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When an additional cell working on the parametric principle is inserted into a laser cavity, the cell 
automatically begins to amplify. The quantum properties of the generated field due to sub- 
Poisson statistics are then suppressed if, in fact, they are present. However, when the cell 
efficiency is high enough, other quantum properties of the field due to compressed states may 
arise. Photodetection shot noise can be almost completely suppressed in this scheme. 

At present, the study of quantum electromagnetic fields 
has reached the stage in which a search is being made for 
suitable sources. Many papers and several reviews have been 
published, both in the Soviet Union and abroad. The work 
reported here is part of this effort. We shall show below that 
an ordinary laser containing an additional internal cell 
working on the parametric principle will emit light with 
well-defined discrete properties. The particular defect of all 
the models proposed so far is that either they are very diffi- 
cult to implement in practice or the discrete light effect is 
small (or even exceedingly small). On the other hand, a laser 
containing a parametric cell does not contain any unusual 
elements, and, at the same time, the discrete effect can reach 
its limiting values. 

1. KINETIC EQUATION FOR THE DENSITY MATRIX OFTHE 
GENERATED FIELD 

We shall consider that the medium generating the field 
consists of stationary atoms with a working transition fre- 
quency w (see Fig. la) .  The degeneracy of the levels will not 
be taken into account and the level widths y,, y, will be 
considered to have been formed as a result of transitions to 
extraneous levels. As far as incoherent excitation of the me- 
dium is concerned, we shall suppose that only the upper level 
is excited and the excitations either obey Poisson statistics or 
are free from fluctuations. 

We shall assume that the parametric cell is also filled 
with stationary atoms with a transition frequency 2w (Fig. 
lb).  The parametric interaction with the generated field at 
frequency w is produced by having the cell in an external 
pump field of frequency 2w. The working levels of the atoms 
in the parametric cell have widths equal to y. They are non- 
degenerate and have time-independent populations pro- 
duced by some incoherent excitation system. 

We shall solve the problem in terms of the kinetic equa- 
tion for the density matrixp of the generated field. We may 
write 

( P )  laser + ( P I  param 

i.e., the rate of change of the field in the resonator is deter- 
mined by the usual laser conditions (the working medium 
and the interaction with the resonator) and the presence of 
the additional parametric cell. The two contributions can be 
calculated independently of one another. This means that we 
can use previously published results. For example, (p),,,,, 
can be taken from Refs. 1 and 2. It is given in the Appendix in 
the antinormal diagonal representation of the density ma- 
trix. On the other hand, (p),,,, was obtained in Ref. 3 and 

is given by 

I.'=-i[hata++h*aa, p]. 

The efFective constant representing the parametric interac- 
tion between the cell and the generated field in an external 
pump field (photon operators a,, a$ replaced by the c- 
numbers a~ , a:) 

is thus expressed in terms of the complex amplitude a,, the 
dimensionless pump-field power I, , and the linear (unsatu- 
rated) amplification coefficient A,  of the parametric medi- 
um at frequency 2w. The constant q is equal to the ratio of the 
strength of the interaction between the cell and the genera- 
ted field 

to the strength of the interaction between the same atom and 
the pump field 

where L is the resonator perimeter. 
Laser problems can be satisfactorily solved by the meth- 

od of diagonal representation of the Glauber density matrix 
(normal diagonal representation). However, in problems in 
which quantum fields are expected to arise, this is not very 
convenient because the equations then contain derivatives 
with respect to the complex amplitudes of all orders. In such 
cases, one can use other representations that are less conven- 
ient than the Glauber representation but, at the same time, 
do not suffer from these disadvantages. We shall use the an- 
tinormal representation that is obtained from the density 
matrix p by taking the diagonal matrix element over coher- 
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FIG. 1. 
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ent states sentation and introduce the fluctuations in the photon num- 
ber around the stationary value: 

Here and in what follows, the subscript A ( N )  will signify 
that we are taking the density matrix in the antinormal (nor- 
mal) diagonal representation. There is a direct integral con- 
nection between the matrices in the antinormal and normal 
representatiom4 The transformation from the equation for 
p to the equation for PA is defined by the following rules: 

The derivatives with respect to a now appear in cases other 
than the normal representation, and with a different sign. 
The expressions for (P),,,, and (P),,,, are given in the 
Appendix. 

