for hydrodynamics in Eulerian variables, 
analyze the resulting divergences, and show that it is possi- 
ble to sum the most divergent sequence of diagrams exactly 
and to determine the frequency dependence of the pair corre- 
lator (PC) and Green's function (GF) . This frequency de- 
pendence is determined by statistical characteristics of the 
turbulence in the energy-containing interval of scales, i.e., by 
how the turbulence is excited, and is not universal. It may 
also be noted that the transport approximation in the formal 
scheme of the DT corresponds to the well-known approxi- 
mation of "frozen turbulence" in the phenomenological the- 
ory of turbulence. In Sec. 2 different methods of eliminating 
the transport by means of a transformation to the comoving 
reference frame are discussed. If the velocity V of the latter is 
assumed to be statistically independent of the turbulent ve- 
locity v ( t ,  r )  ( t  is the time and r is the position), a relatively 
simple "internal" DT arises, in which, unfortunately, the 
divergences of the leading diagrams remain. If we set 

V = v(t,ro ), the transport in the neighborhood of the point 
ro is eliminated completely. However, the DT in these vari- 
ables-a quasi-Lagrangian DT-turns out to be nonlocal in 
k-space. In Sec. 2 we have elucidated the basic properties of 
this DT. In the G F  and PC it has been found extremely 
useful to go over from the purely momentum (k', k" repre- 
sentation to the mixed (k,r) representation 
[k = 1/2(k' + k"]. In this approximation it is easy to for- 
mulate a quasiclassical (QC. approximation, in which the 
G F  and PC are assumed to be independent of r and are taken 
at the point ro at which the transport is most effectively eli- 
minated. We show that the QC approximation in the theory 
of turbulence gives qualitatively correct results, despite the 
fact that it has no formal parameter determining its applica- 
bility. In Sec. 2 we have show that in the QC approximation 
there are no divergences at all in the theory. In Sec. 3 we 
prove that this important result is preserved in the full the- 
ory. For this, in particular, we had to find the asymptotic 
forms of the G F  and PC in w (w is the frequency) and r. 
Thus, we have executed a complete diagrammatic proof of 
the local-interaction hypothesis put forward by Kolmo- 
gorov and Obukhov in 1941. In particular, this implies that 
the turbulence spectrum for Re + GO should be described by a 
"5/3 law". However, our work not only proves this fact but 
also gives a systematic constructive apparatus for investigat- 
ing other properties of turbulence as well. In particular, we 
have found the asymptotic forms of the single-time nth-or- 
der velocity correlators (n-VC) when one of the momenta or 
the sum of a group of momenta tends to zero. 

1. THE TRANSPORT APPROXIMATION 

1. I. The diagram technique. We shall start from the Na- 
vier-Stokes equations for an incompressible liquid': 

dvldtf (vV)v+Vp-vAv=O, div v=O. ( l . la)  

In the (t,k) representation these can be written in the form 

k,  - -L A:R y!:;:v ( t ,  k l )  06 ( t .  kr) dkl dk. 
at - 2 

- vk2va ( t ,  k) ,  
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where AiB is the transverse projector, and the Eulerian ver- 
tex is a homogeneous first-order function of k: 

To describe the turbulence that arises in the flow around 
some body, e.g., a grid, we should have to solve these equa- 
tions with given boundary conditions. Rather than consider 
this very complicated problem, we shall follow the idea of 
Kraichnan and and consider an unbounded volume 
of liquid with zero average velocity, modeling the excitation 
of the turbulence by means of a random force f(t,k) intro- 
duced into the right-hand side of the equation. For conven- 
ience we shall assume that the statistics is Gaussian and that 
its correlator ~ " @ ( o , k )  is concentrated in a region of order 
L -  ' in k and of order V ,  / L  in o .  In addition, for formal 
reasons we shall also add a vanishingly small regular exter- 
nal force h(t,k). Thus, the total external force is cp -- f + h. 
To calculate the velocity correlators v(o, k )  it is sufficient to 
know the generating functional of the correlators of the ve- 
locity field: 

~ (%,h )=(exp( i  I ' P ' ( q ) r ( q ) d 4 q ) )  . q = ( o ,  k).  (1.3) 

Here v (q) is a functional of the force h (q), and the averaging 
is performed over the Gaussian random field f (9). Using the 
functional methods of quantum field theory for Z, we can 
obtain an expression in the form of a double functional inte- 
gral over the random velocity v (q) and the momentum p(q) 
conjugate to it,2~1'~'2,'5~'6 with v*(q) = V (  - q) and p*(q) 
= P( - 4): 

where the Lagrangian 3 has the form 

p = p "  ( q )  [ (iof z ~ k " ~ ~ ( q ) + ' / ~ i D ' ' ( q ) ~ ' ( q )  

+ 3 rzd ( 0 - 0 1 ,  k,) v 1  ( a r ,  k,) d o f  dk, dkz. (1.5) 

The expressions ( 1.4) and ( 1.5) lead to a DT with the usual 
Feynman rules for the two-component vector field xf vi, xi  
=pi, the matrix Green's function g(q) of which satisfies a 

Dyson equation, from which, for the velocity pair correlator 
F " = g?, and Green's function G" g'g there follows the 
well-known system of Dyson-Wyld equations: 

in which the mass operators (MO) 2 and Q can be expressed 
in terms of G and Fusing Feynman rules with a vertex of one 
type 

One solid line enters the vertex and two wavy lines leave it, if 
for G and F we adopt the "natural" graphical notation dic- 
tated by their definitions: 

6 % =- G*=G,= k - , ~ = f % f =  - Q 4 -4 > 

L,= ( G,, F,) = -. 
(1.9) 

The common graphical notation for the line L, will be used 
in cases when it is not necessary to distinguish pair correla- 
tors from Green's functions. 

We give the first diagrams for 2 ,  and @,: 

The topological properties of the diagrams are described in 
Ref. 17. We note also that in the isotropic case the incom- 
pressibility condition gives L = AiL,, and the vector 
equations ( 1.7) become scalar. 

