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A calculation is reported of Stark shifts and widths of the ground and first excited states of the 
hydrogen atom in a strong electric field 8 up to values of comparable with the field strength on 
an atomic orbit. Two independent methods are used, namely, summation of divergent 
perturbation-theory series and the l/n expansion. The two methods have a wide region of overlap 
(in the parameters n,, n,, m, and 8 ) .  The calculations are confirmed by considering the Rydberg 
limit as n - w . 

1. The Stark effect is one of the classical but, at the same 
time, most difficult (part from the weak-field region) prob- 
lems in quantum mechanics (see, for example, Refs. 1-20; a 
more detailed list of references is given in Refs. 1,4, 10, and 
15). When the external field g tends to zero, the energy of a 
level with parabolic quantum numbers n,, n,, m in the hy- 
drogen atom can be expanded into a formal pertubation- 
theory series, as follows: 

where n = n, + n, + m + 1 is the principal quantum num- 
ber (m>,O), k is the perturbation-theory order, F =  n4g ,  
E = 2n2E. The coefficients of the first few orders of pertuba- 
tion theory are 

and below we use atomic units for which fi = m, = e = 1, so 
that the unit of the electric field strength is 1 a.u. = m,2e5/fi4 
= 5 . 1 4 2 ~  lo9 V/cm. 

The first three perturbation coefficients have long been 
known.' The fourth-order coefficient for states with arbi- 
trary n,, n,, m was calculated by Alliluev and Malkiq4 using 
the dynamic symmetry group of the hydrogen atom. The 
explicit expressions2' for the perturbation-theory coeffi- 
cients up to k = 7 were published by Silverstone5 and up to 
k = 9 by Hoe et 

New perturbation-theory techniques, developed in the 
course of the last few years, can be used to calculate the 
coefficients E~ of very high order. For example, calculations 
have been carried out's8 up to k = 160 for the ground state 
and up to k = 100 for n = 2 (Ref. 10). These coefficients 
carry significant information about the behavior of the 
atomic energy levels E = Eo - iT/2 in a strong electric field. 
However, as k -  W, the higher perturbation-theory orders 
increases factorially (This is the Dyson phenomenon"): 

where a = 3/2n, P = n + In, - n,( - 1, and, for example, 
for states with n, = n,, 

of convergence, and the energy E(nlnlm' ( 23' ) has an essential 
singularity at 8? = 0 and a cut along the real axis. It follows 
that the use of perturbation theory in the evaluation of the 
Stark shifts and widths of atomic levels in a strong field can- 
not be carried out without the corresponding summing of 
convergent series. 

The usual perturbation-theory polynomials 

determine Eo(F) only in the weak-field region (in practice, 
for 23' 5 0.03 in the case of the ground state). The Pad6 ap- 
proximants have been used8 to extend this to ~ 0 . 1 .  Nu- 
merical solution of the Schrodinger equation has been 
used3.12 to calculate Eo and r. We note at once that, for 
F20.2, the results of Damburg and Ko lo~ov '~  are signifi- 
cantly different from ours (and from other  result^;^"^ see the 
detailed discussion in Sec. 5).  In strong fields, the modified 
perturbation theory13 appears to be valid (we note that this 
variant of perturbation theory was first proposed in Ref. 21 
in the case of the anharmonic oscillator V ( r )  = f + gr4). 
However, the approximation used in Ref. 13 was of too low 
order, so that the convergence of the method could not be 
reliably judged. Moreover, the calculation was confined to 
the ground state of the hydrogen atom. Complex coordi- 
n a t e ~ ' ~  and the Pad6-Bore1 tran~formation'~ have been used 
to sum the perturbation theory series ( 1 ) with high preci- 
sion, but these results were obtained up to = 0.1, and only 
for the ground state. At the same time, calculation of E, and 
r for strong fields ( F >  0.1 ) and for a wide spectrum of 
states, including highly excited (or R ~ d b e r g ~ ~ )  states, are of 
considerable interest in view of advances in laser spectrosco- 
PY. 

To solve this problem, we used the PadC-Hermite ap- 
proximants23 and the l/n e ~ p a n s i o n . ~ ~ , ~ ~  These methods are 
briefly described below and then, in Sec. 3, we report the 
results of our calculations. In Sec. 4, we discuss the Rydberg 
limit (n - CXJ ), which provides us with an independent verifi- 
cation of the validity of our method of summation of diver- 
gent perturbation-theory series. 

