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The structure of the quasienergy functions and spectrum is investigated for two interacting 
nonlinear resonances. Particular attention is devoted to the properties of the quantum system in 
the case where stochastic motion arises in the classical limit as a result of the overlap of nonlinear 
resonances. The role of quantum effects in classical chaos is examined. 

1. INTRODUCTION 

The interaction of highly excited atoms and molecules 
(Rydberg states) with monochromatic external radiation 
has recently attracted considerable attention (see, for exam- 
ple, Refs. 1 and 2). Since this concerns the quasiclassical 
region of population of the levels of a system, in which the 
anharmonic constant is small, it follows that strong enough 
excitation will involve a large number oflevels in the dynam- 
ics of the system. Moreover, a particular form of excitation, 
analogous to classical stochastic diffusion, may come into 
play. The mechanism of this diffusion has been extensively 
studied in classical mechanics and is based on the phenome- 
non of overlap of nonlinear  resonance^.^-^ The dynamics of a 
quantum-mechanical system during the interaction between 
a large number of nonlinear resonances has been discussed 
both in terms of simple models (see, for example, Refs. 4, 6,  
and 7) and models approaching real  system^.^-'^ In these 
examples, stochasticity arises in a larger region of phase 
space and can give rise to global instability. At the same 
time, there are systems in which stochasticity is confined to a 
relatively small region of phase space. The interaction of two 
nonlinear resonances, describing, for example, the motion of 
an electron in the field of two plasma waves" is a typical 
example of this. 

The dynamics of the interaction of two nonlinear reson- 
ances is studied in Refs. 12 and 13 in the quantum-mechani- 
cal case. In particular, it is shown that, when the nonlinear 
resonances overlap and the quasiclassical parameter is large 
enough, the behavior of the quantum-mechanical system 
within finite time intervals is analogous to the stochastic be- 
havior of the corresponding classical system. However, in 
the course of time, quantum-mechanical effects leading to 
the suppression of dynamic chaos become ~ ign i f i can t .~*~ . ' ~ "~  

We note that, when the behavior of a nonautonomous 
quantum-mechanical system is investigated, this can be 
done in two ways, namely, by studying the dynamics of the 
system (diffusion, time correlations, and so on) or by ana- 
lyzing the spectral characteristics (quasienergy spectrum 
and the structure of quasienergy eigenfunctions14.'5). While 
the first of these two approaches has now been satisfactorily 
developed, the properties of the quasienergy spectrum and, 
especially, the structure of the eigenfunctions of quantum- 
mechanical systems that are stochastic in the classical limit, 
have not been studied to any great extent. On the other hand, 
in real experiments on the excitation of atoms and molecules 
in variable fields, the spectral approach is, in some cases, 

more natural. It therefore seems to us that, from this point of 
view, a theoretical investigation of the parameters of the 
quasienergy spectrum of quantum-mechanical systems with 
chaotic behavior is now overdue. 

In this paper, we report an investigation of the spectral 
properties of a quantum-mechanical system consisting of 
two interacting nonlinear resonances. Section 2 gives a de- 
scription of the model and of the method used in a numerical 
study of the quasienergy spectrum and quasienergy eigen- 
functions. Section 3 discusses the critical region of the per- 
turbation parameter that corresponds in the classical limit to 
contact between primary resonances. Data are reproduced 
on the change in the structure of eigenfunctions that accom- 
panies a change in the perturbation parameter. Section 4 
investigates the statistical properties of quasienergy eigen- 
functions in the region of quantum chaos. Section 5 is devot- 
ed to the statistics of the separation between neighboring 
quasienergy levels as a function of the selection of eigenfunc- 
tions according to their localization parameter. The paper 
concludes with a brief summary. 

