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The nuclear emission or absorption spectrum of an atom contains a set of electron satellites that 
are due to the change in the state of atomic electrons. It is shown that, in the case of neutral atoms 
and multiply-charged ions, the satellites may be due to different mechanisms. In the former case 
(loose electron shell), the satellites are mainly due to the "shaking" of the electron shell when the 
nucleus interacts with a y ray. In the latter case (rigid electron shell), the yray interacts directly 
with the electrons. The second mechanism is significant for dipole nuclear transitions and 
predominates for y-ray energies 5 4z* keV, wherez* is the effective charge of the nucleus. It is 
unrelated to the usual selection rules or the well-known hierarchy ofintensities based on the 
multipolarity of electron transitions. This substantially enriches the satellite spectrum and brings 
into the analysis phenomena such as transitions between fine structure and hyperfine structure 
components, 0-0 transitions, and transitions without a change in the electron configuration. The 
relative satellite intensities are determined by the small parameter p,", where A is the 
multipolarity of the nuclear transition, pp - 1/22 is the relative mass of the proton, and z is the 
charge of the core. In the spectrum of the plasma source, the electron satellites corresponding to 
y-ray emission and absorption lines are not overlapped by the Doppler profile of the y-ray line. 

1. INTRODUCTION 

This is a continuation of our study'.' of dynamic effects 
arising in the interaction between the electron shell of a mul- 
ticharged atomic ion and nucleons in the nucleus. In our 
previous papers,'.2 we determined the positions and intensi- 
ties of the electron satellites of the y-ray emission spectrum 
of the nucleus in a neutral or weakly-charged atom. We also 
estimated the effect of the electron shell on the rate of decay 
of a metastable nucleus, and showed that this effect was neg- 
ligible2 in low-charge systems. In the case of multicharged 
ions, on the other hand, the geometric and energy param- 
eters of the electron shell, which determine the nature of its 
interaction with the nucleus, are different: the orders of mag- 
nitude change and new channels become available for elec- 
tron-nuclear processes. In neutral atoms under standard ex- 
perimental conditions, strong satellites are overlapped by 
the Doppler profile of the y-ray emission line; the techniques 
of intra-Doppler spectroscopy were proposed in Refs. 1 and 
2 as a way of observing these satellites. A more favorable 
situation for the observation of the satellites prevails in plas- 
mas containing multicharged ions: the separation between 
the lower electron energy levels of ions can be much greater 
than the Doppler shift of the y-ray line. 

As we pass from the neutral atom to the ion, we find 
that, in addition to the usual decay channels available to an 
excited nuclear state, there is also, for example, the creation 
of an electron-positron pair (during the de-excitation of the 
nucleus) with the capture of the new electron into one of the 
available bound states. One can readily imagine the situation 
where the process becomes energetically possible only when 
a strongly-bound electron is removed in the initial state. 

Theoretical analyses are complicated by the variety of 
channels available to electron-nuclear processes in ions, and 
by possible interference between them. Moreover, the analy- 
sis of many such processes must be based on a rigorous real- 

istic approach, and the transition to the nonrelativistic limit 
must be properly justified. Systematic analyses of the decay 
and excitation of the system in this complex situation are 
best carried out by means of a theoretical formalism provid- 
ing a unified approach to all significant processes. A conven- 
ient route in this sense is the energy approach, in which the 
total probability of spontaneous decay and of excitation of 
the system is related to the imaginary part Im E of the energy 
of the atom + field system. For radiative decays, this ap- 
pears as a delay of interaction and self-interaction, and is 
calculated by electrodynamic perturbation theo~-y.3 Pertur- 
bation-theory corrections for Im E are represented by sums 
over virtual states. In the lowest orders, the individual terms 
in these sums are additive contributions of different physical 
channels to the total decay pr~bability.~ Effects due to inter- 
ference between channels can be isolated in the higher or- 
ders. Only radiative decays appear in the lowest, second or- 
der of electrodynamic perturbation theory. 