2. Methods of calculation. The values of the PadC-Her- 
mite approximant YIL,M,Nl (F) were calculated from the 
known perturbation-theory coefficients E, using the equa- 

The perturbation-theory series thus have a zero radius where P, ,Q,, and RN are polynomials in F (of degree L, M, 
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and N, respectively), whose coefficients are uniquely deter- 
mined from the perturbation-theory coefficients, using the 
condition 

PL-QME+RNE2=0 (FL+M+N+' ) 1 (5) 

where P-0 and E(F)  is the pertubation-theory series (1). 
As a rule, we took L = M = N, this PadC-Hermite approxi- 
mant will be denoted by y, (F). The usual Pad6 approxi- 
mants [L /M] (F) are special cases of the PadC-Hermite ap- 
proximant for RN GO. 

The PadC-Hermite approximants have an important 
advantage as compared with the Pad6 approximant that is 
particularly significant when the perturbation-theory series 
is summed for the Stark effect. Thus, it is clear from (4) that 
y, (F) can have an imaginary part even when all the coeffi- 
cients of the polynomials PN,QN, and RN are real. We note 
that coefficients in ( 1 ) are real by perturbation-theory con- 
struction. Because of this, the polynomials P, Q, and R deter- 
mined from (5)  have only real coefficients. At the same 
time, the energy E(F)  has an imaginary part for any F #O, 
which corresponds to the probability of ionization by the 
external field in this state. Hence, when we use the Pad6 
approximant [L /M] ( F )  to sum the perturbation-theory se- 
ries, the cut 0 < F <  w is simulated by a higher density of 
PadC-approximant poles, and this leads to a numerical insta- 
bility when E, and r are determined. 

Analysis of the convergence of the sequence yN (F) with 
increasing Nshows that, when N = 12-15, numerical values 
of yN are stabilized and the energy is obtained with a preci- 
sion no worse than lop4 (the calculation; then involves 60- 
80 orders of perturbation theory). We note that, in weak 
fields (in particular, for F5 0.03 when n = 1 and F 5: 0.10 
when n = lo), the Stark shifts are calculated with higher 
accuracy. As far as the level widths are concerned, the values 
of Imy, (F) become stabilized for N( 15 only in those cases 
for which I? > 10-8-10p9. This limits, to some extent, the 
calculation of the widths I?(" ln2"'  (F) in weak fields. At this 
point, we confine our discussion to these brief remarks about 
the PadC-Hermite approximants. Further details, such as 
convergence precision of computed energy, and so on, can be 
found in Refs. 25 and 26. 

Another approach, independent of that described 
above, is based on the l/n approximation, which is being 
successfully used in different branches of theortical phys- 
i c ~ . ~ ~ * ~ ~  It has recently been shown that24 the l/n expansion 
can be used to calculate the energy not only in the discrete 
spectrum, but even for resonance levels. The energy expan- 
sion takes the form 

where the first term represents, the classical particle at rest 
at the point corresponding to the minimum of the effective 
potential at r = r,, and the higher-order terms correspond to 
the inclusion of zero-point oscillations and anharmonic ef- 
fects. The Yukawa, Hulthen, and funnel potentials have 
been usedz4 to show that the l/n expansion, which is theo- 
retical valid for n 9 1, is accurate even for relatively small n. 
For example, for n = 3, the first three terms of (6)  will suf- 
fice for a precision of lop3- in the level energy. We have 
applied this method to the Stark effect. For the nodeless (0, 

0, m ) states, the first three coefficients in (6) can be calculat- 
ed analytically and the result is 

e(")=- ( 1 - ~ ' ) ' ( 1 + 3 ~ ' ) ,  
& ( I ) =  (I-.')" (1+3t . )"+(I-3.) 'h-2,  (7 )  

e'2' = - ( I - . ' ) "  
( 1 8 - 1 3 3 ~ ' f  37" 

4 (1-9.') 

whereas the higher-order coefficients are determined from 
recurrence relations. In these expressions, T is a root of the 
equation 

T ( I - ~ ' ) ~ = F ,  ( 8 )  

that tends to zero for F-0 (see Appendix A for the deriva- 
tion of these equations). All the coefficients dk' are real so 
long as 0 < T < 1/3. For T = 1/3, which corresponds to fields 

the two classical solutions3' come into contact and the point 
of equilibrium moves into the complex plane. Thereafter, 
dk' become complex, so that not only the level shift but also 
its width can be described. 