2. DESCRIPTION OFTHE MODEL 

As a model that is convenient for studying the interac- 
tion between two nonlinear resonances, we take the quan- 
tum rotator in the field of two  wave^:'^,'^ 

R=-yh2< + V ,  cos(O+vt) + v2 cos ( 0 - v t ) .  (2.1) a0 

This Hamiltonian arises, for example, in the analysis of the 
dipole interaction between an external field (containing two 
frequencies in resonance with different levels of the unper- 
turbed spectrum) and a nonlinear quantum-mechanical sys- 
tem in the region of quasiclassical population. In this exam- 
ple, y is the nonlinearity parameter of the unperturbed 
spectrum, Y is the difference between the resonance frequen- 
cies of the external field, and V,,, are the external-field am- 
plitudes. '2.13 

In the classical limit, the Hamiltonian (2.1 ) assumes 
the form 

where I is the classical action for the system. This Hamilto- 
nian describes the interaction between two nonlinear reson- 
ances whose position is defined by 

o ( I , )  =2yI l=-v ,  o ( I , )  =2y1,=v, (2.3) 
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where I ,,, are the resonance values of the action. If we put 
Vl = 0 (or V2 = 0) in (2.2), the system reduces to the isolat- 
ed nonlinear resonance, which can be integrated exactly and 
is characterized by the action width A1 and the frequency R 
of phase oscillations in the neighborhood of resonance: 

To describe the interaction between two nonlinear re- 
sonances, we introduce their overlap parameter3 

where V, = V2 = V. It is readily shown that the parameter K 
in (2.5) is the only dimensionless parameter that completely 
determines the dynamics of the classical systems. 

When K( 1, each nonlinear resonance is isolated to a 
sufficient extent, and the particle cannot leave the region of 
one resonance for the other. The motion in a large part of 
phase space is then regular (with the exception of the narrow 
regions in the neighborhood of the resonance separatrices). 
A qualitatively new effect occurs when K 2 1, for which the 
interaction between the resonances becomes significant. The 
chaotic motion then becomes global in the sense that the 
stochastic trajectory ceases to belong to the neighborhood of 
one of the resonances and covers a large region of phase 
space occupied by the resonances. 

The dynamics of (2.2) and the structure of phase space 
are analyzed in Refs. 3, 16, and 17. Global chaos occurs in 
the system defined by (2.2) for K > Kc -0.71 (Refs. 16 and 
17). Numerical analysis shows that, in the case of well-de- 
veloped stochasticity, the stochastic region includes large 
islands that cannot be entered by a stochastic trajectory (for 
example, when K -  1.333), and motion in these islands is 
stable and regular in character. When K is increased to 
K =  4.5, the large islands break up, and the measure of stable 
islands inside the stochastic region is found to be small. 

We note a significant property of (2.2) : large stable re- 
gions appear again when K is increased still further. This 
phenomenon is due to partial overlap of the nonlinear reson- 
ances, which results in the shrinking of the region of phase 
space with stochastic beha~ io r .~  This behavior of (2.2) for 
K) 1 is significantly different from the standard p i ~ t u r e , ~  in 
which an increase in K leads to an increase in the region of 
phase space occupied by the stochastic component and to an 
improvement in the stochastic properties of motion. 

We now turn to the description of our numerical experi- 
ment with the quantum-mechanical model of two interact- 
ing nonlinear resonances. We shall introduce dimensionless 
parameters characterizing the behavior of (2.1 ) . One of 
these is conveniently taken to be the classical parameter K, 
given by (2.5), which is independent of f i .  The second di- 
mensionless parameter is purely quantum-mechanical and is 
defined by 

The physical meaning of the latter parameter is as fol- 
l o w ~ . ' ~  Because (2.2) is a nonlinear system, cells in phase 
space (I,@) occupying an action interval of the order of 
AI-5 spread out in phase 6 during the external-field period 
T =  2r/v by an amount of the order of A6- (dw/dI)/ 
TAI- yCiT = 6. When A6 2 1, quantum-mechanical inter- 

ference effects become significant even within one period of 
the motion. In the reverse case, 64 1, quantum-mechanical 
effects are small, and this condition is the condition for qua- 
siclassical approximation. Moreover, a necessary condition 
for the validity of quasiclassical behavior is Sn ) 1, where Sn 
is the characteristic number of levels participating in the dy- 
namics of (2.1 ) (Refs. 12 and 19). An explicit expression for 
Sn can be introduced in the form of the number of levels in 
the potential well of an isolated nonlinear resonance, ob- 
tained in the quasiclassical approximation for V, = V, 
v2 = 0: 