1.2. Kolmogorov scaling. In the inertial range of scales 
we can omit the external-force correlator D in Eqs. ( 1.6), 
(1.7). Then it is natural to seek their solution in the scale- 
invariant f ~ r m ' ~ * ' ~  

Here, for simplicity, we have omitted the dimensional con- 
stants needed to make f and g dimensionless functions of 
dimensionless arguments. If the integrals in the diagram- 
matic series ( 1.10) converge in the region of large and small 
momenta, it would be possible to extend them beyond the 
limits of the inertial interval to the whole of q-space. Then 
the indices Y and p would satisfy the following scaling rela- 
tion'$: 

and all the diagrams in the series ( 1.10) would be of the same 
order of magnitude. The relation ( 1.12) is easily obtained if 
we take into account that each succeeding order of perturba- 
tion theory adds two vertices ( 1.8), two GF, one PC, and 
one integration over d4q. The second relation for the indices 
Y andp follows from the condition of constancy of the ener- 
gy flux over the spectrum E,, i.e., is independent of the 
length scale the quantity E, : E, or k O. It can be found from the 
size dependence of the 3-VC F3):  

The length dependence of F3)  can be found from the first 
diagram if we assume that all the integrals in the leading 
diagrams converge and the relation ( 1.12 ) is fulfilled. Com- 
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bining ( 1.12) and ( 1.13), we find the second relation for the 
scaling indices: 

The solution of the relations ( 1.12) and ( 1.14) is the Kol- 
mogorov solution Y = 2/3, ,u = 11/3. This is not surprising, 
since these values of the indices follow from dimensional 
considerations with the assumption that L and A do not ap- 
pear in the expressions for F, and y, because the interaction 
is local. In fact, the integrals in the diagrams ( 1.10) diverge 
in the region of small k when the scaling functions ( 1.1 1 ) are 
substituted into them, both for the Kolmogorov indices and 
for indices differing from the latter by no more than 2/3. 
Therefore, the solution of the form ( 1.1 1 ) with Y = 2/3 and 
p = 11/3 is not actually realized, and the problem of the 
determination of the scaling indices remains open. 

1.3 The "bare backbone"representation and the Green's 
function in the transport approximation. For the investiga- 
tion of the structure of the contributions of the region of 
small momenta to the G F  the Dyson representation for the 
GF, in which the one-particle-irreducible graphs are sepa- 
rated out, is inconvenient. More adequate is the "bare back- 

bone" representation, in which the Green's functions on the 
backbone remain bare while the Green's functions on the 
ribs of the diagrams, and all pair correlators, are taken to be 
dressed. It can be seen from the structure of this series that 
the sum of all possible many-point diagrams with a fixed 
number n of exits onto the backbone is the complete dressed 
n-VC. Consequently, in this series we can sum the subse- 
quences with a fixed number n + 1 of bare Green's functions 
in the backbone: 

Here Il is the backbone and Fis the complete n-VC. Analysis 
of this expression shows that the main contribution to it is 
given by the integration in the region of small w,, k, flowing 
into the backbone. This makes it possible to neglect qj in 
comparison with q in the arguments of the G F  of the back- 
bone and to integrate over all q, in the n-VC, which thus 
become single-point correlators. Graphically, this proce- 
dure can be represented in the form 

Here n is the complete (reducible) single-point n-VC 

and 

is the asymptotic form of the Eulerian vertex 

when q, -+ 0: 
11 

= ikl'GijS (q,  - q,). (1.17) 
i4r 

Henceforth, we shall call this vertex "kinematic". It is not 
difficult to see that the n-term of the series (1.15) is 
(GO, ) "  + ' ( (kv)"), and, correspondingly, the sum of this 
geometric progression can be represented in the form desig- 
nated in Ref. 13 as a Green's function in the transport ap- 
proximation: 

It is a GF of noninteracting k-vortices, in which the frequen- 
cy w - k-V includes a Doppler shift on account of the uni- 
form transport of the vortices with velocity V and in which 
the averaging is performed over the ensemble of the turbu- 
lent velocity v(t,r) at a fixed point of space and at a single 
time. It follows from ( 1.18) that 

GF=(kVT)-'g(o/kVT), VT2=( ( ~ ( r ,  t ) ) Z > ~ L Z ( t - V ' .  (1.19) 

Thus, it must be regarded as established that the scaling in- 
dex Y for the Green's function is equal to 1 and not 2/3. In 
other words, the frequency in the Green's function is made 
dimensionless by dividing it by the Doppler transport fre- 
quency kV, and not by the frequency y, of the dynamical 
interaction of the vortices. 

1.4. The pair correlator in the transport approximation. 
In the transport approximation it is more convenient to find 
the pair correlator not from the Wyld equation (1.7) but 
from the generalized kinetic equation (GKE), which is easi- 
ly derived from the Wyld equation by multiplying by G,  and 
G and adding the results: 

The term GKE arises from the fact that in the case of weak 
coupling, after the integration over w, S, goes over into the 
usual collison integral. We note also that S, can be expressed 
in terms of the complete 3-VC, convolved with the bare ver- 
tex ( 1.2). In accordance with the results of Sec. 1.3, the PC 
must be sought in the form 

J' ,=VTk- '(kL)-"f(w/kVT).  (1.21) 

Here, in contrast to ( 1.12), the dimensional factors have 
been retained. Substituting ( 1.2 1 ) into the diagrammatic se- 
ries ( 1. lo),  we can convince ourselves that for 7 > 0 the self- 
similar form ( 1.2 1 ) is reproduced if everywhere we take into 
account the leading IR divergences, cut off at kL = 1. Here, 
all the terms of the series for @, are of the same order of 
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magnitude and have the following structure: The large exter- which free integration in the region k ' 4 k, o' 40 is per- 
nal momentum q flows along one of the split backbones of formed. Consequently, this part is one of the contributions 
the diagram for Q,,  and the whole of the remaining part of to the one-point, equal-time VC. In graphical form, the 
the diagram is attached to this backboneby wavy lines, along GKE in the transport approximation has the form 

The graphs 1,3,  and 6 with a wavy line F, to the right corre- 
spond to the contribution Z,F,, and the other graphs corre- 
spond to the contribution Q,G,. A small circle with wavy 
tails terminated by triangles denotes a one-point n-VC. 
These correlators are real. We now explain the mechanism 
by which S, given by ( 1.20) vanishes identically. The graphs 
1 and 2 differ in sign because the kinematic vertices 

differ in sign, and, by virtue of the diagonal character of the 
kinematic vertex with respect to the four-momentum, the 
G F  and PC can be interchanged. It is easy to see that the 
graphs 3,4, and 5 also cancel out. The vanishing of the sum 
of graphs of the general form 6-9 ( 1.22) is guaranteed by the 
following algebraic identity: 