We note that the l/n expansion is not valid for FEF. 
because the coefficients d k )  (F) have a singularity at this 
point. The remarkable fact is that, as Fincreases still further, 
the l/n expansion again becomes valid for the determination 
of E, and I? [the convergence of (6)  in strong fields can be 
accelerated by summing it with the aid of the Pad6 approxi- 
mant; this was used to obtain the results reported below]. 

The l/n expansion converges rapidly for F >  F, and 
n 2 3 (and especially for Rydberg states in which there has 
been increasing interest in recent years22), whereas the 
method involving the PadC-Hermite approximants has ad- 
vantages for smaller n. It is significant that there is a region 
of overlap (in the parameters n and F), in which the two 
methods agree to a high precision and, for F<O.  1, with other 
calculations14~'5 (see Table I1 in Ref. 25). The l/n expan- 
sion thus confirms the procedure that we have chosen for 
summing the divergent perturbation series. 

3. Turning now to the results of our calculations, we 
begin with the (0, 0, n - 1) states which , in the classical 
limit (n - w ), correspond to the motion of an electron on a 
circular orbit perpendicular to the direction of the field g. 
In this case, all odd orders of perturbation theory vanish, i.e., 
E = E(F2) .  It is convenient to transform from E , g  to the 
reduced variables 

The Stark shifts are shown in Fig. 1. of Ref. 16 (see also Ref. 
25). We note that, in very strong fields, the Stark shifts of 
these levels change sign. We shall write the atomic level 
widths in the form 

where the first factor, (F), corresponds to the quasiclassi- 
cal formula 

f (n,n,m), Cn,,,,,,F-("-"1+"2) exp ( -2n/3F) ,  
(12) 

C,,,,,,,= ( 4 n )  "-"'+"' exp [ 3 ( n , - n 2 )  Iln,! (n ,+m)  !n3. 
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This formula is asymptotically correct in the limit as F-0 
(cf. Refs. 17-19). Hence, Snln2,, (0) = 0. We note that the 
exact form of the pre-exponential factor Cnlnzm for a level 
with arbitrary quantum numbers was deduced by Sla- 
vyanovI8 and, later, by Yamabe and Tachibana.19 

The widths I"nin2m', calculated by the above methods, 
enable us to find the quantities in ( 11 ) (cf., Fig. 2 of 
Ref. 16). Similar calculations were performed for the two 
series of states (n,, 0, 0 )  and (0, n,, O), of which the first 
corresponds to the smallest and the second to the largest 
widths among all the sublevels with given n. The results are 
shown in Fig. 1 (Stark shifts) and Fig. 2 (widths). The fig- 
ures also show the limiting curves corresponding to n = oo , 
calculated by independent methods (see also Sec. 4). It is 
clear from the figures that the limiting curves are in qualita- 
tive agreement with the results obtained by summing the 
perturbation-theory series and by the l/n expansion. 

For small F, only the factor T is important in ( 11 ); it is 
very dependent on the field and varies by many orders of 
magnitude. However, the range of validity of ( 1 ) is relative- 
ly narrow: @? 5 O.lx~-~. As F-0, 

6 ,,,, (F) =clF+c2F2+. . . , (13) 

where, for example, 

48nz+9n+50 for (nl, 0,O) , 
c1 =-7 42nz+51n+14 for (0, n2, 0), 

12n 
33n2+54n+20 for (0,0, m) , 

FIG. 2. The function 6,  ( F )  for the (n - 1, 0, 0 )  states [cf. Eq. ( 11 ) 1. 