The behavior of the quantum-mechanical system is thus seen 
to differ from the classical behavior in that it is determined 
by three dimensionless parameters, namely, K, 6 ,  and Sn. 
For example, if we take K and 6 as the independent param- 
eters, we can write 

From now on, we shall assume that both conditions for qua- 
siclassical behavior are satisfied, namely, 

and we shall put V, = V, = V, and f i  = 1. 
Since the Hamiltonian (2.1 ) is periodic in time, i.e., 

H ( t S T )  =A ( t ) ,  T = 2 n / v ,  (2.10) 

the description of the system can be given in terms of the 
quasienergy  function^:'^^'^ 

$1 ( 8 ,  t )  =e-'"'cp~(& t ) ,  c p ~  ( 8 ,  t + T )  =cp1(0, t ) .  (2.11) 

The quantity R in these expressions is the quasienegy of the 
system. We now introduce the evolution operator S for the 
wave function during the external field period: 

h 

Let 4, (6,t) be an eigenfunction of the evolution operator S: 

9 $ , ( 8 ,  t )  =e-"$, ( 0 ,  t ) ,  (2.12) 

where E = AT. It will be convenient to refer to E as the qua- 
sienergy. 

The problem thus reduces to the determination of the 
evolution operator S acting during the external-field period 
T, and to the subsequent determination of its eigenfunctions 
and eigenvalues. 

Let us divide the intervaLT into M equal parts: r = T /  
M, and replace the operator H in (2.1 ) with 

where 5 = jr. It can be shown that the approximation (2.13) 
to the original Hamiltonian (2.1 ) is equivalent to assuming 
that, apart from the fundamental harmonic cos vt, the per- 
turbation acquires higher harmonics with frequencies Mv, 
( M +  1)v, ( M +  2)v, ... . For large values o fM) l ,  these 
harmonics are not in resonance, and their contribution is 
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small. The accuracy of the calculations is verified in this 
approach by increasing the parameter M. We usually took 
M = 100 in our numerical experiments. 

h h 

All this means that the evolution operator S=S, =, can 
be written in the following form: 

where 

Since the original Hamiltonian is invariant under a change in 
the sign of 8, the quasienergy eigenfunctions can be classified 
in accordance with their parity. To simplify the calculations, 
we shall confine our attention to antisymmetric functions: 
$, ( - 8,t) = - 4, (8,t). We take as our basis the antisym- 
metric functions of the unperturbed operator 

In) =n-'I2 sin n0 ( n = i ,  2, . . .) . (2.16) 

h 

In this representation, the matrix elements of the operator S, 
have the form 

where 

2nl 
B.,.. = 2 . z  [cOS (n-m) - - cos (n-km) 

2h1+1 
I = l  

2N+1 

(n, m= 1, . . . , N )  . 

The parameter N in (2.18) is equal to the total number of 
states (2.16) in the numerical experiment. The criterion for 
choosing N was that the change in the eigenfunctions and 
eigenvalues in the region of phase space under investigation 
was small as N was increased (we usually assumed that 
N =  89 or 151). 

We note that the matrices S,, ( j) in (2.17) are sym- 
metric and unitary. Thus, finally, the matrix S,, obtained 
by multiplying together the matrices in (2.17) has the same 
symmetry properties. The symmetry of the unitary matrix 
S,, signifies that the model with a finite number of levels is 
invariant under time reversal [in accordance with the prop- 
erties of the original system (2.1 ) ]. The numerical analysis 
thus reduces to the determination of the quasienergy spec- 
trum and the quasienergy eigenvalues of the symmetric ma- 
trix 