2. MODEL AND FORMULATION OF THE PROBLEM 

Most excited nuclear states are multiparticle in charac- 
ter. The first excited states with one or two nucleons or va- 
cancies above an even-even core are the only  exception^.^ 
They are convenient for theoretical analysis because they 
can be described by the single-particle model. Generaliza- 
tion of the formulas to the many-particle problem does not 
lead to qualitatively different results because the dynamic 
(radial) parts of the nuclear matrix elements do not appear 
in the expressions for the relative intensities of the electron 
satellites and the main nuclear line. 

As in Ref. 2, we consider a simple model consisting of 
three particles: a rigid nuclear core and a proton and electron 
outside the core. The masses of the three particles are p, M, 
,up M, and p, M, where M is the mass of the entire atom and 
p, + pp + p, = 1. The position coordinates of these parti- 
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cles will be denoted by r,, r,, and re, respectively. The 
charge of the nuclear core will be denoted by z, and z* will 
represent the effective charge of the Coulomb field for an 
optically active electron in an atom or ion. 

It is not our aim in this paper to perform an accurate 
calculation of the intensities of electron satellites. We shall 
confine our attention to qualitative aspects of the process, so 
that we shall be able to use the nonrelativistic approxima- 
tion, which gives the correct order-of-magnitude results 
even for highly-charged ions. We shall need electrodynamics 
only to justify the formulas of the energy approach, which, 
as we have already noted, simplifies the analysis of multi- 
channel decay and excitation of the system. 

We shall calculate the imaginary part of the excited- 
state energy. The exact electrodynamic solution is not 
known even in the case of the two-particle system. We shall 
follow the quasipotential method6 and introduce the bare 
interaction between the particles, which can be looked upon 
as the zero-order approximation of some formally exact per- 
turbation theory. It will be sufficient to take this interaction 
as the potential in the nonrelativistic Schrodinger equation, 
i.e., 

t7NR()*c) rp, re) = v ( r p e )  -zeZ/r,,-e2/rpe, (1) 

where v(r,, ) simulates the interaction between the proton 
and the core (nuclear and Coulomb). The imaginary part of 
the energy of a three-particle state a, in the lowest (second) 
perturbation-theory order is 

Im E=e2 Im i lim d z ,  dx, erp[y ( t i f f )  ] 
T+O 

where D(r,t,,r,t2) is the photon propagator that depends on 
the coordinates of two points in three-dimensional space, the 
ang!e :rackets contain the current matrix elements, 
j,,, jp, , j,, are the four-dimensional components of current 
operators for the particles in the core, the protons, and the 
electrons, the symbol x = ( r, ,rp ,re , t )  includes thLposition 
coordinates of the three particles and the time (the same for 
all three particles), and y is the adiabatic index. The follow- 
ing exact electrodynamic expression will be used for the pho- 
ton propagator:' 

m 

The nonrelativistic expression for the current operator 
of a particle a is 

iz, 
;a"= {- - (6;v,b-&.o,.4;) ; iz.6;m.) (5)  

2My. 

which is a four-dimepiozal vectT ( v  = 1,2,3,4), za is the 
particle charge, and @, , QP , and cPe are the second-quanti- 
zation operators for the field of the core particles, the proton 
field, and the electron field. We now substitute (3)  and (5) 
in (2),  and integrate with respect to time t and frequency w. 
The result will be written in the form of the sum of core, 
proton, and electron contributions: 

Im E=Im Ecf Im Ep+Im E,, 

sin BI,~,,, 1 
Ta(1,2) = [ - (vra17 vra2) + I ]  , 

ra12 

where r,,, = (r,, - r,, 1, the sum over F is evaluated over 
the final states of the system, i.e., in second order of the 
electrodynamic perturbation theory, and the total level 
width is the sum of partial contributions due to radiative 
decays to particular final states of the system. These contri- 
butions are proportional to the probabilities of the corre- 
sponding transitions and 53, is the total transition energy, 
including the change in the kinetic energy of the ion as a 
whole (recoil energy). Transitions involving the excitation 
(de-excitation) of the electron shell correspond to the set of 
red (blue) satellites of the main line. The expressions given 
by (6) can be deduced in the usual way, using amplitudes 
with nonrelativistic wave functions. The form of the opera- 
tor in (6) is determined by the gauge of the propagator ( 3 ) .  

