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The thermodynamic equations for the sigma model are derived, in the limit of infinite anisotropy, 
from the exact equations describing the thermodynamics of an anisotropic chiral field. The 
equations are then used to demonstrate factorization in the U( 1 ) gauge group. The low- 
temperature expansion of the free energy is then used to obtain a formula for the statistics of 
excitations. A representation of the excited-state wave function corresponding to this solution is 
discussed. 

1. INTRODUCTION 

The O(3) symmetric sigma-model (n-field) is the 
1 + 1-dimensional theory of a Goldstone non-Abelian field: 

where n ( x , t )  is a three-component unit vector. 
The sigma-model ( 1 ) is a simple example of a theory in 

which a purely geometric limitation leads to strong interac- 
tions between particles: because of the non-Abelian charac- 
ter of the S manifold, the effective coupling constant A ( ~ , p )  
increases as the energy scale E (momentump) is reduced.' 
The low-energy domain of the theory in which the perturba- 
tion theory is invalid can be described in terms of an exact 
solution; the model defined by ( 1 ) allows this because it has 
an infinite series of quantum conservation lawS2s3 However, 
for well-known reasons, it is difficult to obtain directly the 
exact solution for ( 1 ) . An exact solution has, in fact, now 
been obtained for a model of the anistropic chiral field that 
includes the sigma model as a limiting case.4 The corre- 
sponding action takes the form 

where a, are the Pauli matrices. In the limit as All -. CO, the 
action given by (2 )  becomes identical with ( 1) (Ref. 5). 
This can be verified by using the Hopf parametrization 

An exact solution of ( 1 ), regarded as a limiting case of 
(2), has been put forward by Wiegmann.4 Excitations of the 
sigma-model have been found to be massive particles that 
transform in accordance with a representation of the group 
O(3) with spin S = 1. The two-particle S-matrix for these 
particles, obtained from the exact solution, is identical with 
the S-matrix proposed earlier6 on the basis of phenomeno- 
logical considerations. 

The present paper is devoted to the derivation of ther- 
modynamic equations describing the behavior of the sigma- 
model at finite temperatures, and to the examination of this 
behavior. At low temperatures T ( m  (m is the mass of an 
excitation), the behavior of the system can be described in 
the language of single-particle excitations, and a perturba- 
tion theory in the density of these excitations can be devel- 
oped. The low-temperature expansions for the free energy 
are used to determine the particle statistics and the interac- 

tion parameters. The high-temperature expansio~i for In ( T /  
m) % 1, on the other hand, is used to determine the dimen- 
sions of the manifold to which the fields belong. 

The plan of our paper is as follows. In See. 2, we discuss 
the qualitative picture of the limiting transition from model 
(2)  to model ( 1 ) in the language of the particle spectrum. 
Section 3 is devoted to the derivation of the thermodynamic 
equations for model (2), and Sec. 4 gives a formal procedure 
for passing to the limit as A - ao in these equations. Section 
5 analyzes the resulting equations. The Conclusion discusses 
the final results. 

2. THE PARTICLE SPECTRUM OF AN ANISOTROPIC CHIRAL 
FIELD IN THE LIMIT AS All -+ oo 

It will be helpful in understanding the presentation giv- 
en below to recall how the limit as A -. is accomplished in 
the spectrum of physical particles of model (2) .  

Since the action given by (2)  is invariant under global 
transformations of the form 

g-+L7g (U€SU(2)),  
g - g v  (V€U( I ) ) ,  

it seems natural to suppose that the two-particle S-matrix of 
fundamental particles belonging to model (2 )  is the tensor 
product4 

The co-factor matrices in this tensor product satisfy the 
Yang-Baxter equation as well as being unitary and crossing- 
symmetric. The matrix Ssu,,, is invariant under the funda- 
mental representation of the group SU(2). The matrix Su( 
has the same dimension, but is invariant only under the 
group U( 1 ). It is, in fact, the soliton scattering matrix in the 
sine-Gordon model The parameter y is expressed in terms of 
the constant A,,/ZII and y-0 as All + CO. 