The equations become simpler still ifwe assume that the 
generation phase and the number of photons fluctuate weak- 
ly around their stable stationary solutions. To find the sta- 
tionary solutions, we have to construct the truncated equa- 
tions of the semiclassical theory. It is well-known that these 
can readily be deduced from quantum theory if we neglect 
derivatives with respect to a of orders higher than one in the 
equation for P A .  The equation of the semiclassical theory is 

where a and I = p la 1 are, respectively, the complex ampli- 
tude and dimensionless power of the generated field, and A is 
the linear (unsaturated) amplification coefficient of the 
working medium producing the generation. Hence we ob- 
tain the following equations for the stable solutions ii and 
( a  = n1'2eip ): 

where po = argA + n-/2 is the phase of the pump field, ex- 
cept for a constant term, andg,, is given by ( 1 ), but refers to 
the generating medium and not to the parametric medium. 

As can be seen, the parametric cell automatically as- 
sumes the amplifying state and compensates losses from the 
cavity resonator that were originally determined by the reso- 
nator width C. 

2. FLUCTUATIONS IN THE GENERATED POWER 

Consider an experiment in which light leaving the reso- 
nator enters a photodetector, and the output characteristic 
of the measuring system is the photocurrent spectrum 
which, in the plane-wave approximation, can be formally 
written as5 

m 

i:"=qc ( 1 + 2 q ~  Re 5 g ( r )  e'*' dr) 
0 

where q is the quantum yield of the photodetector, Cis  the 
resonator width without the parametric cell, and 

g( r )  =a+ai ( r )  a ( r )  a - Z z  

It is convenient to transform to the normal diagonal repre- 

We thus obtain 
-- 

g(r)  =la121a(r) lN2- - I a lN2 '=~~(~ )N .  

It follows that, to determine the photocurrent spectrum, we 
must know averages of the form z, which can be found 
from the equations discussed in the last section. 

We shall consider that the fluctuations in n and g, speci- 
fied by the density matrix in the antinormal representation 
of PA are small: 

The equation for PA admits of the separation of variables in 
the form 

pa (a, t) =RA (E, t )  @ A  ( ( ~ 7  t) 

The equation for RA iq 

and describes fluctuations in the number of photons in the 
resonator. When this equation is written down, we must re- 
member that 

and bear in mind the conditions for stationary stable genera- 
tion. 

The form of (3)  is exactly the same as in the absence of 
the parametric cellz but, of course, the coefficients are differ- 
ent:" 

The required average EE(T) can now be written in the ex- 
plicit form: 

and, consequently, the noise spectrum (2)  can be written 
explicitly in the form 

which, as can be seen, is precisely the same as for a laser 
without the parametric cell. The character of the field 
(quantum or classical) is determined by the sign off.  The 
effect of the cell on 6 is represented by the term 21A 1/e, 
which is manifestly positive. It follows that the cell always 
gives rise to an increase in 6. In particular, if for the original 
laser lo = - 1/2 (for y, = 0), then the generation exhibits 
Poisson statistics for C = 8 [A 1 .  For arbitrary ratios of C and 
)A 1, the depth of the valley is equal to 

qCIC-8ILI / (C-41Ll)-2. 

The general conclusion of this Section is that the para- 
metric cell will always increase the fluctuations in the num- 
ber of photons (generated power) and will tend to suppress 
sub-Poisson statistics if, indeed, it is present in the original 
laser without the cell. 
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3. COMPRESSED STATES OF THE GENERATED FIELD 

We shall now consider that the laser radiation is mixed 
at the photocathode with a reference radiation which has the 
same frequency and, for simplicity, is in a coherent state. 
The mixing can be formally represented by a unitary trans- 
f~rmat ion ,~  the result of which is that the photon annihila- 
tion operator a in the generated field and the photon annihil- 
ation operator a, in the reference wave transform into the 
photon annihilation operator in the resultant wave: 

where R = I R 1 eipR and T = ( T 1 elqT are the complex reflec- 
tion and transmission coefficients of the mixing mirror. For- 
mula (2)  then retains its form except that Fi must be replaced 
with JTIZE + IToI-ZJR I2Firef, where ITolexp(iqTo) is the 
transmission coefficient of the exit mirror of the laser. It is 
related to C and to the resonator parameter L by C = I TOl2/ 
L. The function g ( r )  is given by 