3. STRUCTURE OFQUASIENERGY FUNCTIONS IN THE 
CRITICAL REGION (K- 1) 

Let us first consider the properties of the eigenfunctions 
of an isolated nonlinear resonance, which can be obtained 
from (2.1) by setting, for example, V, = V and V, = 0. The 
Hamiltonian of an isolated resonance then assumes the 
f ~ r m ' ~ " ~  

where 8 = 8 + vt, and we have transformed to the new wave 
function q (8,t) : 

where I is the number of the resonance level satisfying the 
condition [see the left-hand inequality in (2.3) 1 

The determination of the eigenfunctions of the Hamiltonian 
(3.1) reduces to the solution of the Mathieu equation 

(3.4) 
The solutions of this equation are the periodic Mathieu func- 
tions, whose Fourier series will, in general, have a relatively 
complicated structure. The form of these functions is there- 
fore determined numerically. Figure 1 shows the quasien- 
ergy eigenfunctions p, (8) of bound states in the unper- 
turbed basis ( 2 ~ )  e'"". It is clear that the number of 
eigenstates in the potential well V cos 8 is in good agreement 
with the quasiclassical estimate (2.7) : Sn - 36. Numerical 
data show that, when Sn $1, the structure of the eigenfunc- 
tions near the separatrix (edge of the well) becomes signifi- 
cantly more complicated. It is natural to expect that, when 
the perturbation is present, these eigenfunctions will un- 
dergo a greater change, and an irregularity may appear in 
their structure (see Sec. 4).  Above the separatrix ( E ,  > V), 
the quasienergy functions rapidly approach the asymptotic 
expressions sin (18) and cos(li)-), which correspond to the 
two peaks (Fourier amplitudes) A , ,,, in Fig. 1. 

For the qualitative characterization of the structure of 
the eigenfunctions corresponding to energy levels with 
E ,  < V, it is convenient to introduce the following quanti- 
ties:20 

w OI 

where A .  are the coefficients in the expansion of the eigen- 
function q, (8) in terms of the functions ( 2 ~ )  -- '/2ei"". The 

FIG. 1. Quasienergy functions of an isolated resonance in the basis of 
unperturbed ( V ,  = V, = 0 )  states. The figure shows the Fourier ampli- 
tudes C,  of all the bound-state eigenfunctions ( E  < V )  of the system de- 
fined by (3.4) with V = 0.2, y = 5 x f i  = 1.  The quantity n, is the 
number of the eigenfunction, measured from the bottom of the potential 
well. 
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FIG. 2. Root mean square width I [see (3.5)] of an eigenfunction as a 
function of n, for the parameters used in Fig. 1 .  

quantity Fi defines the "center of gravity" of the function 
rp, (8) and I is its root mean square width (8, ! A ,  l 2  = 1).  
Figure 2 shows I as a function of the number n, of eigen- 
states. It is clear from this figure that the effective width I of 
the eigenfunction increases as the separatrix (well edge) is 
approached and, for quasienergy functions lying in the re- 
gion of the separatrix, is -6n [see, (2.7) ]. 

This delocalization of the quasienergy functions, as the 
corresponding levels approach the well edge, is a character- 
istic feature of any undisturbed resonance [including sec- 
ondary and higher-order resonances of (2.1 ) 1. We therefore 
have the approximate estimate 1:"' -an( Vm ), where V,,, is 
the depth of the potential well for the mth resonance. Since, 
in the classical case, the quantities Vm are completely deter- 
mined by the original parameters V, y, v, and, according to 
Refs. 16 and 17, the phase space can be renormalized, the 
quantities I :"' have definite renormalization properties2' 
that characterize the quasienergy functions of the quantum- 
mechanical system. 