Each of the contributions to Im Ea the individual inter- 
action of the particle a with a photon of energy 25,. The 
change in the state of the remaining particles is due to the 
"shake" of the system on recoil. The neutral atom can be 
modeled2 by two strongly-bound particles (nuclear core and 
proton) and a weakly-bound electron. The energy of the 
photon is close to that of the nuclear transition. The cross 
section describing the interaction between this photon and 
the almost-free electron is small and the contribution ofEe is 
neglected. The picture becomes qualitatively different as we 
pass to multicharged ions with an increasing ( -z*') elec- 
tron binding energy. Firstly, for the strongly-bound elec- 
tron, the recoil on emission (absorption) of the photon by 
the core-proton subsystem is smaller, i.e., the "shake" of the 
electron shell has a smaller effect. The contribution of 
E, + E, to the intensity of the electron satellites falls as 1/ 

(Lorent' gauge) Equations ( ) and (2 )  summation 
z*2. Secondly, the cross section for the direct interaction be- over the polarizations of the photon. Equation (2) describes 
tween the high-energy photon and the bound electron in- single-photon processes. 
creases, i.e., the contribution of Im Ee increases. It becomes 

Higher-order electrodynamic corrections to Im E will 
the dominant contribution for w, 5 4z* keV. When this not be considered. Moreover, the state functions of the sys- 
condition is satisfied, the photon wavelength is equal to or tem in (2) will be taken to be the nonrelativistic solutions of 
greater than the radius of the electron orbital. the Schrodinger equation with the Hamiltonian 

ftZ Arc  A r p  A r e  H = - -  (- + - + -) +vNR(rC, rp, re). 
2M PC PP Pe (4)  3. APPROXIMATIONS 

Here and henceforth, A,= ,A, ,Are are the Laplacians and It will be convenient in the ensuing analysis to separate 
Vrc ,Vrp,V, are the gradients with respect to the variables Out the motion of the center of mass. In the nonrelativistic 
rc ,rp ,re. limit, this can be done by changing the variables as follows:' 
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The inverse transformation ra = R + R, , ,  where R is the 
coordinate of the center of mass and Ra represents the 
internal state of the system, is defined by 

where (and henceforth) V,V, ,Ve represent the gradients 
with respect to the new variables R, R,, and Re, respective- 
ly. The change of variables (7)  reduces the three-particle 
problem to the problem of the relative motion of two parti- 
cles, namely, a heavy particle of mass Mpcpp/(pc + pp ) 
with charge ze and a light particle with mass Mpcpe/  
(p, + pe ) and charge -.e. As before, these particles will be 
referred to as the proton and the electron although, actually, 
they correspond to certain collective combinations of the 
coordinates of real particles. The motion of the electron and 
the proton can then be described by the nonrelativistic 
Schrodinger equation with the potential 

The first two terms in this expression represent the external 
field and the other two the effective interaction between the 
two particles, i.e., the Coulomb interaction, and the recoil. 
The motion of the center of mass in the initial and final states 
is described by plane waves. The electron-proton state func- 
tions in the potential (9) can be found numerically almost 
exactly. The next approximation relies on the fact that the 
proton-electron interaction in (9)  can be taken into account 
by perturbation theory. In the zero-order approximation of 
this perturbation theory, the dependence of @, , @, on the 
variables R, R,, and Re can be factored: 

