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Nonlinear excitation of longitudinal Langmuir waves in a plasma by a short electromagnetic 
wave packet is considered. The possibility of accelerating particles by using fast plasma waves 
excited by a short laser pulse in a low-density plasma is discussed. 

V 

The feasibility of Cerenkov and transition radiation 
from a packet of electromagnetic waves wassrst discussed 
more than twenty years ago in Refs. 1 and 2. Cerenkov radi- 
ation from a femtosecond laser pulse was relatively recently 
recorded experimentally in a nonlinear electro-optical medi- 

andvthe pertinent theory is presented in Ref. 4. 
No Cerenkov radiation is possible in an isotropic plas- 

ma, since the phase velocity of the transverse waves exceeds 
the speed of light. A wave packet, however, can emit longitu- 
dinal plasma waves. This question has attracted attention 
relatively recently in view of the development of new parti- 
cle-acceleration  method^.^.^ A computer experiment596 has 
shown that the efficiency with which plasma waves are excit- 
ed by a short wave packet can be quite high. 

The present paper is devoted to the theory of excitation 
of plasma Langmuir waves by a packet of electromagnetic 
radiation. We obtain the amplitude of the excited waves and 
the energy loss due to radiation. The conditions under which 
the packet can be spread out by dispersion and diffraction 
are formulated. The possibility is discussed of using plasma 
waves excited by a laser pulse to accelerate electrons, as well 
as in diagnostic methods. 

Conceivably, a phenomenon similar to the emission of 
plasmons by photons, considered in the present paper, is fea- 
sible also in other nonlinear material media. 

1. ONE-DIMENSIONALCASE: BASIC EQUATIONS 

We consider first emission of plasma waves in the one- 
dimensional case. This approximation is justified if the 
length of the packet (in the direction of propagation) is 
much smaller than its cross section. This condition indeed 
holds in experiments with femtosecond laser pulses. A pulse 
of duration s is 3 p m  long, whereas its transverse di- 
mension, determined by the focusing system, is usually tens 
or even hundreds of microns. 

We describe the wave packet by using a system consist- 
ing of the Maxwell equations and the hydrodynamic equa- 
tions for the electrons, disregarding the thermal motion and 
collisions of the latter.' The plasma ions are assumed fixed. 
From these equations we obtain for the electron momentum 
componentp, , the electric field intensity E, and the magnet- 
ic induction B, all perpendicular to the X axis along which 
the packet propagates, 

where u, and vli are the transverse and longitudinal compo- 
nents of the electron velocity and are connected with p, by 
the relationp, = mu, [ l  - (u: + vf,)/c2] -'I2, and n is the 
electron density. If the condition v, %vl i  is met, Eqs. ( 1.1 )- 
( 1.3) lead in the weakly relativistic case ((u:/c2) < 1) to the 
following equation for u, : 

where it is assumed that the electron density is equal to 
no + Sn, no is the density unperturbed by the packet, Sn is 
the density perturbation due to the packet, and 
w, = ( 4 ~ e ~ n d r n ) " ~  is the plasma frequency. 

The terms in the right-hand side of ( 1.4) take into ac- 
count nonlinear effects due to the relativistic transverse mo- 
tion of the electrons, and also to the density perturbation 6n 
produced by the packet. This perturbation is due to the elec- 
tron motion along the packet propagation direction, and the 
corresponding system of equations takes the form 

where q~ is the charge-separation potential. In the weakly 
relativistic limit we obtain from ( 1.5)-( 1.7) and ( 1.1 ) for 
small perturbations of the electron density. 

The system (1.4) and (1.8) determines the interrelated 
transverse and longitudinal motions of the electron in the 
wave packet. 

The collisionless absorption, due to nonlinear forces, of 
the packet energy by a plasma is considered in a number of 
papers, (see, e.g., Ref. 8) .  We consider this question as ap- 
plied to our statement of the problem. 