FIG. 1 .  Plots of&; = 2n2ReE(F) for the states (n  - 1, 
0, 0)-a and (0, n - 1,O)-b. 

and, for the Rydberg states (n $1 ) 

(these formuals follow from the results of Damburg and Ko- 
losov12). The slope of the curves in Fig. 2 at F = 0 is in agree- 
ment with ( 13) and ( 14). However, the linear term in ( 13) 
is sufficient only for F <  0.1; in stronger fields, the function 
S(F)  becomes essentially nonlinear. In all the cases that we 
have considered, S(F)  > 0, so that the ionization probability 
by a strong field in a given energy level is much lower than 
the probability predicted by the quasiclassical estimate 
( 12). When F >  F. , the barrier in the effective potential 
U,(q) vanishes (see Appendix B )  and the ionization pro- 
cess is no longer of the over-barrier type. In this region, the 
field dependence of the level width is approximately linear, 
as illustrated by Fig. 3 (this is also valid for other states). We 
note that the broken curves in Fig. 3 correspond to the inclu- 
sion of the first two terms in the l/n expansion. 

The perturbation theory coefficients for excited states 
with n = 2 and n = 3 were calculated previ~usly. '~ Using 
these results and summing the corresponding perturbation 
theory series with the aid of the PadC-Hermite approxi- 
mants, we obtain the Stark shift shown in Fig. 4 (see Ref. 26 
for further details). The same method can be used for an 
arbitrary state (n,n2m) for which the perturbation expan- 
sion is known to sufficiently high order. 

FIG. 3. .c: = n 2 r ,  as a function of the external field for the (O,O, n - 1) 
states. The difference between the broken curves [first two terms in (6 )  ] 
and the solid curves is a measure of the precision of the l/n expansion. 

260 Sov. Phys. JETP 66 (2). August 1987 VaTnberg et at. 260 



4. Rydberg limit. The excited-state energies are deter- 
mined from the quasiclassical quantization condition of 
Bohr and Sommerfeld. In the limit as n - m, we have 

where p = m/n>O, li, 7, are the turning points. The inte- 
grals in these expressions are, in general, relatively compli- 
cated elliptic integrals. The situation becomes simpler when 
m = 0. The integrals can then be evaluated analytically and 
( 15) assumes the form 

p, ,F1('I4, 3/4; 2; -16P1F/~2)=(-~) 'bvi,  
pz ZF,(il,; '1,; 2; 16PzFle2) = ( - e )  "vz, $i+pz=l, vl+v2=l, 

(16) 

where ,F, (a, p; y; z) is the hypergeometric function [the 
unknowns are E and the separation constants, p,, p2; see 
Appendix B for details of the calculations leading to ( 16) 1. 
As F+O, we obtain 

Let us now consider some limiting cases. 
( 1 ) When Y ,  = 0 [states of the form (0, n,, 0) 1, we 

have Dl - 0 for any F, and ( 16) reduces to the single equa- 
tion 

The root of this equation remains real so long as z = 16F/ 
E' < 1. When z = 1,the hypergeometric function has a 
branch point; the corresponding values ofFand E are labeled 
with an asterisk: 

As F-F., the solution of ( 18) has a singularity: 

FIG. 4. Stark shifts of the n = 2 (a) and n = 3 (b) levels. The 
parabolic quantum numbers (n,, n,, m) are indicated against the 
curves. The points are taken from Ref. 20. 

where f = (F. - F)/F, and F >  F. the function E(F) ac- 
quires an imaginary part. When F >  F.,  the quantity E(F) 
moves into the complex plane; this enables us to describe not 
only the level shift, but also the level width (as in the case of 
the l/n e ~ ~ a n s i o n ~ ~ ~ ~ ~ ) .  The corresponding curve (n = co ) 
obtained by numerical solution of (18) is shown in Fig. lb  
[formula (20) was used as the initial approximation for the 
iterations]. It is clear from the figure that (18) provides a 
qualitative description of E, and r for Rydberg states 
(nBl). 

( 2 )  Similarly, P2 = O  when v2 = 0 [cf. ( 17) 1. For the 
(n,, 0, 0) states, we therefore obtain the equation 

The energy E (F) vanishes for F-F,, where 

In the numerical solution of (21), it is convenient to use 
identities to transform it to the form 

Hence, it is clear that F = Fo is not a singular point of E (F) 
and E remains real for all 0 < F < w . Therefore, for (n ,, 0,O) 
states, the level width vanishes in the limit as n + cc . Actual- 
ly, the first equation in ( 16) is the quantization condition in 
the funnel potential U,(6) = - 1/26 + g 6 / 8  (the energy 
spectrum is exclusively discrete) and the second reduces to 
the identity 0 = 0. 