where @, are plane waves, @,, is the state function of the 
proton in the potential v(R, ), and is the nonrelativistic 
Coulomb function. However, composite electron-proton 
single-photon transitions have an effect even in the zero- 
orde~ap~roximatjon. This is so because each of the opera- 
tors T,, T, , and T, in (6) contains a combination of all the 
variables R, R,, and Re .  It will be shown below that the 
contribution of the zero order to the satellite intensity is 
--pi. The contribution of the proton-electron interaction to 
the satellite intensity is significant only in second-order per- 
turbation theory in this interaction, and, when compared 
with the main contribution, is additionally of order I /z*~ 
(for the Coulomb part) and pf (for the recoil interaction). 
We shall neglect these contributions. Thus, the main effect 
of the appearance of the electron satellites of nuclear transi- 
tions is purely kinetic in character: it constitutes a shift of the 
center of mass of the system relative to the proton or electron 
orbital when the y-ray is emitted. 

The sum over the final states in (6) includes an integral 
with respect to the momentum of the center of mass after the 
emission of the y-ray. To evaluate this'integral, it is conven- 
ient to replace the quotient sin(wr)/r in ( 6 )  with the Fourier 
integral, as follows: 

This replacement factors the dependence of the integrand on 
the coordinates of the center of mass and, at the same time, 
enables us to evaluate the integral with respect to these co- 
ordinates. The final result is 

sin WIFR~ in12 
@re' (Re,) @rp'(Rp~) @pee (Re%) 

Ra in12 

where w, is the transition energy without the recoil energy 
of the ion as a whole and V, is given by (8)  in terms of V, 
V,, and Ve . Terms containing V do not contribute, which 
can be readily verified by assuming that, in the initial state, 
the system as a whole is at rest. The matrix elements of the 
gradients in ( 11 ) are replaced by the combination 

Expansion of the operator sin(wIFRa 12)/Ra in 12 in 
terms of spherical harmonics generates the multipole expan- 
sion of the decay probability. The other well-known variant 
is the power-type expansion. The two expansions are virtual- 
ly identical in most problems, and produce a clear reduction 
in the successive contributions with increasing multipolar- 
ity. This situation occurs in the case of Im E, and Im E,. 
The parameters of the power-type expansion are now the 
combinations w,, R, , w,, Rep,. If we retain only the qua- 
dratic terms in each of these parameters in the integrand for 
E, and E, , we can isolate the effects due to the pure dipole 
proton transition, the pure dipole electron transition, and 
the mixed dipole electron + dipole proton transition. The 
result is reproduced in Coulomb units, convenient for nu- 
merical calculations (for energy, 1 C.U. = zZ a.u. ). 

For the pure dipole proton transition 

and for the dipole electron + dipole proton transition 

Im [ E ,  (dp-de) +E, (dp-de) I 

.(el, e2),+ (2+7pp2z2) (pl, e2)i(p2, el>,)PZ(Z, F)Z2(Z, F ) ,  

( 1 5 )  
where Z = az. The radial integrals are 

~ ( z F )  = 5 drr3PIp (r)B,, (r) , 8 ( I F )  = J drr3Bre (r)Rpe (r) 7 

(16) 
and RAP ,RA, are the radial parts of the proton and electron 
state functions. The angular parts of the matrix elements are 

( a l ,  b2) ,=  J ~ Q ,  dQ2Y..* (Q,) Ybp* (Q,) 

where YaA is the angular part of the state function of particle 
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a, P, ( x )  is the Legendre polynomial, and cos(a1,b 2)  
= (R,, ,R,, )/R,, R,,  . The electron (el,e2), and mixed 
(pl,e2), electron-proton angular matrix elements can be de- 
termined in a similar way. All the integrals in (17) with 
respect to the angular variables and the sums over the angu- 
lar momentum components of the final states of the quasi- 
particles can be evaluated analytically. The technique for 
doing this is standard.' 