We now turn to the structure of the quasienergy func- 
tions (2.1 ) for the two interacting resonances in the transi- 
tion region K > K,, where16 Kc ~ 0 . 7 1 ,  which corresponds to 
the breaking up of the last invariant rotation curve lying 
between the classical resonances in (2.2). As noted above, 
we have confined our analysis to odd quasienergy functions 
of (2.1) with V, = V2 = V, f i  = 1 [here and henceforth, the 
time dependence of the function $, (8,t) is not be explicitly 
indicated] : 

m 

$. (8) =-$. (-8) = n- ' l2Z c, sin no, 

where $c (8) = $, (8,O). Hence, instead of (3.5), we intro- 
duce the following expression: 

w m 

1=2[E (n-R)'Ic,,I']', f i = z n l c n 1 2  (3.7) 
n=1 n = l  

with the normalization 2,  (c,  l2 = 1. 
Figures 3a and b show ii as a function of I for two values 

of K, namely, K z  0.57 < K c  (a),  which corresponds to weak 
coupling between the resonances (resonances do not overlap 
in the classical system) andKz4.45 (b), which is the case of 
strong coupling (the primary resonances break up in the 
classical limit). As already noted, further increase in K > 4.5 
leads to the superposition of the primary resonances and to a 
reduction in the stochastic component. Each point in Fig. 3 

FIG. 3. The center of gravity ii of an eigenfunction as a function of its root 
mean square width I for the system defined by (2.1) with V ,  = V, = 10, 
y = 5X lo-', 6n~25.5. ( a )  Classical resonances do not overlap, 
K-0.57,  v =  3.5; (b)  strong overlap between resonances, K e 4 . 4 ,  
Y = 0.45. 

corresponds to an odd quasienergy eigenfunction $, (8).  To 
compare this with the classical picture of phase  pace,'^," 
we must augment Fig. 3 with the symmetric lower part 
(Fi < 0) relative to the line Fi = 0. This symmetric picture 
corresponds to the expansion of $, (8) in terms of the func- 
tions exp(in8). Two symmetric points on the Fi, I diagram 
then determine the same quasienergy function $, (8) and, in 
the classical limit, correspond to motion in portions of phase 
space with I > 0 and I < 0. 

It is clear from Fig. 3a that points corresponding to 
different $, (8) are mostly confined to three branches. This 
picture will now be referred to as a "beak." The upper part of 
the beak corresponds to functions $, (8) lying above the 
edges of the potential wells of the primary resonances (they 
represent classical trajectories of particles that "pass 
through"). Points on the horizontal branch of the beak cor- 
respond to eigenfunctions of levels inside the potential wells 
of the primary resonances. The lower branch of the beak in 
Fig. 3a corresponds to functions $, (8) lying between the 
primary resonances and the half-integral resonance on the Fi, 
I diagram (near Fi=O or I = 0  in Refs. 16 and 17). We note 
two features: ( 1 ) points on the horizontal branch with small 
I correspond to eigenfunctions lying at the bottom of the 
potential wells of the primary resonances, and such func- 
tions are, in this sense, well localized, and (2) the lower 
branch of the beak in Fig. 3a includes some of the points 
belonging to the upper branch of the beak for the half-inte- 
gral resonance (small "burst" near E E O  in the lower part of 
Fig. 3a). The most highly delocalized eigenfunctions corre- 
sponding to the neighborhood of the separatrices of the pri- 
mary resonances are located near the tip of the large beak. 

The significant point is that, to each non-broken-up res- 
onance of number m, there corresponds its own mth beak 
that repeats the basic properties of Fig. 3a but on a smaller 
scale because the depth of the corresponding potential well 
decreases with increasing m. Estimates based on the param- 
eters chosen for Fig. 3a show that the number of odd eigen- 
functions associated with a half-integer integral resonance is 
approximately 5, and the resonance is located at the limit of 
quasiclassical behavior [see (2.9) 1, so that its beak is par- 
tially destroyed. 