In the nondissipative case, the total packet energy is, of 
course, conserved. This follows from the equations for the 
energy density, which follow from Eqs. ( 1.1 )-( 1.3) 
and (1.5)-(1.7) 
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Adding (1.9) to (1.10) and using the continuity equa- 
tion ( 1.6), we obtain on the right-hand side 

Thus, with allowarice for the transverse and longitudinal 
particle motions, and also for the transverse and longitudi- 
nal fields, the equation for the total energy density is reduced 
to a divergent form, so that the energy-conservation law 
holds. Individually, however, the transverse and longitudi- 
nal energies are not conserved 

If we take the packet energy to mean only its transverse 
part, we can speak of energy loss. In our approximation, in 
which the density perturbations are small and relativistic 
effects are weak, we find from (2.9) that the transverse-ener- 
gy density is 

and its change per unit time amounts to 

In the same approximation, it follows from ( 1.10) that the 
change of the longitudinal-energy density is given by 

The total energy of a packet localized in space is then con- 
served, since 

2. EXCITATION OF PLASMA WAVES 

Consider the excitation of plasma waves by a one-di- 
mensional packet having a specified permanent form. The 
conditions under which this approximation is valid will be 
discussed below. 

Assume that the transverse electron velocity is 

1 vl(x, t) = - [a ( e )  e - i o t+ fhx+a*  (E) ei"f-fAx 

2 - I I (2.1) 

where o and k are respectively the high carrier frequency 
and the wave number, which are connected by the dispersion 
relation o2 = k 'c2 + oj (Ref. 7), and a is a slowly varying 
envelope that depends on the combination of variables 
6 = x - vg t, where vg is the group velocity. 

Substituting (2.1) in (1.8) we find that the packet pro- 
duces high- and low-frequency density perturbations. The 
high-frequency perturbations (Sn,) occur at the second har- 
monic and if the plasma is transparent (for 2w >wp ) they 
are localized only the region of space where the packet is 
present: 

The low-frequency perturbation Sn, is determined by the 
space-time variation of the envelope. Under the condition 
that as x - CQ there are no such perturbations ahead of the 
packet, we get from ( 1.8) 

E 

where kp = op /ug . According to ( 1.7), the perturbations of 
the potential are given by - 

mkP q = - r  idt'la(E1) 12siok,(E-1'). (2.4) 
E 

Specifying the envelope a ( l) ,  we can easily find with 
the aid of (2.3) and (2.4) the density and potential perturba- 
tions. By way of the simplest example, we consider a packet 
of rectangular shape: 

where 0 is the Heaviside unit step function. From (2.3) we 
get 

It can be seen from (2.5) that even inside the packet there 
exists, besides the terms that duplicate the form of the enve- 
lope, also a periodic perturbation of the density. What re- 
mains behind the packet is only this oscillating perturbation, 
and its amplitude depends on k, L. The maximum perturba- 
tions occur at kp L = ~ ( 2 1 +  1 ), where I = 0,1,2, ... . 

The low-frequency perturbations of the density of the 
potential can therefore be plasma waves of length 
A, = 2av,/op and can exist outside the region within which 
the transverse field of the packet is localized. This makes 
emission of plasma waves by the packet meaningful. 

The plasma-wave potential far behind the packet can be 
obtained from (2.4) without specifying the actual shape of 
the envelope 

cp (El =cpo sin (kpE+.r6), (2.6) 

If the packet dimension L is small compared with the 
length of the excited plasma wave, then 

The order of magnitude of the integral in (2.8) is LvE2, 
where v, is the amplitude of the velocity of the oscillatory 
motion of the electrons in the transverse field. It can be seen 
that in the case of a small packet the electron energy in a 
longitudinal wave is approximately Lkp times smaller than 
the average energy of the transverse oscillatory motion 
(called high-frequency potential) muE '/4. If the packet di- 
mensions are commensurate with the wavelength A,, the 
potential energy of an electron in a plasma wave is of the 
same order as the high-frequency potential. 
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We consider one more example that permits a better 
understanding of the physical excitation of plasma waves, 
viz., a packet of Gaussian form 