The first term in this expression is independent of the refer- 
ence signal power Fir,, and is essentially the same term that 
was considered in the last Section, i.e., it carries information 
about fluctuations in the generated power. It is readily veri- 
fied that the second term has a different physical meaning for 
different values of the phase 

When a, = 0, it is proportional to the mean square fluctu- 
ations in the generalized coordinate of the field oscillator 
( W - 1 )  

and for @, = n-/2 it is proportional to the fluctuations in 
generalized momentum ( - 1 ) 

Thus, by specifying the external parameter a,, we can follow 
the fluctuations in the coordinate, the momentum, or some- 
thing intermediate. 

If we now consider small fluctuations in amplitude and 
phase, we obtain 

where A is the ratio of the generated laser power to the power 
carried by the reference signal (in the mixing channel), 
@ = a, - F ( F  = ( 1/2)p0) is the phase difference between 
the laser and reference signals (in the mixing channel), and 
t+b = q - ?jj is the fluctuation in the phase of the generated 
laser power around its stationary value q. 

To obtain the explicit expression for $ t + b ( ~ )  ,, we must 
write down the equation for a, (q,t) : 

In the coefficient of the second derivative, we used the fact 
that 

- - qNZqA=O, $N2=$A2-1/2iii;. 

These equations can readily be deduced from the condition - - -  
aa = a; = a: and the assumption that the amplitude 

and phase fluctuations can be factorized. The quantity +; 
can be expressed in terms of the laser parameters as follows: 

Once we know the properties of (4), we can write down the 
required average: 

We now have all that is necessary to enable us to write down 
the photocurrent spectrum with the reference signal. If 

the spectrum assumes the simple form 

From our point of view, the most interesting cases are those 
where the shot component (represented by the unity here) is 
compensated by the additional term. This means that the 
excess noise must be negative, which occurs when (compare 
with K )  

This condition cannot be satisfied for Io) 1 because it is then 
transformed to the condition C<41R 1, i.e., it is in conflict 
with the condition for stationary generation. When I,% 1, it 
is equivalent to C < 6(R 1. The depth of the valley is then given 
by 

and is a maximum, almost completely compensating the 
shotnoiseforC- 4)A 14CandqJTIZ-1.Condition (5),for 
which all this is valid when C-412 I can be rewritten in the 
explicit form 

Thus, to optimize the suppression of the photodetector shot 
noise, we must satisfy three conditions: first, the mixing mir- 
ror must completely transmit the laser radiation, i.e., 
(TI2-  1, and weakly reflect the reference radiation, i.e., 
1 R 1 4 1; second, the power carried by the reference signal in 
the mixing channel must be much greater than the generated 
laser power, which is readily assured when the original refer- 
ence signal power is high enough; and, third, resonator 
losses must be compensated as far as possible by amplifica- 
tion in the parametric cell (4)A ) --+ C) . 
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APPENDIX 

In the antinormal diagonal representation of the den- 
sity matrix, the expression for ( P ~  ),,,,, can be written in the 
following form: 

(PA )laser = (PA )resonator + ( P A  )work.med. a I a)=a 1 a ) ,  a=nl"e". 

This representation for r$ was obtained in Ref. 2. The term 
-S  is significant for the noise-free excitation of the working 
atoms and is absent in the case of Poisson excitation statis- 
tics. 

The corresponding expression for the effect of the para- 
metric medium on the field is 

d (PA I,, = (2 iha*  - + ih 
aa aa2 

d 1 a2 1 d 
= 4 / b I  { c 0 ~ 2 1 p ~ n - ~ ~ 0 ~ 2 1 p n - + - - s i n 2 1 p  dn2  2 d q ~  

1 d2 1 d 
4- co~2.J,---~+--sin21$- 

8 n  dip 4 d n  d q  

1 d2  1 
+-sin21pn-- 

4 d n d ~  n 
1 1 3C 

1p=(p--T, q = T c p o = - a r g h + - .  
2 4 

"The second term in lo  occurs only in the case ofexcitation of the working 
medium without fluctuations; for Poisson excitation statistics, lo = I - '. 
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