Thus, the PC in the transport approximation remains arbi- 
trary. Any F, of the form ( 1.2 1 ) with 7 > 0 and an arbitrary 
structure function satisfies the diagrammatic equations. 
This result has a simple physical interpretation: In the trans- 
port approximation one does not take into account the dy- 
namical interaction of the vortices, which determines the 
distribution of their energy over the scales. Consequently, 
this quantity remains arbitrary. However, if to complement 
the transport approximation we invoke the physical consi- 
deration that the frequency y of the dynamical interaction is 
much smaller than kVT, then the structure of F, in o can be 
determined uniquely: 

It follows from this that the frequency dependence of the PC 
and G F  is not universal, but is determined by statistical 
characteristics of the turbulent velocity in the energy-con- 
taining interval. The question of the structure of the single- 
time velocity correlators and of their universality in the 
transport approximation remains open. l3  

2. ELIMINATION OF THE TRANSPORT AND FORMULATION 
OFTHE THEORY IN QUASI-LAGRANGIAN VARIABLES 

2.1. Procedure for elimination of the transport, and the 
internal diagram technique. In order to get rid of the trans- 
port effect masking the dynamical interaction of the vorti- 
ces, we go over from the laboratory frame to the comoving 
frame moving with the random velocity V ( t )  of the vortices. 
This transformation is implemented in the ( t , k )  representa- 
tion by multiplying the Eulerian velocity v ( t , k )  by the 
Doppler factor due to the random velocity V ( t ) :  

This change of variables leads to the appearance in the La- 
grangian of a "kinematic" interaction vertex ( 1.17) describ- 
ing the transport effect. There also appears a renormaliza- 
tion of the random force, which becomes non-Gaussian but, 
as before, is concentrated in the energy-containing region. 
We can convince ourselves that the topological structure of 
the diagrams in the inertial interval is not changed by this. It 
is important to note that at t = to the velocity u ( t , k )  and the 
momentum n. ( t , k )  conjugate to it coincide with the Eulerian 
velocity and momentum, and this leads to the equality of the 
equal-time GF and PC at t = to in the two reference frames. 
This makes it possible to use the DT based on u,  and n., to 
find the equal-time statistical characteristics of the velocity 
field and to eliminate the divergences inherent in the Euler- 
ian DT. 

First we shall assume that the random velocity V ( t )  is 
statistically independent of v ( t , k )  and p( t ,k ) ,  since the ve- 
locity correlators of V ( t )  are determined by the relation 
( 1.16) and do not depend on the time. In this case, from the 
condition that the diagrammatic series for the Green's func- 
tions gq and pair correlators 3, coincide, after averaging 
over the transport velocity V ( t )  we obtain the rules of the 
"internal static DT"13: 

An explicit expression for the GF and PC of the internal DT 
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in terms of its MO in this case is given by the usual Dyson 
and Wyld equations ( 1.6) and ( 1.7). The graphical notation 
for the diagrams in the internal DT is not changed, but the 
rules for associating analytical expressions with them are 
changed and will contain counterterms that subtract the 
transport from all the irreducible velocity correlators (pair, 
three-point, etc. ). For example, 

F,-rKq=Fq-6' ( q )  I P., d4q1. (2.2b) 

The above approach to the study of turbulence was pro- 
posed in a paper of one of the authors (V. S. L. ) l3  and led to 
the cancellation of the IR divergences in second order in the 
vertices in the mass operators 3, and &,, making it possible 
to formulate an "improved" direct-interaction approxima- 
tion in terms of which the Kolmogorov-Obukhov solution is 
obtained. l9 Diagrams not containing G F  outside the back- 
bones and describing Gaussian fluctuations of the velocity 
field also converge in the IR region. However, the fourth- 
order diagrams with G F  outside the backbone, which de- 
scribe the 3-VC, already contain IR divergences on a spec- 
trum that is close to the Kolmogorov-Obukhov spectrum. 
These divergences grow in higher orders, and the theory 
turns out to be nonnormalizable in the IR region. The inter- 
nal DT also contains divergences in the UV region, which 
are associated with the fact that the combination of the ver- 
tex and G F  on the Kolmogorov-Obukhov solution behaves 
like k113. Therefore, a large ring containing 1-PC and n-FG 

diverges like kn13. The theory (Eulerian and internal) con- 
tains Ward id en ti tie^,^' which reflect the invariance of the 
equal-time quantities (e.g., Fk) under a Galilean transfor- 
mation: w + w - k*V. These identities can be obtained by dif- 
ferentiating F,- ,.,, with respect to V, using here the Wyld 
and Dyson equations and then integrating over w. The Ward 
identities guarantee the vanishing of the renormalization of 
the nth-order vertex for external momenta tending to zero, 
and lead to subtractions from the ring shown above, thereby 
improving the convergence. But complete cancellation of 
the UV divergences does not occur.20 

2.2. The quasi-Lagrangian VT. Since the attempt to 
eliminate the transport in a statistically independent manner 
turns out to be unsound, we shall take as the transport field 
V(t) the velocity u at a certain spatial point r,: V(t) 
= u(t,ro). 