l a@)  I"ao2 exp [ - g 2 / 2 L 2 ] ,  

where L is the length of the packet. From (2.3) we get 

-- = - i (2n) ';a 
6n"02 [ e r p ( - 1 2 / 2 ~ )  - -- 
no 4uS2 4 kPL exp (-kP2LZ/2) 

where is the probability integral. Figure 1 shows the func- 
tion (2.9) at kpL = 1. It can be seen that at this ratio of the 
plasma-wave and packet lengths the electron density in- 
creases in the region of the leading front and falls off at the 
trailing edge of the packet. This density distribution is due to 
the joint action exerted on the electrons by the high-frequen- 
cy field and the charge-separation field. The high-frequency 
pressure forces on the leading and trailing edges of the pack- 
et are equal in size and opposite in direction. The charge 
separation field, on the contrary, is directed in the same di- 
rection at the packet location, and accelerates the electrons 
in the negative direction. This gives rise to a significant per- 
turbation of the density behind the packet and to formation 
of a plasma wave. 

3. ENERGY LOSS. DISTORTION OF PACKET SHAPE 

The assumption that the shape of the packet remains 
unchanged is valid if the time during which energy is lost to 
plasma-wave emission and the packet shape changes is much 
longer than the plasma period (or takes place over a length 
greatly exceeding the plasma wavelength). 

We consider first the energy loss and find the conditions 
under which it can be neglected. The expression given in Sec. 
1 for 6 W, allows us to find the total energy loss per unit time: - 

With the aid of relations (1.8), (2.1), (2.3), and (2.6) 
this equation is transformed into 

Using the expression for the amplitude of the electric field in 
the plasma wave (Eo = kppo) we can represent Eq. (3.1) in 
the form 6 W = (E :/ST) v,. A packet propagating at the 
group velocity leaves a trail in the form of a plasma wave 
having an energy density EO2/8p. 

FIG. 1. High-frequency potential U = m 10 (6) 1 '/4 (dashed line) and per- 
turbation of the electron density S n d n ,  (solid) as functions of the coordi- 
nate 6, for a Gaussian packet at k,,L = 1. 

We obtain the characteristic time during which the 
packet energy 

m 

is altered by the emission of plasma waves by dividing W, by 
the (3.1): 

rn 

This leads to the following for a small packet: 

Note that the distance traversed by the packet before its 
energy is decreased by radiation of plasma waves is equal 
approximately to T,, v, - T,, c. 

The condition Trad w, ,1 under which the radiation can 
be neglected is met if the right-hand side of (3.2) is large. 
This leads to an constraint on the packet energy: 

In addition to losing energy, the packet changes shape. 
This is due not only to spreading by the usual linear disper- 
sion, but also to nonlinear effects. To take the packet shape 
change into account, we assume that the envelope in Eq. 
(2.1 ) is not only a function of the variable(, but also a slowly 
varying function of the time. Substituting (2.1 ) in ( 1.4) and 
using (2.2) and (2.3), we obtain the equation for the enve- 
lope: 

(3.4) 
Note that the first term in the right-hand side of (3.4) is the 
result of allowance for weak relativistic effects, and also for 
the high-frequency (second-harmonic) and low-frequency 
perturbations of the electron density. 

The packet spreading due to linear dispersion can be 
easily shown, by comparing the first and second terms in the 
left-hand side of (3.4), to take place in a characteristic time 
TL and over a distance L, : 

The time of the nonlinear distortion of the packet shape de- 
pends on the ratio of the plasma wavelength A, to the packet 
dimension L. For small packets the integral in the right- 
hand side of (3.4) is approximately equal to kpL 'a:, where 
a, is the maximum of the envelope. From a comparison of 
the linear terms it follows that the last is (Lo/c12 times larg- 
er than the first and therefore determines the time and length 
of the nonlinear distortion of the packet: 

Comparing (3.2) and (3.6) we conclude that the most- 
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substantial nonlinear effect is the change of the packet 
shape. To corroborate this conclusion we point out that to . ,in k ,  (E-a') [ 1 - ( k , ~ ) - ' ( &  LI - I ) ] }  - (4.4) 

obtain the energy loss (3.1 ) it is necessary to retain in the 
left-hand side of (3.4) the small discarded term proportional The expression for the potential follows from the Poisson 
to 8 'a/8( 3. equation 