For all other states, the quasiclassical description gives 
a finite level width in the region above the threshold, F >  F.. 

(3) We also calculatedz6 the series of states (n,, n,, 0 )  
for which, as for the (0, 0, m )  states, the linear Stark effect is 
not present in a weak field. We also calculatedz6 the energies 
and widths of states with n, = 20-30 and n,, m = 0,1, and 2, 
which have the lowest decay probability among all the states 
with given n. 

(4) It is well that only the potential U2(77) has 
a barrier (for sufficiently small F ) .  The field F = F. ,  for 
which the barrier on U2(v) disappears, will be referred to as 
the classical ionization threshold. When m = 0, the poten- 
tial Uz(v) has a maximum at v0 = 2(P2/F) ' I 2 :  
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The barrier disappears when E = U2 ( vO), i.e., P2F/e2 = 1/ 
16, which corresponds precisely to the singular point of the 
hypergeometric function in ( 16 1. 

Analysis of ( 16) shows that 

where F. monotonically increases with increasing v ,  = n ,/n 
(see Appendix C) . 

For F >  F., the width r becomes practically a linear 
function of F (up to F- 5, cf. Fig. 3). 

(5) Comparison with other calculations. The Stark ef- 
fect in the hydrogen atom in strong fields was considered in 
Refs. 3, 12, 13, and 20 mostly for the ground state. The Weyl 
method was used in Ref. 3 to calculate Eo and I', a numerical 
solution of the Schrodinger equation was used in Ref. 12, the 
modified perturbation theory was employed in Ref. 13, and 
the Bore1 summation of the perturbation-theory series for 
the separation constants, p,, P, was used in Ref. 20. For 
F ~ 0 . 1 ,  all these results agree with the exception of Ref. 13 
(the level width obtained in Ref. 13 has an incorrect behav- 
ior for F-0). The values of Eo and I' for n = 1 and F ~ 0 . 2 5 ,  
calculated by Hehenberer et al. in Ref. 3, are in agreement 
with our calculations. The calculations of Damburg and Ko- 
10sov'~ for states with n = 1 and n = 2 disagree sharply with 
our calculations for FR 0.2 (see Sec. 4 of Appendix B for 
further details), but the results of Ref. 20 are in agreement 
with our own (see Fig. 4). However, we note that the calcu- 
lations of Eo and were reported in Ref. 20 for only two 
states, namely, (0,0,0) and (0, 1, O), and for a small number 
of F points. 

(6) Let us now summarize. Summation of divergent 
perturbation-theory series in the Stark-effect problem can be 
used to find the complex energy E = Eo - iT/2 of the Breit- 
Wigner resonance that transforms into a discrete level (n,, 
n,, m)  as F-0. The significant point here is the choice of a 
suitable procedure for summing the perturbation-theory se- 
ries, which becomes clear if we compare the effectiveness of 
the two methods, i.e., those based on the Pad6 approximants 
and the Padt-Hermite approximants. To calculate Eo and r 
to 4-5 significant figures, we have to go to at least order 50 in 
perturbation theory (see Sec. 2).  The exact perturbation- 
theory coefficients corresponding to such values of k are by 
then8.I0 given by the asymptotic formula (3) associated with 
the Dyson singularity in the energy E (g )  as g-0 .  This 
singularity is thus reproduced by summing the perturbation- 
theory series with the aid of the Pad6-Hermite approximant, 
which appears to be the necessary condition for a successful 
summation of divergent series. It follows that the number of 
higher perturbation-theory orders calculated exactly must 
be quite large if we do not wish to confine our attention to the 
weak-binding region. 

The l/n expansion, which is particularly efficient for 
the Rydberg states (and for n ,, n, 4 n  1, and completely con- 
firms the results obtained by summing the perturbation-the- 
ory series, is an independent method of calculating Eo and r .  

We have reproduced above the Stark shifts and level 
widths of the hydrogen atom up to E9 - 1.5 t~-~ .  There is no 
difficulty to extending the calculations to greater values of 
g ,  but this is only of academic interest because the level 
width r in fields F = n4 8 - 1 is already comparable with 

IEol. Such wide resonances are difficult to separate from the 
background due to the contribution of other states. 