In the r-representation this leads to the following re- 
placement of the Eulerian velocity v ( r,t) by the new velocity 
uroto (r,t): 

1 

v (r. f )  =uII.(r f I ~ . . ~ ~ ( r ~ ,  T) d l .  t ) . (2.3) 
t 

If the velocity of the liquid were constant, the quantity u,, 
(r,t) would coincide with the Lagrangian velocity of a parti- 
cle moving along a rectilinear trajectory. Since the true tra- 
jectories of the particles on the space-time scales of interest 
to us are almost rectilinear, it is natural to call the velocity 

yo, (r,t) the Lagrangian velocity in the straight-line orbit 
approximation, or, more briefly, the "quasi-Lagrangian" ve- 
locity. We emphasize that the relation (2.3) is simply a 
change of variables, and does not contain any approxima- 
tions. The equation for uro, (r,t) follows from ( 1. la)  and 
( 2.3 ) and differs from the Navier-Stokes equations ( 1. la)  
by a term that subtracts the transport at the point r,: 

+ vp,, (r ,  t )  -vAu., (r, t )  =0, div ur,(r, t) (2.4) 

The time to does not appear explicitly in this equation, and 
therefore the correlators of the quasi-Lagrangian velocity 
u, (r,t), like the correlators of the Eulerian velocity v(r,t), 
are invariant under displacement in time. Therefore the in- 
dex to in the velocity u,, (r,t) is omitted in Eq. (2.4) and 
below. In the (t,k) representation the equation of motion for 
the quasi-Lagrangian velocity u, (t,k) reproduces the origi- 
nal Navier-Stokes equations ( 1. lb) ,  but with another quan- 
tity which we call "dynamical": 

i j l  y$* l,.. = i {k,jsil [6 (k - k, - k,) - eiklr.6 (k - k,)] 
+- k116il [6 (k - k, - k,j - eikzrn6 (k - k,)]} 6 (o - m, - o,), 

(2.5) 
The fundamental difference between the quasi-Lagrangian 
theory with the vertex (2.5) and the theory with the Euler- 
ian vertex (1.2) is that the momentum is no longer con- 
served at the vertex, and, consequently, the G F  and PC be- 
come nondiagonal in the momentum: 

In the case of isotropic turbulence the incompressibility con- 
dition makes it possible to express L q n  terms of two scalar 
functions L,  and L, of w, k2, k 12, and (k-k'): 

id' 11' 
Lij(o, k, k') =Ar A L ~  ( ~ 1 6 i . ~ f + L ~ k ' ~ ' k j ' / k k ' ) .  (2.6b) 

In the Eulerian diagram technique, L (q1,q" ) was pro- 
portional to S4(q' - q" ). The theory is nondiagonal in the 
difference s = k' - k" as a consequence of the explicit spa- 
tial nonuniformity of the theory, since in the original vari- 
ables we have singled out a point ro determining the velocity 
u, (t,ro ) with which the comoving reference frame moves. 
It is convenient to go over to the mixed (k,r) representation: 

L,Y (a ,  k, r) = J exp (ikr) L?? (o, k, s) as. 
(2.7) 

L,,ij(o, k, s)=L,,'j(o, k', k"), k='/,(kf+k"), s=k'-k". 

This method is dictated by the quasiclassical (QC) approxi- 
mation," which is adequate for the problem of the motion of 
a liquid with two substantially different scales L and k -'. 
The quantities G, ( r )  and Fq ( r )  have the physical meaning 
discussed above: They are the pair correlator and Green's 
function near the point r. Both this circumstance, and the 
fact that the formulas (2.7) also have a strictly defined 
meaning outside the framework of the QC situation, will be 
important for us in the following. 
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We shall show that the G F  and the pair correlator L , ,  F: = j  d s ~ ' ( w ,  k+ 'k)~@'  (k, s)G *'(w, k-'/,s), 
(q,r) depend in fact on the difference r - r, and not on r and 
r, separately. This is a consequence of the spatial uniformity 
of the problem of fully developed hydrodynamic turbulence. 
In fact, if in Eqs. ( 1. lb) with the vertex (2.5) we replace the 
velocity u ,  (q) by ii, (q)exp(ik*r,), the dependence on r, 
vanishes in the vertex (2.5); this proves that the entire de- 
pendence on r, is contained in exp(zk*r,), and this, in combi- 
nation with formula (2.7) for L(q,s), quickly proves our 
assertion. In the following we can set r, = 0, and the trans- 
port is then eliminated at the coordinate origin at t = t,. We 
note that the quasi-Lagrangian variables (2.1 ) and quasi- 
Lagrangian equations (2.4), (2.5) were proposed by one of 
us (V. S. L.) in 1980. The necessity of using these variables 
for a scale-invariant formulation of the theory of turbulence 
was noted in the review Ref. 19. For the Hamiltonian formu- 
lation of the theory of turbulence in Clebsch variables, calcu- 
lations similar to (2.5) (but with r, = 0) were proposed 
independently in Ref. 14. However, in this and subsequent 
papers starting from Clebsch variables, a detailed analysis of 
the resulting theory was not carried out. In particular, the 
authors of Ref. 14 did not draw attention to the fact that a 
theory with subtractions of the type (2.5) becomes nondia- 
gonal in the momenta, and that its objects L,.,. depend on 
two three-dimensional variables k', k" and o', and not on w 
and k. In a more recent paper,,' the nondiagonal form of 
L,.,.. in the momenta was taken into account, but the struc- 
ture of these functions in q' - q" was not investigated; with- 
out such an investigation the conclusions concerning the 
convergence of the integrals in the theory remain hypoth- 
eses. , 

The rules of the quasi-Lagrangian DT are more compli- 
cated than those of the Eulerian DT because of the nondia- 
gonal form of the G F  and PC in the momenta kl,k": Momen- 
tum k + 4s flows into each line, while k - is  flows out. 
Consequently, each line "loses" the momentum s, over 
which the integration is performed. Momentum k + 4s flows 
into each vertex, and momenta k, - is, and k, - is, flow 
out. In view of the complication of the quasi-Lagrangian 
theory involving the nondiagonal form of the G F  and PC in 
the momentum, we shall formulate and analyze first the QC 
approximation, which pretends only to a qualitatively cor- 
rect description of the properties of turbulence. 

2.3. The quasiclassical approximation. Since in the QC 
approximation the G F  and PC have the form of a sharp peak 
in the variable s, and, with r, = 0 in (2.7), every diagram is 
averaged overs, we can neglect the dependence on the given 
si in all parts of the diagram except L (qi, si ), and then inte- 
grate over all the variables si and obtain closed Dyson and 
Wyld equations in terms of local G F  and PC L :, defined by 
the simple relation 

In this case the Dyson and Wyld equations take an integral 
form: 

G =G." +j Go(@, k+t/z~)z;  (k, S)IG '(w, k- t / .~)d~,  (2.9) 

Here 2; (k,s) and @; (k,s) are mass operators with inflow- 
ing momentum k + 4s and outflowing momentum k - 4s. 
These MO are functionals of L 1,. The diagrammatic series 
for the MO Z' and @'have the same form as in the Eulerian 
DT, but the dynamical vertex (2.5) is the difference of the 
complete Eulerian vertex and the kinematic vertex. Conse- 
quently, the momentum in the MO 2' and @' is not con- 
served, and the general 6-function expressing the law of con- 
servation of momentum in the local theory cannot be 
separated out in the local mass operators; this is the reason 
for the presence of the additional integration in (2.9) in 
comparison with the usual DT. 

