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A theory is developed of the Stark broadening of an optical absorption line by a quantum system 
on excitation of a transition (adjoining the probed transition) by a quasiresonant noise 
electromagnetic field representing a complex Gaussian random process. A unified treatment is 
given of the evolution of the line profile as the spectral width of the field varies from small values 
(quasistatic limit) to asymptotically large values when the field is effectively "switched off." 

1. Investigations of optical spectra of quantum systems 
in external fields with randomly varying parameters is one of 
the important tasks in optical spectroscopy. The interest in 
this task is stimulated by a large number of different physical 
problems including the dynamic Stark effect in the field of 
incoherent optical radiation, resonant multiphoton ioni- 
zation of atoms by radiation of high-power multimode la- 
sers, '-I2 properties of magnetic resonance in spin systems 
excited by an rf noise investigations of the profile of 
a cyclotron radiation line in precision experiments on the 
anomalous moment of an electron, Stark broadening of spec- 
tral lines in a turbulent plasma,16 etc. In all these problems 
the response of a quantum system to a weak probe field man- 
ifests the full set of correlation functions of a noise field be- 
cause a quantum system is a strongly nonlinear converter of 
a random process. This manifestation depends on the rela- 
tionship between the width of the noise field spectrum, aver- 
age depth of modulation of the natural frequency of the 
quantum system (average Stark shift ), offset between reson- 
ances, and natural as well as field-induced widths of quan- 
tum transitions. Fairly obvious results are obtained in the 
following two opposite limiting cases. In the case of an infini- 
tesimal narrow spectrum of a strong stochastic field the 
expression for the probability of a resonant optical transition 
under the action of probe radiation can be derived in the 
quasistatic approximation by averaging the relevant expres- 
sions for a strong monochromatic field (with fixed param- 
eters) over the distribution of its intensity. In the case of a 
complex Gaussian random process, which we shall consider 
in the present paper, this is an exponential distribution of 
intensities (or a Rayleigh distribution of amplitudes). In the 
opposite limiting case of a very wide spectrum the response 
of a quantum system is governed by quantities averaged over 
fast fluctuations of the field. In this case the expression for 
the probability of a resonance transition is of the same form 
as for a monochromatic field. However, the Stark shifts and 
decay widths of the levels induced by the noise field should 
be replaced by the corresponding average values. Less evi- 
dent and much more difficult to analyze is the intermediate 
case when neither the quasistatic approximation nor the ap- 
proximation of a wide spectrum is valid. 

The simplest model which makes it possible to study the 
relationships is a two-level system in the field of a strong 
nonresonant noise radiation and a weak probe radiation 
which is in resonance with a quantum transition. Then, the 
influence of the nonresonant noise field on a selected pair of 

levels reduces to increments in the phases of the wave func- 
tions of these levels dependent on the intensity of the field. 
Such changes in the phases can be obtained (allowing for the 
nonresonant nature of the noise field) by adiabatic inclusion 
of the contributions of the rest of the spectrum of the quan- 
tum system in equations describing the dynamics of this sys- 
tem as a whole. Such a description is essentially equivalent to 
inclusion of the dynamic shift of levels proportional to the 
instantaneous value of the noise field i n t e n ~ i t y . ~ , ~ , ~ . ~ ~ . ~ ~  The 
strongest perturbation of the spectrum of the quantum sys- 
tem occurs however under quasiresonant conditions when 
the central frequency of the noise field is close to the frequen- 
cy of one of the quantum transitions adjoining the one which 
is probed (see Fig. 1 ). Then the above adiabatic approxima- 
tion becomes invalid even in the case of a finite offset of the 
central frequency of the noise field from the frequency of the 
2-3 transition because of resonant mixing of the levels 2 and 
3 by the Fourier components of the field in the wing of the 
spectral distribution. 

A fairly complete theoretical analysis of the quasireson- 
ant Stark effect under these conditions has been made only 
for a somewhat artificial model (discontinuous Markov pro- 
cess) of a laser noise field.3 In the case of a complex Gaussian 
process which describes well the radiation emitted by multi- 
mode lasers with modes which are not locked" it has been 
suggested that use can be made of iterative procedures con- 
venient in numerical c a l~u l a t i ons .~~ '~  

We shall develop an analytic theory of optical spectra of 
quantum systems subjected to the quasiresonant action of a 
noise field representing a complex Gaussian random process 
with an arbitrary spectral width. We shall provide a unified 
treatment of the evolution of the spectra of quantum systems 
for spectral widths of the field varying from infinitesimally 
small values when the quasistatic approximation is valid to 
asymptotically large ones when the field is effectively 
"switched off." We shall find the limits of validity of the 
results obtained in the adiabatic approximation and demon- 
strate the radical changes in the spectra of quantum systems 
when their parameters are outside these limits. The results 
obtained however are valid only if the intensity of the noise 
field is insufficient for the Autler-Townes splitting of the 
spectra. A comparison with the results of Ref. 3 is made 
within the limits of validity of the theory. We shall show that 
modeling of a noise field by a discontinuous Markov process 
describes correctly, in the qualitative sense, the behavior of 
the spectra in the limiting cases, but gives rise to quantitative 
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sition. The solution of Eq. (2)  with the initial condition 
u(to ) = uo is 

i 

FIG. 1.  Three-level quantum system in the field of quasiresonant noise 
( w )  and probe (0) radiations. 

discrepancies compared with the model of a Gaussian pro- 
cess in the intermediate case. 