Let us formulate finallv the conditions under which it is E 

valid to assume a packet with given properties. If the packet k ,  
energy is low ( W, 4 2LN,,mcZ (k, L ) - 4 ) ,  the principal role is 

c p ( ~ . ~ ) = ~ e x r ~ ( % )  2LL .f dEr V(E' )s in  kp( l -5 ' ) .  (4.5) 

played by the spreading of the packet on account of linear 
dispersion. For this spreading to be negligible, the packet 
must be larger than ( d m p  ) (wp/m)312. If the packet energy 
is high (the opposite inequality holds), the change of the 
packet shape by nonlinear effects is decisive, and this change 
can be neglected by satisfying the inequality 
~ , ( L n ~ m c ~ ( m / w ,  ) 3 ( k p ~ ) - 2 .  

Thus, the packet spreads faster than it loses energy. It 
follows therefore that as the packet propagates and its initial 
shape is distorted, the excitation of plasma waves continues 
and the amplitude of the radiated wave changes and depends 
on the ratio of the packet size to A,. 

4. THREE-DIMENSIONAL PACKET 

We consider in this section a more realistic problem- 
emission of plasma waves by a three-dimensional cylindri- 
cal-symmetry wave packet. We assume that the high-fre- 
quency pressure (or high-frequency potential) connected 
with the packet is characterized by longitudinal (L II ) and 
transverse (L, ) scales. Besides the previously discussed lon- 
gitudinal shape distortion, such a packet diffuses also in the 
transverse direction by diffraction. If the diffractive broad- 
ening extends to distances greatly exceeding the plasma 
wavelength, it can be neglected. This condition leads to the 
following constraint on the transvsrse dimension of the 
packet: 

For a sufficiently short packet (L, %L ) the distortion of 
the packet shape can therefore be neglected under the condi- 
tions discussed above, in which L must be taken to mean L , 
and also if the inequality (4.1) holds. 

To determine the electron-density perturbations pro- 
duced by the packet one can use the hydrodynamic equa- 
tions for a plasma in a high-frequency electromagnetic 
field.9 Neglecting the ion displacements, we obtain in the 
linear approximation 

a26n/dt2+o,26n= (n , /m)  AU,  (4.2) 

where U = m ?/2 is the high-frequency potential and the 
superior bar denotes an average over the high-frequency mo- 
tion of the electrons. In contrast to ( 1.8), Eq. (4.2) describes 
only slow averaged perturbations of the electron density. 

We assume that U depends on the variable 6 = x - v, t 
that characterizes the longitudinal structure of the packet, 
and also on the transverse variablep. To be specific we con- 
sider a packet with a Gaussian dependence on this variable: 

From (4.2) we get 
E 

In addition to the one-dimensional equation (2.4), in which 
the high-frequency potential V should be taken to mean the 
quantity mla12/4, Eq. (4.5) contains a factor that deter- 
mines the radial dependence. In particular, the potential far 
behind the packet is of the form 

mk,  
T (5, P )  = --H exp(2$) sin ( k P l + $ ) ,  

Ge 

where R and $are defined by Eqs. (2.7) and (2.7') in which 
la (() l 2  must be replaced by 4V({)/m. Figure 2 shows lines 
of constant values of the function (4.3), and also the equipo- 
tentials for a packet that has a Gaussian dependence also on 
the variable 6. 

As already noted, the oscillations of the electron density 
and of the potential set in not behind the packet, but right 
after its leading front passes. This explains the result of the 
two-dimensional numerical simulation of the passage of the 
front of a laser beam through a low-density plasma,1° where 
a pattern of equipotentials similar to that of Fig. 2 was ob- 
served. 