The solution of the diagrammatic equations (2.9) for 
the local functions G : and F :  is naturally sought in a scale- 
invariant form analogous to ( 1.1 1 ), by assuming the scaling 
relation (1.12) to be fulfilled. We shall prove that in the 
diagrammatic equations (2.9) both IR and UV divergences 
are absent. Our proof is based on the explicit asymptotic 
form of the dynamical vertex 2fl (2.5) for the case when 
the momenta k, k, , and k, differ in order of magnitude. We 
shall give the asymptotic forms: 

A, k -> 0: qff; --t k06, (6 (kl+ kz)- 6 (k,)] 

B , kl i- 0: +fiiY -klY6as [6 (k - kz) - 6 (k)] 
(2.9a) 

- kfiklb6ay6e' (k - k,) 

C ,  kl, k, --, 0: 3:& - - (k16k2Q6,, + kz6kl~6a6) ad' (k), 

Here 6; (k)  = d6(k)/aka. The asymptotic forms for k, -0 
and k, k, -0 are easily found by interchanging the indices 2 
and 1. The asymptotic forms (2.9) show that the vertex y 
(2.5) possesses a whole series of remarkable properties. 
Namely, when one of the momenta k, k, , k, is much smaller 
than other two, the vertex is proportional to this momentum 
(relations A and B). When one of the momenta k, k, , k, is 
much larger than the other two, the vertex either, for k) k,,  
k,, tends rapidly to zero (relation C),  or, for k,)k, k , ,  
tends to a constant that is independent of k, (relation D). 
There are enough of these properties to prove the conver- 
gence of the diagrams in the quasiclassical approximation. 
First, we shall perform the integration over the internal fre- 
quencies oj for an arbitrary diagram. Here we shall assume 
that the three-momenta of the line are independent, since the 
three-momentum at the vertex 7 (2.5) is not conserved and 
it is not worthwhile to distinguish in the graphs separate 
fragments corresponding to particular paths of momentum 
flow. As a result, in each pair correlator the scaling factor 
k P p  appears. In addition, a function Yof many variables will 
appear as a common factor of the diagram: 

308 Sov. Phys. JETP 66 (2), August 1987 V. I .  Belinicher and V. S. L'vov 308 



Here w and k are the external variables of the diagram, 
k,, ..., k,, - , are the momenta corresponding to all the lines of - a diagram with n pair correlators, and i3, + ,,..., a,, - , are 
linear combinations of the external frequency w and the inte- 
gration frequencies, as determined by the laws of conserva- 
tion of the frequencies at the vertices. In the diagrams for the 
Wyld equation the expression for Yis modified slightly-the 
zero subscript on the first GF disappears, and one of the GF 
is replaced by a PC. The statement that the function Y is 
regular is very important. This function is finite in the whole 
range of variation of its arguments and can be expanded in a 
series in them. This follows from its explicit form (2.10). In 
the proof we shall assume that the structure function f(6) is 
finite everywhere, and falls off sufficiently rapidly as P+ a ; 
Reg(6) behaves analogously, while Img(6) is equal to zero 
at 6 = 0 and behaves like 6- ' as 6- UJ . Consequently, the 
integral (2.10) exists for all values of the parameters appear- 
ing in it, and in analyzing the convergence of the integrals we 
can ignore the presence of the function Y in a diagram, as- 
suming it to be a constant. Now our diagrams contain only 
three-dimensional integrations over the variable s and the 
3n - 1 variables k inside the MO. After the integration the 
GF and PC can be assumed to be power functions G, a k - v, 

F, a k -p ,  and the analysis of the divergences is performed 
fairly simply. It is necessary to consider the IR and UV situa- 
tions, when some fragment of the diagram contains a mo- 
mentum much smaller or much greater than the external 
momentum k. We must also distinguish two situations: A 
large (small) momentum flows inside the diagram or 
emerges at the ends of the diagram. We shall consider the IR 
situation inside some diagram. Topologically, three cases 
are possible: 1 ) A small momentum starts at one vertex and 
ends at another; 2) a small momentum flows around a ring; 
3) a small momentum branches and encompasses a certain 
region. 

In the first case the following variants of the flow of the 
small momentum are possible: 

Here the vertices at which the small momentum starts or 
ends are surrounded by a small circle. Using the asymptotic 
representation (2.9a) of the vertex, we can easily calculate 
the IR convergence indices a of the diagram with allowance 
for the scaling relation ( 1.12) : 

while the graph d simply does not agree with the asymptotic 
form (2.9), proportional to 8; (k) ,  of the vertex 7. Since 
1 > Y > 0, all the a,, ...,q are greater than zero and the frag- 
ments of the graphs (2.11) converge on the Kolmogorov 
spectrum. 

In the second case we have the following variants of the 
flow of the small momentum: 

The IR convergence indices of these graphs are as follows: 
a, = v, ub = 1, and a, = 1, while the graphs d and e do not 
agree with the asymptotic form (2.9a) of the vertex. We note 
also that the diagrams a and b are equal to zero because the 
pair correlators are transverse. Thus, the smallest margin of 
convergence in this group of graphs, equal to 1, is possessed 
by the graph c. In the third case we have the following var- 
iants of the flow of the small momentum: 

The graphs (2.13) differ from the graphs (2.11 ) and (2.12) 
in that the small momentum branches. This implies that in 
the calculation of the convergence index of the diagram the 
phase volume must be taken to be not k3 but k3" + 3, where n 
is the number of branchings of the small momentum. Taking 
this into account, we obtain the following IR convergence 
indices: 

(n is the number of GF in the ring), and a, = 3 + mv (m is 
the number of PC in the ring). On the Kolmogorov spec- 
trum all these indices are positive. The analysis of the sim- 
plest types of paths of the small momentum in the diagrams 
proves the convergence of all these diagrams. Here an in- 
crease of the length of the path of the small momentum only 
improves the convergence. The situation when the paths of 
the small momenta k cover a certain region inside the dia- 
gram also gives rise to no dangers. The scaling relation guar- 
antees that the increased complexity of the diagram does not 
lead to divergences. 