We now turn to the contribution of the direct interac- 
tion between the photon and an electron, Im Ee . In the "po- 
tential" sin(wRein ,, )/Rein ,, , we identify the two param- 
eters 

In our previous paper,' we considered that, in a significant 
part of the integration region (for a neutral atom), 

The second condition determines the rapid oscillations of 
the potential and the smallness of the contribution of Im E, . 
For multicharged ions, the second condition is invalid, but 
the first condition holds for all real systems. Let us expand 
the potential in powers of the parameter k, , and retain only 
the quadratic terms, i.e., the contribution of the composite 
dipole proton and electron transitions: 

sin (BoR, inrz) '/a 

Re zni2  

where J,  are Bessel functions that depend on the electron 
coordinates. We note that, in contrast to the contributions of 
Im (Ec + E, ), when Zw > 1, we do not have for Im E, a 
parameter defining the hierarchy of contributions according 
to the multipolarity of electron transitions. Moreover, the 
selection rules, valid for pure electron transitions, do not 
work. This enables us to include in our analysis, on equal 
terms with the others, the transitions between fine and hy- 
perfine structure components, and also the ns-n's and 0-0 
transitions for systems with two or more electrons. 

Part of the intensity of dipole electron satellites is due to 
the contributions EP , E, [see ( 15) 1. The ratios of the contri- 
butions of these lines are given by 

Im E,IIm[E,(kp-de) +Ep(kp-de) 1 
ao= l ,  

(20) 

Bo>l, 

where il is the multipolarity of the nuclear transition, the 
exponent m depends on the transition, and the pray energy 
is related to Zw by 

When Zw < 1, the power-type dependence of satellite inten- 
sity on the multipolarity q of electron transitions reappears: 

1m EeI1m [E,(hp) + E p ( h ~ ) l - ( ~ p ) 2 ~ ~ o )  ". (22) 

However, when q = 0, we have Im Ee + 0 for Zw -0 because 

FIG. 1. Contribution of Im E, to the relative intensity ofa satellite. P(pe) 
is the satellite intensity, P(p) is the intensity of the nuclear line, andpp is 
the relative mass of the proton (pp = 1/22). l-l~-2p,~, transition, 2- 
2~-2p,~, transition, 3-2pll,2p,,, transition, 4-1s-2s transition. The 
line intensities are related to the calculated imaginary parts of the energy 
(12), (14), (15) by P= 21m E/f i .  Theenergy ofthe y-ray isrelated tothe 
parameters Zto by (2 1 ). 

the radial parts of the electron functions of the initial and 
final states are orthogonal. 

4. RESULTS OF CALCULATIONS 

We shall now estimate the contribution of Im Ee to the 
relative intensity of electron satellites in the one-electron ion 
in the case of the 1s-2s (monopole), ls-2p3/,, 2s-2p3/, (di- 
pole), and 2pIl,-2p3,, (quadrupole) transitions. Figure 1 
shows the calculated quantities as functions of the parameter 
Zw, related to the y-ray energy by (21 ). The entire depend- 
ence on the charge of the nucleus is contained in this param- 
eter. Inclusion of relativistic effects leads mostly to a shift of 
the graphs toward higher energies. The numerical difference 
between the intensities of different satellites is mainly due to 
the difference between the radial electron integrals, deter- 
mined by the overlap of the wave functions. For transitions 
to the 2pl12 state, the satellite intensity is lower by a factor of 
two as compared with 2p3/, (in accordance with the statisti- 
cal weights of the states). 