5. CONCLUSION 

The plasma-wave "wake" produced behind the packet 
can be recorded by using Raman scattering of a probing 
wave of frequency w, propagating at a small angle 9- to the 
direction of the packet propagation. The dispersion laws for 
the probing, scattered, and Langmuir waves lead to a con- 
nection between the frequencies and the incidence angle 
(which is practically equal to the scattering angle): 

where w is the packet carrier frequency, and the _+ signs 
correspond to the anti-Stokes and Stokes scattered radiation 
with frequencies w, + w, . Given the frequencies, Eq. (5.1) 
determines the incident and scattering angles of the probing 
radiation. In particular, for 9- = 0 Eq. (5.1 ) leads to the con- 
nection w, = w + wp /2, between the frequency of the prob- 
ing radiation and the carrier frequency of the packet. 

In a low-density plasma the longitudinal wave excited 
by the packet has a velocity close to that of light. At suffi- 
ciently high amplitude, it can be used to accelerate charged 
 particle^.^ The acceleration mechanism is the following. The 

FIG. 2. Equipotential lines of a high-frequency (dashed) and an electro- 
static (solid) potential for a two-dimensional Gaussian packet. 
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particle is injected into the plasma, in the pocket-propaga- 
tion direction, with an initial velocity u, and an energy 
E,, = mc2 y, where 

A particle is accelerated if it lands in a plasma-wave region in 
which the electric field is directed along the wave motion. 
The maximum energy that such a resonant particle can ac- 
quire before it reaches that plasma-wave region in which the 
field reverses sign and begins to decelerate the particle is 
equal to 

the electron energy increases to 10 MeV. It follows then from 
the expressions above that the pulse-shape change, which is 
determined by linear dispersion and diffraction, is effected 
over a distance of 10 cm and is insignificant. 

The model considered by us is restricted by a number of 
assumptions. One is that the ions are immobile. Considera- 
tion of the ion motion introduces a possibility of parametric 
instabilities of the plasma wave." the growth rate of the 
most rapidly developing instability is approximately up ( m /  
mi ) 'I3, where mi is the ion mass. It can therefore be assumed 
that over distances - ( d m p  ) ( m i / m )  ' I 3  behind the packet 
the available time is insufficient for instability to develop. 

Allowance for the thermal motion of the particles leads 

In this case the particle negotiates, together with the wave, a to two effects: first, damping of the Langmuir wave, which 

path La = A&/eE,. It is assumed that the plasma dimen- will apparently be small because the phase velocity of the 

sions are also dose to La . We estimate now the field intensity wave is close to the speed of light, and second, to radial, 

in a plasma wave produced by a laser pulse of duration 10-l3 spreading of the "wake" of the plasma waves, which be- 

and a frequency = 2 .  1 0 ~ 4  s- 1 ( the wavelengthis comes substantial over a distances - L :o,c/u% behind the 

In a plasma of density no = 1017 cm-3, used in experiments packet, where v n  is the electron thermal velocity. 

on laser acceleration of articles,'' the plasma wavelength is - 100,um. According to (2.8), the longitudinal-field inten- 
sity is approximately equal to 

EL=4nnoeLuE2/4c2. (5.2) 

At an intensity lOI5 W/cm2 this yields EL ~ 8 -  lo6 V/cm. 
We indicate for comparison that in experiments in which the 
plasma wave is excited by a beat wave produced by a two- 
frequency laser'' the field intensity is (3-10). lo6 V/cm. A 
beat wave, however, can excite a plasma wave only under a 
resonance condition in which the difference between the fre- 
quencies of the two laser beams is equal to the plasma fre- 
quency. Since the plasma is actually inhomogeneous, this 
condition is met only in narrow regions of space, making 
difficult the use of a plasma wave for particle acceleration. 
On the contrary, when a plasma wave is excited by a short 
laser pulse, the inhomogeneity of the plasma does not limit 
the size of the excitation region, and influences mainly the 
length of the excited plasma wave. If it is assumed in the 
foregoing example that the laser beam is focused in the same 
way as in Ref. 1 1, the pulse energy is 4. lop2 J. Acceleration 
calls for an initial energy of 5 MeV. As a result of the accel- 
eration, which is completed within a distance La ~ 0 . 6  cm, 
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