We now consider the UV situation inside the diagrams. 
Topologically, the paths of large momentum are the same as 
the small-momentum paths considered above. In the first 
case, the graph (2.1 la )  is forbidden, since a large momen- 
tum cannot terminate at a solid-line entrance to a vertex [see 
the asymptotic form C in (2.9a) 1 .  The UV convergence in- 
dices are as follows: 

Since all the UV indices are negative, the fragments of the 
graphs converge on the Kolmogorov spectrum. In the sec- 
ond case, the UV indices are as follows: 

(n is the number of GF in the ring), and a, = 3 
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- m(5 - 2 ~ )  (m is the number of PC in the ring). In this 
case the UV indices are also all negative. In the third case, we 
have the UV indices 

(nisthenumberofGFinthering),ando, = -m(1  - Y )  

(m is the number of PC in the ring). Thus, in all the cases 
considered, the UV convergence indices are negative and the 
diagrams converge. When the large momentum encom- 
passes a considerable internal part of the diagram the scaling 
relation is operative and this considerable fragment also con- 
verges. 

The fact that a small or a large momentum can emerge 
at the end of a graph gives rise to some concern. For example, 
the graphs 

, (2.14) 

diverge logarithmically in the IR region. This is the only 
example of a divergence. Happily, the Ward identity consid- 
ered in Ref. 20 makes it possible to prove that the divergent 
parts of these graphs cancel each other. UV divergences as- 
sociated with the ends of graphs do not arise, because the 
large integration momentum s always encompasses at least 
one PC. Consequently, we have proved that IR and UV di- 
vergences are absent in the quasiclassical approximation for 
fully developed hydrodynamic turbulence. The interaction 
in this approximation is local, and, by virtue of the scaling 
relation ( 1.12) and energy conservation ( 1.14), the Kolmo- 
gorov picture is realized. In Sec. 3 we shall show that it is also 
preserved in the exact theory. 

3. STRUCTURE FUNCTIONS OF THE QUASI-LAGRANGIAN 
THEORY AND THE LOCAL NATURE OFTHE INTERACTION 

The QC approximation considered in Sec. 2 gives a 
qualitatively correct picture of fully developed turbulence, 
but, naturally, cannot pretend to give a quantitative descrip- 
tion of it, since the structure functions of the G F  and PC 
L (9,s) are not localized in s in the region s 4  k. In reality, we 
must expect that the G F  and PC are localized in s in the 
region s-k, since (in the case of convergence of the inte- 
grals) there is no other parameter with the dimensions of 
momentum in the theory. In this section we shall find the 
asymptotic forms of the structure functions of the GF and 
PC in the variables s and w, we shall show that the integrals 
of the structure functions over s converge, i.e., that the PC 
and G F  for r = 0 exist (L : # m; see (2.8) ), and shall prove 
that the interaction is local in k-space, i.e., the integrals over 
k converge. Constructively, the proof of these statements is 
performed more conveniently in the reverse order. First we 
assume that the integral in (2.9) exists and prove that the 
interaction is local, and then we find the asymptotic forms of 
L(q,s) ins  and w and convince ourselves that the integral of 
(2.9 ) over k converges. 

3.1. Proof that the interaction is local. On the class of 
scale-invariant solutions of the hydrodynamic equations, 
the following representation is valid for the G F  and PC: 

k s 
GZJ (4, s) =s-'k-'gij (s , k ,  , 

o k s  (3.1) 

where the indicesp and Y satisfy the scaling relations ( 1.12). 
The structure functions should be everywhere finite and 
should tend to zero when w/kV+ C O ,  s/k+O, CO. It is now 
obvious that the arguments proving the convergence of the 
diagrams in the QC approximation also remain valid in the 
complete theory. The integration of the MO over w leads to a 
regular function 

analogous to (2.10). Since each si is of the order of its ki, we 
can assume that the integration over si has been carried out, 
and then assume that si z k, . Now the function Y that has 
arisen can be assumed to be a constant, and all the arguments 
of Sec. 2 concerning the convergence of the integrals over k 
remain valid. The problem of the "emergence" of the mo- 
menta at the ends of the graphs does not arise, since in the 
calculation of the diagrams for G(q,s) and F(q,s) it is not 
necessary to integrate over the momentum s corresponding 
to the ends of the diagrams. 

The attempt to trace constructively the fact of the can- 
cellation of the divergent contributions to the integrals in all 
ranges of variation of the integration variables for diagrams 
of high-order encounters calculational difficulties associat- 
ed with the large number of terms in the corresponding ana- 
lytical expressions. Even if we disregard the tensor structure 
(2.6b) of the G F  and PC, each diagram with n vertices will 
contain 4" terms, since the quasi-Lagrangian vertex (2.5) 
has four terms. The simplest graph (n = 2) will contain 16 
terms, and the next graphs (n = 4) already have 256 terms. 
Therefore, we shall confine ourselves to illustrating the ab- 
sence of IR divergences in the most dangerous region, when 
all the momenta ki of the PC are small. In the internal DT, 
the integrals in this region diverge for n)4. We note that the 
quasi-Lagrangian DT can be reformulated in terms of the 
Eulerian vertices ( 1.8) if the G F  and PC G, (k',kW ) and F, 
(k1,k") are replaced by the "subtracted" G F  and PC G ,  
(kl,k") and p, (kl,k"): 

6. (k', k") =G* (kt, k") -8 (kl) Gy (k,, kr)  dkI, 

(3.3) 
F.  (k', k") =F.  (kt, k") -8 (kt) 5 F. (ki, krf)dki 

In other words, the quasi-Lagrangian DT is also obtained if 
the vertices are taken to be Eulerian (conserving the four- 
momentum q), and the G F  and PC are substituted into the 
internal lines in the subtracted form (3.3). In particular, in 
the quasi-Lagrangian DT the "bare backbone" representa- 
tion (1.14a), or the representation equivalent to it for the 
MO Z,, is replaced by the subtracted representation 

. . [6 (k,' - k,) - 6 (knl)j F:;.: a;,, d4ql d k i  . . . d4qn dk,,'. 