In the other limiting case of strong coupling (Fig. 3b), 
the main and half-integral resonances are destroyed and, 
correspondingly, so is the horizontal branch of the large 
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FIG. 4. Breaking up of the lower branch of the beak with increasing over- 
lap parameter K: 6n=51, V =  20, y = 2.5X lo-'. (a) K = 0.625, 
v =  3.2; (b) K = 0.8, v = 2.5. 

beak and the entire lower branch. Only the upper branch of 
the beak, corresponding to high-lying states, remains intact. 
It is important to note the irregular character of the eigen- 
functions belonging to the tip of the large beak that remains 
intact in Fig. 3b. These functions are not only delocalized 
(large 1 )  1 ) but, as can be seen from Fig. 3b, the correspond- 
ing points are distributed on the ii, I plane in an irregular 
manner. This means that the very structure of these states 
must contain a definite fraction of an irregular component. 
This question will be examined further below. 

We now consider the characteristic properties of the 
destruction of the lower branch of Fig. 3a. This is of particu- 
lar interest because the destruction of this branch is due to 
the destruction of the upper branch of the beak correspond- 
ing to the half-integral resonance that lies in the region ii 30. 
In other words, we are concerned with the nature of the 
breaking up of the eigenfunctions near the separatrix of the 
half-integral resonance, which, in the classical limit, corre- 
sonds to the breaking up of the last invariant curve between 
the main resonances. Figure 4 shows the breaking up of the 
lower branch as the overlap parameter K increases (the up- 
per branch is not shown in Fig. 4). It is clear from Fig. 4 that 
the breaking up of the lower branch occurs because of the 
breaking up of the half-integral resonance which, moreover, 
occurs in a irregular manner (lower points in Fig. 4b). As 
the breaking up proceeds, the eigenfunctions corresponding 
to the lower branch are rearranged, i.e., they are delocalized 
(1  increases) and are excluded from the region of the tip of 
the beak corresponding to the primary resonances on the ii, I 
diagram, where they are also distributed in an irregular man- 
ner (the last feature is due to the breaking up of the primary- 
resonance separatrices). This irregular delocalization of 
quasienergy functions is the quantum-mechanical manifes- 
tation of classical chaos. More detailed properties of the 
breaking up of the lower branch require further investiga- 
tion, including the use of larger matricesjn the numerical 
diagonalization of the evolution operator S. 

4. QUASIENERGY FUNCTIONS IN THE REGION OF MAXIMUM 
CHAOS 

We now consider the statistical properties of the qua- 
sienergy functions in the region of maximum chaos when the 

FIG. 5. Example of two quasienergy eigenfunctions in the basis of the 
unperturbed states for strong overlap between the main resonances of the 
classical system (2.2): V, = V =  20, y = 2.5X lo-', K34.5,  ~ ~ 0 . 4 4 ,  
6 n z  51. (a) Eigenfunction from the region of broken-up segments of the 
beak, 1 ~ 3 6 ,  ii323; (b) eigenfunction from the transition region corre- 
sponding to the upper branch of the beak, 1 ~ 2 4 ,  ii = 46. 

primary resonances have completely broken up. To do this, 
we examine the quasienergy functions belonging to the tip of 
the disintegrated beak. Figure 5 shows the Fourier expan- 
sion of two typical quasienergy functions with different lo- 
calization regions. It is natural to assume that eigenfunc- 
tions such as those shown in Fig. 5a, that lie in the 
stochasticity region produced by the overlap of the two main 
resonances of the classical system, will have the maximum 
statistical properties. Points on the 5, I diagram that corre- 
spond to these functions are distributed irregularly and be- 
long to the lower, undisturbed part of the beak (Fig. 3b). It 
may be expected that such states are not only ergodic in the 
bounded region 1 < ngn, (Ref. 22), but also have a near- 
Gaussian (see also Ref. 25). 