It is our pleasant duty to express our sincere thanks to I. 
L. Beigman, Yu. N. Demkov, I. I. Sobel'man, E. A. Solov'ev, 
and I. S. Shapiro for discussions of the above results and for 
useful suggestions, and to A. V. Shcheblykin for help with 
numerical calculations. 

APPENDIX A 
1 /n-expansion for the Stark effect 

We begin with nodeless states (n,  = n, = 0, 
m = n - 1), for which there are no "radial excitations". By 
analogy with Ref. 24, in the limit as n - co , the classical equi- 
librium point go, 7, and the level energy E are determined by 
the set of equations 

where U ,,, are the effective potentials in the coordinates 6 
and 7, andP ,,, are the separation constants., Direct analysis 
of these equations is quite difficult. We shall simplify it by 
exploiting the fact that the Bohr theory of the atom is valid 
for n)  1. In the absence of the field 8, the (0, 0, m )  state 
corresponds to a circular electron orbit, perpendicular to the 
z-axis (the direction of the external field 8 ). When the elec- 
tric field is turned on, the classical orbit shifts and changes 
its radius, but remains circular (Fig. 5 ) . Hence, we find that 

where the first two equations correspond to the equilibrium 
of forces acting on the electron in its own rest frame (cf. Fig. 
5). If we apply the scale transformation ( lo ) ,  and assume 
that r = ( 1 - ?) -,, we obtain (8).  In this procedure, do' is 
given by (7 )  and we can verify that all the equations in (A  1 ) 
are satisfied identically. A correction of arbitrary order, 
dk', in (6)  can be calculated from the recurrence relations 
given in Ref. 25, which are very convenient in computer cal- 
culations. When T = 1/3, the potential U2(7) ceases to have 
a barrier. The corresponding field is given by (9 ), and the 
reduced energy and radius and electron orbit are given by 

When F>F. ,  the root of (8) becomes complex, i.e., the 
equilibrium point go, q0 moves into the complex plane. This 

FIG. 5. Classical electron orbit of the hydrogen atom corresponding to the 
(0, 0, m) state for m = n - 1 %  1. 
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solution is not meaningful to classical mechanics but, in 
quantum mechanics, it determines the energy and width of 
highly-excited states (cf. the Yukawa potentialz4). 

When F >  F., we assume in (8) that 

and take into account the fact that Fremains real. This leads 
to the following equations that specify E(F) in parametric 
form: 

F=(sin 0)'"(sin 80)' (sin 90)-"2, 

E(~)=3S3e-3ie-4Sze-zie 
(A51 

, s=sin 80lsin 90 

where 0 < 8 < ~ / 9 .  We note that 

( -2~(1-r~)- ' ,  F<F.,  

% = 1 (sin O )  'la (sin 90) 'la e8io 
(A61 

-2 , F>F.. 
(sin 80) ' 

Hence, it follows that E" = - I m  increases monotonically 
with the field F, and E' = R e  at first decreases (up to 8 = r/ 
12) and then begins to increase. The minimum of E' (F) lies 
near the strong-field region: 
Fmi, = 9.2-5'2(3112 - 1)"' = 1.361. 

Assuming that 8-0, we find from (AS) that 
F-F, = 2 " ~ 3 - ~  and E" - (F - F. )312. Further increase 
in F results in a practically linear dependence of the level 
width on the field (cf. Fig. 3).  This also occurs for other 
states (n,, n,, m )  and continues up to F=5. On the other 
hand, when F- co, 

but this asymptotic formula is only for theoretical interest 
(it sets in for F Z  50). 

So far, we have assumed that n, = nz = 0. The l/n ex- 
pansion can also be obtained for other states when n ,, n, g n .  
The first term of (6)  remains the same as before whereas, for 
example, the first-order correction is given by 

E ( ' ) =  ( I -T ')~[  (2n,+1) (1+3t)"+ (2nz+l) (1-32)'"-21, 

(A81 

where T = T(F) has the same meaning as before. 