2. We shall consider a three-level quantum system con- 
sisting of nondegenerate levels 1, 2, and 3 (with energies E,  

< E~ < E~ ) and subjected to electromagnetic fields (Fig. 1 ). 
A strong stochastic field 3 = 2Re[F(t)e - '"' ] has a carrier 
frequency w close to a natural frequency of the transition 

= ( E ~  - e2)/fi. The amplitude of this field F ( t )  will be 
regarded as a stationary complex Gaussian random process 
with zero average and with a correlation function 

Here, F; is the average intensity of the noise field and y-' is 
the decay time of the correlation ( 1 ), governing the width of 
a Lorentzian profile of the radiation spectrum x ( t ) .  

We shall investigate the profile of an absorption line of a 
weak probe radiation E = 2Re(Eoe - ) which is in reso- 
nance with the 1-2 transition [ I (w,, - a)/@,, 1 4 11. The 
imaginary part x" ( R ) of the polarizability ,y ( R ) , governing 
the absorption coefficient of probe radiation, is proportional 
to the off-diagonal element a,, of the density matrix of the 
system averaged over the ensemble of realizations of the ran- 
dom process F(t) .  To lowest order in the interaction with 
weak radiation we can describe the vector a, composed of 
the matrix element a,, of interest to us and the associated 
element a,, , by the following equation 

Here, 

riz, iA-'d3,F ( t )  elAt 

r l s  

where A = w,, - w; S = o,, - R; do is the dipole matrix 
element; r, ' is the transverse relaxation time of the i-j tran- 

where the evolution matrix U(t, t, ) satisfies the homogen- 
eous equation 

d - U(t, t,) + A(t) U ( t ,  ti) = 0 
dt (5)  

and the condition U(t, , t, ) = 1. Under steady-state absorp- 
tion conditions (to - - oo ), we have 

f 

(the matrix indices of U is shown as superscripts to distin- 
guish them from the indices corresponding to atomic levels). 
Equation ( 5 ) readily yields 

I d2, l 2  d Ull (1, t,) = - - F (t) dt2eiilt-tJF* (tJ 0 1 1  (t,, tl), 
dt ti2 t, 

We shall consider the specific case when r > 0. 
We shall assume that the field F( t )  is not too high, i.e., 

In this case, integrating Eq. (7)  by parts and retaining the 
main terms of the expansion in the above parameter, we ob- 
tain 

Consequently, 

[the angular brackets denote averaging over all possible re- 
alizations of the stationary random process 3 ( t )  ]. 

If the width of the radiation spectrum y is considerably 
less than the quantity 1 I , then the integral with respect to t, 
in Eq. (9) is dominated by the contribution of the region 
where t2-t,. Then, in the integral with respect to t, in Eq. 
(9)  we can take out F(t, ) corresponding to t, = t ,  and inte- 
grate, ignoring the rapidly oscillating term which makes a 
contribution small in terms of the parameter R, /I  a 1. In this 
case we obtain 

r 

If \dl) r,, - rI2 is obeyed, the quantity (d,,(*(F(t) (*/fi2A 
represents an instantaneous value of the resonant part of the 
Stark shift of the natural frequency of the transition 1-2 (for 
simplicity, a small antiresonant part is ignored). The expres- 
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sion in the argument of the exponential function of Eq. ( 12) 
represents an adiabatic increase in the wave-function phase 
of the level 2 caused by mixing with the level 3 due to the 
interaction of the quantum system with the noise field. The 
profile of an optical transition line considered in the approxi- 
mation of Eq. ( 12) had been discussed earlier in Refs. 2, 1 1, 
12, and 15. Mathematically similar problems related to aver- 
aging of quantities of the type described by Eq. ( 12) have 
been encountered also1' when dealing with the interaction of 
charged relativistic particle with a noise electromagnetic 
field, as well as in a study of photocount statistics19 (see also 
Ref. 20). The average of Eq. ( 11) can be calculated conve- 
niently by representing it in the form of a continuum integral 
over all possible realizations of the random process F ( t )  
(Ref. 2 1 ) : 