The eigenfunctions were analyzed statistically as fol- 
lows. The value n, = 48 was chosen so that the localization 
length of the chosen eigenfunctions was greater than n,. 
Next, the interval in n was divided into four equal parts and, 
for each of them separately, we constructed the histogram of 
the distributions of the quantity x,  = Re c, relative to the 
mean ( x , )  110. To improve the statistics, we summed histo- 
grams corresponding to different values of the overlap pa- 
rameter K. As a result, the total number N,  of realizations on 
each histogram was N ,  = 1956. Figure 6 shows the histo- 
gram for 1 <n < 12 (the histograms for the three remaining 
regions, 13<ng24, 25gn ~ 3 6 ,  and 37<n<48, are qualita- 
tively similar). The smooth curve in Fig. 6 represents the 
Gaussian distribution with values of ( x )  and 0 determined 
numerically from the histograms: 

FIG. 6. Histogram of the distribution of the quantity x, = ReC, for ei- 
genfunctions with large localization length 1% 1 and, strong overlap 
between the resonances: V =  20, y = 2.5 x 10W2, 6 n ~ 5 1 ,  N ,  = 1956, 
n, = 48. The overlap parameter was varied in the range 4.5<K(5.1. The 
single separate peak shows the number of values with 1x1 > 0.2. 
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The data shown in Fig. 6 clearly indicate that P,-(x) is 
very non-Gaussian. This probably signifies the presence of a 
regular component in the distribution of the Fourier ampli- 
tudes c, even for states with large localization length I )  1. I t  
is interesting to note that the distribution Pf(x) is practical- 
ly independent of the interval over which the summation is 
carried out. This is somewhat unexpected because it is natu- 
ral to suppose that, for small n corresponding to the most 
broken-up region with overlapping resonances in the classi- 
cal model, the correlation should be lower than that at the 
edge of localization of the eigenfunction n 5 n, ( I .  These nu- 
merical data can be interpreted so that the limited size (in 
terms of action) of the region with stochastic behavior leads 
to substantial correlation between the amplitudes through- 
out the eigenfunction localization region. In the final analy- 
sis, these correlations enhance the quantum-mechanical li- 
mitation of classical chaos (which, in this system, is not 
highly developed). 

5. STATISTICS OF THE QUASIENERGY SPECTRUM 

It is well-known that definite statistical properties of 
the quasienergy spectrum of a quantum-mechanical system 
can be associated with the chaotic motion of an autonomous 
classical system (see, for example, Refs. 4 and 26). Different 
statistical tests2' are used in quantitative descriptions, in- 
cluding the distribution P(s)  of the separation between 
neighboring energy levels in the spectrum of the system. The 
function P(s) is an important characteristic of the Wigner- 
Dyson t h e ~ r y ~ ~ ' ~ ~  in the statistical description of complex 
quantum-mechanical systems, for example, heavy nuclei 
and atoms. A simple form is 

wheres is the separation between neighboring levels, A,  B are 
normalizing constants, and P is a parameter defining the 
degree of repulsion between neighboring levels. As reported 
in Ref. 29, the values P = 1, 2, 4 are associated with the 
symmetry of the original system. 

It was shown in Refs. 30 and 3 1 that the Wigner-Dyson 
distribution (5.1) is also valid for nonautonomous systems 
(with time-periodic perturbation) that are stochastic in the 
classical limit (see also Ref. 32). In this case, the function 
P(s) is the distribution of the separation between neighbor- 
ing quasienergy levels, reduced to the interval 277-/T, where 
T is the perturbation period. 

For our system, i.e., (2.1 ), the distribution P(s) has the 
form shown in Fig. 7a for all quasienergies E,  and maximum 
chaos (K1.4.4). Here, as before, the statistics was improved 
by using an ensemble of several matrices (2.19) with differ- 
ent values of the stochasticity parameter K. For comparison, 
Fig. 7a also shows the Poisson distribution. 

that can describe P(s)  with sufficient precision for systems 
that are integrable in the classical limit (see Ref. 33 and the 
discussion given in Ref. 34). It is clear from Fig. l a  that the 
numerical data for P(s)  are closer to (5.2) than to the 
Wigner-Dyson distribution (5.1 ). We note that, by virture 

FIG. 7 .  Distribution P ( s )  o f  the separation between neighboring values o f  
quasienergy for V =  20, y = 2.5 X lo-', Sn = 51. The quantity A corre- 
sponds to the average separation between the levels: A = 2 r / N .  Smooth 
curve-Poisson distribution (5 .2 ) ;  a-the distribution P ( s )  for all eigen- 
values, N ,  = 2047,4.31 gK<4.52,0.44(v<0.46; b-the distribution P ( s )  
for the most delocalized and irregular states, N ,  = 778, 4 . 3 1 ~ K ~ 4 . 4 6 ,  
0.45(v(0.46.  