APPENDIX B 

The limiting curves 6, (F) corresponding to n = rx, 

were calculated on the basis of the following considerations. 
For fields $ smaller than the classical ionization thresholds 
$., the width of a level in an electric field is determined by 
the barrier transmission factor 

where v,, v2 are the turning points and, when the Langer 
correction is included, 

Assuming that n) 1, and using the scaling 

From (11) and (12), we have 

6,,,,,(F)=(2/3F) [ ( -E)~I(F) - I I - ( I -v~+v~)  In F-cv,v,, 

(B3) 

where 

c ~ , ~ , =  (I-vl)ln (l-vl) Sv2 In v, 

We recall thatp + Y, + v2 = 1, SO that each of the numbers 
Y,, vZ lies between zero and unity. The function J(F) is, in 
general, a relatively complicated elliptic integral. We now 
consider a few cases for which the calculations become 
simpler. 

1. p = 1, Y, = v2 = 0. This case corresponds to a classi- 
cal particle at rest at the minimum 7 = 7, of the effective 
potential U2 (7) .  We then have 

where do' < 0 and q = 3b /4, and the values of do' and 8, 
correspond; to the first term in the l/n expansion: 

3 
e(?=- (4-3u) u', 2 = ' 1 z [  I ( u 4  - - u-') F ]  

2 
(B5) 

where u = 1 - .r2. Sincep2(v) has a repeated root, the inte- 
gral J ( F )  can be expressed in terms of elementary functions: 

J(F) =3-'h (i-2/3z2) -3b[z-2/3z3- (1-2) arth z ] ,  

Hence, 

We note that the expansion 6 ,  (F) becomes identical with 
(13), (14) as F-0,  n- co. 

2. p = 0. In this case, U2 ( 7 )  does not have a centrifugal 
barrier, so that J ( F )  reduces to a hypergeometric function. 
If we use the quadratic Kummer transformation, we can 
simplify the answer and finally obtain 

Since (as b - 0 ) 

('I4, 'I4; 2; I-b) 

=k,{1+3/16b(ln b+kI)  +lo51s,,bZ 1n b+ O(bZ)), 

kO=2'/2/3n, k,=13/,-6 In 2, 

we find that 

6,,,,,0 (F) =(4+3/~~z-2vz2) F+O (F2) F+Ot (B9) 

we obtain which agrees with ( 13). 
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3. The 6,1,2, have a particularly simple form for the 
(n , ,  0, 0) states. Here, P,=O [cf. (1711, a = b = 0, and 
J(F) = 1, so that 

G , , o o ( F ) = ( 2 / 3 F )  [ ( - E ) " - I ]  +3, (B10) 

where E(F) is determined from (2 1 ). In particular, 

6,,00 ( F )  =4F-'YI,FZ+. . . , F-0. 

We must now make some remarks in relation to Ref. 12. 
The results reported there for strong fields do not agree with 
our results (cf., in particular, Figs. 5 and 6 in Ref. 15). A 
possible reason for this discrepancy may be as follows. The 
values of Eo and r given in Ref. 12 were determined from the 
passage of the scattering phase through ?r/2 (for real E) ,  
which corresponds to the scattering of an electron by a pro- 
ton in an external field %. In our calculations (see also Refs. 
3 and 13), we use the radiation condition (divergent wave at 
infinity), which corresponds to the decay of a quasistation- 
ary state. Actually, when the formal perturbation-theory se- 
ries ( 1 ) is constructed, we use the exponential decrease of 
the wave function for r+ W ,  which, in the analytic continu- 
ation A = ( - 2 ~ )  ' I 2  = - ik, becomes the radiation condi- 
tion. For narrow resonances, the two approaches are, of 
course, equivalent. 

APPENDIX C 

Assuming in ( 16 that 

1 6 P , F / ~ ~ = 1 ,  P ~ = P / ( I + ~ I ) ,  bz=(I+P)- ' ,  

we can reduce this system to the single equation for the vari- 
ableP =B(v,): 

where the classical ionization threshold F. and the corre- 
sponding energy E. are given by 

Equation (C1 ) was solved numerically and it was found that 
F. increased monotonicaly with v, between 0.1298 (v, = 0)  
and0.3834 (v, = 1). At (v, = 1), it has apower-typesingu- 
larity: 

where 

The values of F. (v,, v,, 0)  are almost constant in the range 
O<vl 50.5, but vary relatively rapidly near v, = 1. This is 
due to the fact that the coefficient a is numerically large. 
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