J(z)= SD[F(~)  l ~ [ ~ . ( t )  I P ( [ F ( ~ )  1, [F.(t) I) 
f I 

Here, P{ [F(t)  1, [F * ( t )  1) is a functional of the distribution 
ofF(t)  and F*( t ) :  

'z * 

The quantity B - ' (t,, t,) is the kernel of an integral operator, 
which is the inverse of Eq. ( 1 ) : 

The Gaussian functional integral of Eq. ( 13) can be calcu- 
lated directly: 

The kernel of the integral operator 6 is 

0 (4, t2) = 6 (ti-t,) + ) dt' B (t,, t') K (t', 1,). (18) 
0 

The determinant o f 6  is an infinite product of all eigenvalues 
of this operator, which are found using the equation 

(A-l) f (t) = j j dt'dt" B(t, t') K(tf, t")f (t") 
0 0 (19) 

Lf ( t )  is the eigenfunction of the operator 6 corresponding 
to the value of R 1. 

We can easily demonstrate that the quantities B( t l  , t, ) 
and K(t, , t, ) satisfy the equations 

Using Eqs. (20) and (21 ) we can show that the solutions of 
the integral equation ( 19) obey also a differential equation 

The general solution of Eq. (22) is 

where L, are the roots of the characteristic equation 

Substituting Eq. (23) into Eq. ( 19) and using Eq. (24), we 
obtain a system of four homogeneous linear equations for the 
quantities C,.  Equating the determinant of this system to 
zero, we obtain an equation which is satisfied by the eigen- 
values R : 

P-Q P+Y Q-Y 
* " P P ( - Z - ~ ) [ ~ - x l  

It is convenient to calculate the determinant of Eq. ( 17) by 
the following procedure (see, for example, Ref. 1 1 ) . We can 
readily see that 

The last sum in Eq. (28) can be represented by an integral in 
the complex R plane along a closed contour of sufficiently 
large radius going round the point A = 0 in the positive di- 
rection: 

d - ao(o,  T ) / ~ T  I a c ~ ( h , z ) / a ~  
- In det (0)  = 
dz @ (0, z) -%' h@(h,r) dh. 

(29) 

It follows from Eqs. (25) and (27) that 

Increasing the radius of the contour in Eq. (29) to infinity, 
we finally obtain 

J (7) = [det (O)]-'= a+ (O, O) 0- (0, 0) e c v i ~ , l ,  (3 1 ) 
@+ (07 T) a- (0, 
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Equation (3 1) is derived bearing in mind that de t (b)  = 1 
when r = 0. 

3. We shall now consider the limiting cases of these for- 
mulas. We shall assume that 

Within the limits of validity of Eq. ( 11 ) [see Eq. (8) ] the 
inequality of Eq. (32) is disobeyed only for A 4 r and y - r 
When Eq. (32) is obeyed, the expressions in the system (25) 
simplify greatly ( A  = 0): 

We thus find that 

Far from a resonance (A % r) and for y 4 A, Eq. (34) re- 
duces to an expression derived in Ref. 11 using the adiabatic 
approximation to calculate the Stark shift. An expression 
analogous to Eq. (34) was obtained first in Ref. 20 by a 
different method. We shall first consider the case when 

We then have 
OD 

ld921" exp ( ~ ~ z - I ' , ~ T )  
X / / ( ~ ) = r  R?I dT. 

IZ I +  iQR2z/2  (A+$)  

Equation (36) is readily reduced to 

I 4 ,  1 ( r 1 2 + x s N )  e-% xf/  ( P )  = - j ax 
A ( ~ - X S / ) ~ +  ( ~ , , + x s " ) ~  (37) 

where 

The quantities xs' and xs" represent the shift and induced 
broadening of the level 2 by a field of intensity x F i .  As ex- 
pected, in the quasistatic limit defined by Eq. (35) the line 
profile can be obtained from Eq. (37) by averaging over the 
exponential distribution of the intensity of the noise field of a 
modified Lorentzian profile. If A) r ,  sl)s", I?,,, Eq. (37) 
describes a strongly asymmetric quasistatic profile due to 
the Stark 

In the limit opposite to that defined by Eq. (35), it fol- 
lows from Eq. ( 34) that 

where 

Equation (39) describes a Lorentzian absorption profile 
shifted by an amounts,, and including additional broaden- 
ing proportional to the noise field intensity. 