of the invariance under time reversal of both the original 
system (2.1) and the model (2.13)-(2.19), we need only 
consider p = 1. Despite the reasonable qualitative agree- 
ment between P(s )  of Fig. 7a and the Poisson distribution 
(5.2), there is a significant discrepancy between them for 
s( A. The fact P(s) is close to the Poisson distribution is not 
surprising because the statistical analysis was performed for 
all the eigenvalues, most of which correspond to highly lo- 
calized states. The distribution includes states correspond- 
ing to stable classical motion outside resonance (rotation). 
It is therefore natural to consider the statistics of eigenvalues 
of quasienergy states that have large widths I) 1 and are 
irregular to some degree. 

Figure 7b shows P(s) for eigenvalues corresponding to 
the most delocalized quasienergy eigenfunctions (see Sec. 4 
and Fig. 6 ) .  Comparison with Fig. l a  in the region of smalls 
shows that the discrepancy as compared with (5.2) has be- 
come greater. In particular, we note the appearance of repul- 
sion between neighboring quasienergy levels. On the whole, 
however, the distribution P(s) for these states is very differ- 
ent from the Wigner-Dyson distribution (5.1 ) with P = 1. 
This indicates that there is considerable correlation between 
the quasienergy states and is in agreement with the Gaussian 
character of the fluctuations in the eigenfunction compo- 
nents, mentioned in Sec. 4. In this case, the distribution P(s )  
(Fig. 7b) is intermediate between the Poisson and Wigner- 
Dyson distributions. This situation is typical for autono- 
mous quantum-mechanical systems whose phase space in 
the classical limit is split into regions with stable motion and 
regions in which the motion is stochastic (see, for example, 
Ref. 35). 

6. CONCLUSION 

The quasienergy representation is a satisfactory meth- 
od of describing nonlinear quantum-mechanical systems 
with an external time-periodic field. On the E, 1 plane ( i i  is 
the center of gravity of the quasienergy function and 1  is its 
effective width), the quasienergy functions form a charac- 
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teristic structure when the quasiclassical parameter is large, 
which we have called the "beak." Since, in the classical limit, 
a potential well with amplitude V,  corresponds to each iso- 
lated resonance, and there is a definite renormalization of 
phase space due to the higher an analogous 
renormalization occurs in the quantum-mechanical case on 
the E ,  1 plane for beaks corresponding to resonances that 
remain intact. However, in this picture, there is a quantum- 
mechanical limit due to the existence of high resonances for 
which the number of involved levels is low.'' 

It is well-known that, in the classical system, the de- 
struction of the resonances is accompanied by the appear- 
ance of regions with a chaotic component. In the first in- 
stance, such regions appear in the neighborhood of the 
separatrices of interacting resonances. The quantum-me- 
chanical case differs from the classical by the absence of the 
separatrix, i.e., a quantum-mechanical nonlinear resonance, 
described by (3.4), always has a finite transition region near 
the edge of the well with AE = E ,  + , - E,  #O. The analog of 
classical stochasticity in the quantum-mechanical case in the 
language of quasienergy eigenfunctions is their rearrange- 
ment with the appearance of an irregularity on the E ,  1 dia- 
gram, and their delocalization. The latter signifies a signifi- 
cant rearrangement of the quasienergy function due to an 
increase in the number of unperturbed spectrum harmonics 
that it contains (see Fig. 5 ). 

The distributions of delocalized quasienergy functions 
corresponding to broken-up resonance and the distribution 
of separations between neighboring quasienergy levels show 
the presence of significant correlations. These are due to the 
restricted chaotic motion in the phase space of the classical 
system, as well as, quantum-mechanical effects that restrict 
classical chaos. 
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