FIG. 2. Position of some of the close electron satellites of emission and 
absorption lines (in the positive and negative directions of the abscissa 
axis, respectively) for the ion F e x ~ x  in low-lying states of the ground 
electron configuration 2S2p4 (a)  and the excited electron configuration 
2s2p5 (b) relative to the nuclear y-transition with frw,, = 14.41 keV in the 
isotope :: Fe. The figure shows lines accompanied by electron transitions: 
1-2s22p4 'so-2s2p5 ,P,; 2-*2p4 3~1-2~2p5 3 ~ ~ ;  3-mP4 3~2-2s2pS 
'PI; 4-2s2p5 'PI-2p6 'So. The relative intensities of these lines are P(pe)/ 
P(p) 1: 5 X 10W5, and the Doppler broadening is &, 1: 5 eV. 
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TABLE I. L-shell energy levels of the ion Fexlx, measured from the ground state P 2 p 4  'P, (Ref. 9 ) .  

Let us now estimate the ratio of the shift of the electron 
satellite to the Doppler linewidth of the y-ray line in therma- 
lized plasma. Suppose that the K-shell of the plasma ions is 
significantly disturbed. The mean kinetic energy of the ions 
in the plasma (Coulomb units) is approximately Ei/lO-- 1/ 
20, where Ei is the 1s-electron binding energy. The corre- 
sponding Doppler shift is Sh, -- Zw/ ( 10M) 'I2. Suppose 
that Zw = 1, in which case 

Configuration 2 ~ 2 2 ~ 4  2 ~ 2 . ~ 6  I 

Let us compare this with the electron transition energies. 
For z = 10-50, 

2p6 

The splitting of the 2~,/,-2p,~, levels (Lamb shift) is 0.01-5 
eV. Comparisons show that the transition energies involving 
no change in the principal quantum number are of the order 
of the Doppler shift. In the one-electron ions, this splitting is 
wholly due to relativistic effects, which explains why they 
are so small. 

The situation is much more favorable for many-elec- 
tron systems in which there is additional splitting due to the 
interaction between the electrons. Here, the spectrum of re- 
solved satellites is much richer. The Table lists the L-shell 
energy levels of the oxygen-like ion Fexrx (z = 26). At a 
sufficient distance from the Doppler profile of the main line. 
there are a large number of electron satellites due to the 2-2 
transitions. These are the 2s" 2p6 - " LSJ-2s" 2p6" L 'S'J' 
transitions without change in the electron configuration and 
transitions with a change in the state of one electron (2s-2p 
transitions). The estimate obtained above for the one-elec- 
tron problem remains in force: the only change is in the an- 
gular coefficients (by not more than an order of magnitude), 
and the correction to the interaction between the electrons 
has the additional small parameter l/z. As an example, con- 
sider the well-known nuclear transition in :zFe with the 
emission of the 14.41-keV y-ray. The transition half-life is 

States ( i2 I 'pi I ID2 I '50 1 'PI I 'PI I 'PO I 'PI 1 'SO 
E, eV 11.1 20.9 40.3 114.4 122.0 127.7 157.1 264.6 

TI/, = 9.77X lop8 s and the recoil energy of the nucleus is 
1.96X lop6 keV. For this transition, Z o  = 0.27. According 
to Fig. 1, the strongest electron satellites in this region are 
those associated with the 2s-2p transitions. Transitions 
without a change in the electron configuration are quadru- 
pole transitions and are weak for Zw < 1. Figure 2 shows the 
disposition of some of the electron satellites relative to the 
nuclear line h,, . The Doppler widths, which, for these pa- 
rameters, amount to Sh, -- 5 eV, are indicated qualitative- 
ly. The relative intensities of these satellites are approxi- 
mately 5 X lop5. Satellites associated with the 1-2 
transitions lie at about 6 keV from wO,, but their intensity is 
somewhat lower. 

We are now in a position to summarize our calculations: 
( 1 ) as we pass from neutral atoms to ions, the spectrum of 
electron satellites due to nuclear dipole transitions becomes 
much richer and the relative intensity of satellites for lines 
with transition energies E, 5 42 keV may reach pi (p, -- 1/ 
22 and il is the multipolarity of the nuclear transition) and 
(2)  the emission and absorption spectra can contain observ- 
able electron-nuclear lines that are not overlapped as a result 
of Doppler broadening. 
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