(3.4) 

Here fi is the quasi-Lagrangian backbone constructed from 
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Eulerian vertices and subtracted G F  (3.3), and pi is the 
irreducible quasi-Lagrangian velocity correlator pi cx S(w , 
+ . . . + on ), which, however, does not contain S(k, + . . . 
+ k,). It follows quickly from (3.4) that the IR diver- 

gences leading to the transport effect are absent in the quasi- 
Lagrangian DT, since, when the integration momenta k,  
,..., k, are small in comparison with the external momenta 
k',kM, the dangerous contribution to 2, (k',k" ) reduces to 

and on the scale-invariant solution (3.1) with the Kolmo- 
gorov index values Y = 2/3 and ,u = 11/3 the integrals 
(3.5) converge. 

3.2. Asymptotic forms of the structure functions in s and 
r. Under the assumption that all the integrals converge, we 
shall find the asymptotic form of the structure functions ins. 
For S) k we can set k = 0 in all the diagrams, since the argu- 
ments in the lines are the combinations k + Is, and this limit 
exists. Consequently, this asymptotic form is found from di- 
mensionality and scaling considerations: 

The asymptotic forms of the G F  and PC L (9,s) for s (k are 
found from more complicated considerations. This is done 
most simply in the coordinate (w,k,r) representation with 
kr) 1, with a subsequent transformation to the s-representa- 
tion. First we shall put forward the physical arguments that 
fix this asymptotic form, and then we shall demonstrate how 
this form is determined by the diagrammatic series. By going 
over to the quasi-Lagrangian velocity (2.3) we have elimin- 
ated the transport at the point r, = 0, and the G F  and PC of 
interest to us pertain to a point r far from the coordinate 
origin. It is clear that those cancellations of IR divergences 
that are brought about by going over to the coordinate frame 
moving with velocity v ( 0 )  will be partly destroyed, since at 
the point r the vortices move with a different velocity v(r).  
As a result there will remain uncompensated transport with 
characteristic velocity 

where kV, ( r )  = ~ - ' / ~ k ~ ' ~ ( k r )  'I3 is the Doppler frequency 
of the transport over the scale r. This estimate for V,(r) 
follows from the fact that the main contribution to this ve- 
locity is made by vortex motions with scaler. It now becomes 
understandable why G, and F, for kr) 1 should have the 
same form as in the Eulerian DT in the transport approxima- 
tion [ ( 1.19) and ( 1.2 1 ) 1, with the replacement of V, for the 
transport of L-vortices by V,(r) for the transport of r-vorti- 
ces. It follows from this that, for the G F  and PC, 

Using these expressions for the G F  and PC in q, r, we can 
find the G F  and PC in the (9,s) representation by means of 
Fourier transformation:. 

We shall show that this asymptotic form of the "r-transport" 
is reproduced in the diagrammatic series. We shall use for 
this the bare-backbone representation ( 1.15 ) . It is valid in 
the quasi-Lagrangian theory if we take into account that the 
sum of the momenta k, , k, ,..., k, flowing into the backbone 
is not equal to zero. The graphs containing kinematic ver- 
tices cutting the backbone are small, for kr) 1, in compari- 
son with the main contribution. In this main contribution to 
the G F  we can neglect the dependence of the backbone on 
the momenta flowing into it, and use a purely transport 
expression for the GF: 

Here n"" ' 'a" (q) is the backbone when the inflowing mo- 
menta 9, , q, , ..., q, are equal to zero. This expression differs 
from the transport expression ( 1.16) in the presence of the 
factors exp(zkj . r )  - 1, and therefore converges in the re- 
gion of small k,. The principal contribution to the integrals 
over k, arise in the region k j r r  1 and is proportional to rn/3. 
From this there immediately follow the formula (3.7) and 
the above asymptotic estimates of the G F  and PC for kr) 1. 

3.3. Asymptotic form of the structure functions in w. In 
the proof of the convergence of the integrals in the QC ap- 
proximation and the quasi-Lagrangian DT a fact of great 
significance was the rapid decrease of the structure functions 
g ( { ) ,  f ( f )  as f + co ) where 6 = ~ / k ~ / ~ ) ,  which is necessary 
for convergence of the integrals over w. Below we shall estab- 
lish the asymptotic form of the G F  and PC for w ) k2/'. For 
this we consider the local GF and PC L,, which possess 
naive Kolmogorov scaling ( 1.1 1 ) with Y = 2/3 and p 
= 11/3. We find first the asymptotic form of the PC. It 

follows from Eq. (2.8b) that for w + co the principal contri- 
bution to the integrals is given by the region of integration 
over the internal variables o ' z w  and k ' z s~sw ' '~ .  The ex- 
plicit form of the structure functions (3.1 ) in the calculation 
of the integrals over the internal variables w', kt, and s is 
unimportant, inasmuch as the principal contribution to the 
integrals arises from the region k ' z s z  w3l2. Taking into ac- 
count the common dimensionality of the G F  and PC in 
(3.1 ), the asymptotic form S(s)/iw of the G F  as w - C O ,  and 
the proportionality of the MO.2, and cP, to the square of the 
external momentum, we obtain 

From this follows the power asymptotic form for the 
PC F i .  Analogous arguments can be applied to the Dyson 
equation integrated over s. As a result, we have 

Here c, and cf are constants. The asymptotic forms (3.12) 
are easily verified from the first diagram for the MO 25, and 
cPk ( 1. lo),  and, in view of the power character of (3.12), the 
scaling relation guarantees that these asymptotic forms are 
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reproduced in the entire diagrammatic series. On the basis of 
the same arguments concerning the dominant contribution 
of the regions of integration a'- k '2/3-~'2/3 - w we can find 
the asymptotic forms of the GF and PC for w)k2/3 in the 
quasi-Lagrangian theory: 

Here 9, and pf are polynomials of second order in k/k and 
s/k. The GF and PC (3.13) fall off rapidly with w,  and this 
guarantees the regularity of the functions y (2.10), (3.2) 
introduced in the proof of the convergence of the diagrams. 