In contrast to the results of Refs. 2, 11, and 15, the 
expression obtained by us is valid under quasiresonant con- 
ditions and in the limit y - co it gives an unshifted line with a 
natural width T,, . Figures 2a and 2b demonstrate evolution 
of the profile of an optical absorption line of frequency R due 
to the 1-2 transition when the spectral width y of the noise 
field is varied within wide limits. For low values of y (curve 
1 ) the line profile has a typical asymmetric form characteris- 
tic of the quasistatic case. When y increases to -R;/2161 
(i.e., when it becomes of the order of the average Stark 
shift), the line maximum is shifted and it becomes centered 
around S = 6,, = /2 1 A 1 (curves 2 and 3 ) . This stage of 
the line profile evolution can be described qualitatively also 
using the adiabatic appro~imation~*' l~ '~;  however, there are 
considerable quantitative differences compared with Refs. 2, 
1 1, and 15 because of broadening of the Lorentzian line (see 

FIG. 2. Evolution of the profile of an absorption line when the 
spectral width of the noise field is varied (,yo" = Id1212/fiT12, A/ 
r,* = lo3, r < A ,  S,,/T12 = S1;/2AT,, = 10): 1 )  y /  
6,, = lor3; 2) 0.3; 3) 10; 4) 20: 5 )  lo2; 6)  lo4. 
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curve 3) due to transitions between the levels 2 and 3 in- 
duced by the noise field. Figure 2b shows the subsequent 
stage of the evolution of the absorption line profile on further 
increase in y. In the limit y -. oo the maximum of the line 
returns to its unshifted position and its width decreases right 
down to the natural width r,, . Figures 3a and 3b compare 
the positions of the maximum of the absorption coefficient 
and its value at this point obtained from Eq. (34) (curves 1 
and 3) with those deduced using the adiabatic approxima- 
tion (curves 2 and 4).  Figure 3b includes also the result 
obtained using a model of a discontinuous Markov process 
for the field3 with the same spectral width and the same aver- 
age intensity (curve 5). It follows from Fig. 3 that if y/A - 1, 
the deviations from the adiabatic theory become very large. 
If Ri/2A 5 y 5 A, the models of complex Gaussian noise 
and of a discontinuous Markov process3 give quantitatively 
different results (see Figs. 3b and 4). In the limits y -0 and 
y+ cc the results of both models are naturally identical. 

FIG. 3. Dependences of the position of the maxi- 
mum 6,,, of the absorption coefficient (a)  and of 
the maximum value of the coefficient on the spec- 
tral width of the noise field (b) (A/r12 = lo3, 
r (A, 6,,/rl, = lo). Curves 1 and 3 were obtained 
in the present study, curves 2 and 4 wereobtained in 
the adiabatic approximation, and curve 3 was ob- 
tained in the model of a discontinuous Markov pro- 
cess (see Ref. 3). 

Figure 5 shows the dependence of the shift of the line 
maximum on the average intensity of the noise field plotted 
for different values of the spectral width y. At low intensi- 
ties,when the average Stark shift is much less than y 
( R i  /2 1 A / 4 y) , the shift of the line maximum depends lin- 
early on the average field intensity. When the intensity ex- 
ceeds this value, the dependence weakens considerably. If 
y 4 A (curves 1,2, and 3 in Fig. 5 )  the slope of the initial part 
of the dependence is not influenced by y. The dependences 
plotted in Fig. 5 are in qualitative agreement with the experi- 
mental data.2 It should be noted that if y 2 A, the slope of the 
initial part decreases with y (curve 4 in Fig. 5).  

We shall now consider the case of an exact resonance 
A = 0 (within the limits of the validity of the theory we must 
then have R i  /r2 4 1 ) . Since in this case when y is varied 
continuously, there is a range of values (y- T) where the 
expansion of Eqs. (32) and (33) fails, we shall construct the 
line profile using the general formulas of Eqs. (27) and ( 3  1 ) . 
Figure 6 demonstrates the corresponding evolution of the 

FIG. 4. Profile of an absorption line in the case when A/r, ,  = lo3, r(A, 
6,,/r12 = 10, and y/r , ,  = 30. Curve 1 is the result obtained in the pres- FIG. 5. Dependence of the shift of the maximum of the absorption line on 
ent paper and curve 2 was obtained in the model of a discontinuous Mar- the average intensity of the noise field obtained for different values of the 
kov process (see Ref. 3 ). spectral width of this field: 1) y/Tl, = 3; 2) 10; 3) lo2; 4) 10'. 
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absorption line profile of probe radiation. If y 4 f l i / 2 r  the 
symmetric line profile is greatly extended at the center and it 
has elongated wings due to statistical peaks of the noise field 
(curve 1 in Fig. 6a). The central part of the band becomes 
broader on increase in y and, consequently, its maximum 
amplitude decreases. The line profile approaches the Lorent- 
zian form with a width f l i / 2 r  (curve 2 in Fig. 6a). A 
further increase of y to values of the order of r or more 
reduces the line width but its profile is retained. In the limit 
y s  r the noise field is effectively "switched off," i.e., the line 
profile is a Lorentzian with a natural width r ,, . 
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