3.4. The dressed vertex function. The above investiga- 
tion of the quasi-Lagrangian theory was carried out in terms 
of the bare vertex function (2.5). From the scaling relations 
it is clear that the homogeneity index of the vertex is not 
changed by the interaction. In fact, in lowest order the equa- 
tion for the vertex 

(3.14) 
adds to the bare vertex the scaling combination y2G2Fuk3. It 
would be interesting to know whether the bare 6-function 
structure remains in the vertex or whether the interaction 
washes it out completely. To answer this question we can 
make use of the method of r-transport. Going over, in Eq. 
(3.14), to the r-representation with respect to the sum of the 
momenta entering the vertex, we can convince ourselves 
(see Ref. 20) that for kr) 1 the vertex tends to a constant, 
implying that the &function feature is preserved. In particu- 
lar, the lower-order diagrams in (3.14) do not depend on r 
for kr) 1, since each of the G F  in the ring contribute a factor 
[VT(r)]- '  and a PC gives [VT(r)I2. 

We shall discuss the possibility that the diagrammatic 
equations of fully developed turbulence have solutions lead- 
ing to a large renormalization of the vertex (2.5). It may be 
assumed that as a result of the strong interaction the renor- 
malized vertex (3.14) becomes much larger than the bare 
vertex. Then, as in the theory of phase transitions, in Eqs. 
(3.14) we can omit the bare vertex function and obtain a 
self-consistent system of equations for the GF, the PC, and 
the vertex. It is natural to seek the solution of this system of 
equations in the form of the scaling functions (3.1 ), and also 

With the assumption that the interaction is local the scaling 
relation and energy conservation are replaced by 

It follows from this that p = 11/3 and v = o - 1/3. Thus, 
for this class of solutions too, the scaling and the local nature 
of the interaction require the index of the equal-time PC 
(and of the higher equal-time VC) to have the Kolmogorov 
values. But the index of the frequency v and of the G F  may 
be changed. This situation is a consequence of the distinctive 

renormalization invariance of the theory 18: the dressed GF 
and dressed vertex appear in the form of a product in the 
Wyld equations, the equation (3.14) for the vertex, and the 
expressions for the higher velocity correlators. The question 
of the determination of the index a should be solved, in our 
opinion, on the basis of the requirements for self-consistency 
of the solution, as is done in the renormalization-group ap- 
proach in the theory of phase transitions, and also on the 
basis of the condition for stability of the solution. At the 
present time we see no serious arguments involving diver- 
gences of the diagrams or of the series as a whole that would 
dictate the need to consider the class of solutions with strong 
renormalization of the vertex. 

3.5. The higher-order velocity correlators. In the frame- 
work of this approach, the equal-time n-VC Fz::: ::; can be 
calculated. The general dimension of the equal-time n-VC 
can be found easily from the first diagram and is reproduced 
in higher orders of the DT as a result of the scaling relation: 
F,":;: ::; a k Iod3, which coincides with the results of the Kol- 
mogorov-Obukhov phenomenological approach. In our ap- 
proach we can determine the asymptotic forms of the n-VC 
in the case when one momentum k, = x, is much smaller 
than the others: x, (kj ( j = 1, ..., n, j# i ) ,  and also when the 
sum x2 = k, + kB + . . . + k, of a group of momenta is 
much smaller than the momenta themselves: x 2 g k j  
( j  = 1, ..., n).  The principal contribution to the n-VC then 
arises from the graphs (3.17), where a small momentum 
flows through the pair correlator: 

Taking into account that the vertex is proportional to x and 
Fx we easily find FA a x; 'I3 and FB a X; 'I3. This 
result is valid is all orders of the quasi-Lagrangian DT and 
cannot be obtained in the Eulerian DT if we confine our- 
selves to a finite number of diagrams for the n-VC. 

CONCLUSION 

We shall summarize the results of the paper. The princi- 
pal difficulties of the current stage of development of the 
theory of turbulence that are due to the problem of transport 
can be solved successfully by going over to a coordinate 
frame moving with the velocity of the liquid at a certain 
spatial point r,. Naturally, the theory that then arises de- 
pends on the point r,, and therefore is nonlocal in the mo- 
mentum. The scale-invariant pair correlator and scale-in- 
variant response are the solution of the corresponding 
Dyson equations and generalized kinetic equation. 

The interaction of vortices of scale k - ' turns out to be 
local, i.e., only vortices of similar scales interact dynamical- 
ly, and the interaction of vortices of different scales reduces 
to their mutual transport. The requirement of scale invar- 
iance (scaling) and energy conservation fixes the energy dis- 
tribution over the scales, which corresponds to the Kolmo- 
gorov-Obukhov law: E, a k - ' I3. The present theory also 
gives constructive machinery for investigating more special- 
ized questions. 

It is necessary to note that the mathematical objects of 
the theory are asymptotic series that depend on the external 
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parameters. After the elimination of transport effects they 
do not contain small parameters as such. It is clear that par- 
tial summations of such series, which we have repeatedly 
carried out, are a poorly defined mathematical procedure. 
Our quasi-Lagrangian diagram technique in terms of 
dressed pair correlators and Green's functions and bare ver- 
tex functions can be regarded as a way of supplementing the 
original Eulerian diagram technique. The method yields re- 
sults that are physically rich in content and permits one to 
hope that the approximations given by the first few dia- 
grams, and the methods of asymptotic summation of series 
(e.g., Bore1 summation), will turn out to be adequate for the 
derivation of quantitative results. Of course, the question of 
the one-to-one correspondence of observable physical quan- 
tities to asymptotic series of the theory of developed hydro- 
dynamic turbulence remains open. 

Nonperturbative contributions (giving zero in the ex- 
pansion in a perturbation-theory series) to the observable 
quantities of developed turbulence are possible. We note also 
that in our solutions of the diagrammatic equations the ho- 
mogeneity index (scaling dimension) of the vertex is not 
renormali~ed. However, the theory may also contain other 
solutions, in which the scaling dimension of the vertex is 
changed but, by virtue of the scaling relations and the local- 
ity of the interaction, the dimension of the equal-time veloc- 
ity correlators remains as before. A number of important 
questions remain unstudied. These concern the uniqueness 
of the solution obtained, the stability and establishment of 
the solution, the approach of the nonuniversal solution in the 
energy-containing interval to a scale-invariant solution in 
the inertial interval, etc. Thus, there is a large field for 
further ir ~estigations. 
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