When y <  8?r, the matrix Su(,, ( 8 )  has bands on the 
physical sheet that correspond to bound states of physical 
particles. The masses of the bound states ("breathers") are 

mj=2M0 sin jyll6, j=l ,  . . . [ g d ~ l - l .  

The breathers do not carry the U( 1 ) charge, but consti- 
tute the tensorial square of the fundamental representation 
of the group SU(2), i.e., they are a mixed state containing 
the singlet and triplet states of SU(2). 

For y ( 1, the mass of the first breather ism, (M, (Mo is 
the mass of the fundamental particle, i.e., the kink). If we 
pass to the limit as y-0, we can consider the mass of the 
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breather to be finite, in which case M, - m as y + 0 and kinks 
cease to be excited. This means that, as A ,, + oc, model (2) 
exhibits the phenomenon of kink confinement (non-Hermi- 
tian), first discussed in this context in Refs. 2 and 7). Next, it 
turns out that, as y-0, the triplet-triplet scattering splits 
from the singlet-singlet scattering. The matrix elements of 
the two-particle S-matrix corresponding to the singlet-trip- 
let scattering are of order of y"' (Ref. 7). The S-matrix of 
triplet excitations becomes identical with the S-matrix pro- 
posed in Ref. 6 when y-0. 

3. DERIVATION OF THERMODYNAMIC EQUATlONS FOR A 
MODEL OF THE ANISOTROPIC CHlRAL FIELD 

There are two ways of reducing model (2) to the model 
that can be solved using the Bethe an sat^.^.^ The final result 
is the same in both cases. In particular, Wiegmann4 used the 
model of relativistic fermions 

9 =i$ak~p8&$ak-L ( ~ ~ l X l ' + ~ p u l u L )  -h]l lflzJzp9 
]~'$ak,(~ag~~r$Rk, k=l, . . , Nf, a, P=I, 2 ( 3  

which is equivalent to model (2)  in the Nf - co limit. 
To find the eigenvalues of the Hamiltonian for model 

(3), we must place the system in a box of finite length L, and 
apply periodic boundary conditions to the N-particle wave 
function. The relativistic invariance that is violated by this 
can be restored by passing to the limit L - w , N- oc, M& / 
N-0, M, = const in the expressions for the corresponding 
physical variables. The N -  oc and Nf - co limits do not 
commute and must be taken in the indicated order. 

The energy eigenvalues of model (3) can be expressed 
in terms of the solutions of the following set of  equation^:^" 

M 

3-c 
-1 

3-c 
en ( A )  = {sinh - (A+ in)  } sinh - (h-in) . 

 PO   PO 

The number M can be expressed in terms of the number 
Nof particles and the component S of the total spin angular 
momentum: 

The constants g and p, can be expressed in terms of A A,. 
Wiegmann4 and Kirillov and Reshetikhin9 have shown 

that, in the neighborhood of the limit in which we are inter- 
ested, p, = NJ + l/v(v > 2), where A - w corresponds to 
v- W .  As before, y = 8r/v. To avoid too many complex- 
ities, we shall assume that v is an integer. The v- w and 
NJ - co limits commute. 

The thermodynamic equations for model (3) can be 
written using the results reported in Ref. 9, which gives the 
equations for arbitrary Nf andp,. The general equations giv- 
en there are exceedingly unwieldy and inconvenient for anal- 
ysis. We have rewritten them for our own case,p, = Nf + 1/ 
v, after some rearrangement. 

The free energy of the system is determined from the 
following set of nonlinear integral equations for the func- 
tions &(A) (0 = + i),  i.e., the energies of the kink and anti- 

kink, the breather energy x, ( A )  ( j = I, ..., v - l ) ,  and the 
auxiliary functions gp (A) (p = 1, ..., Nf - 1 ) : 

nh (A) 
=m, cosh - - &*T ln ( l iexp-)  

2 T 

We use the following notation: 
-kc+ 

f *g (h )  = J f (h-Ah')g(hr)dhr,  
- m  

mj=2M0 sin ( x j /2v ) ,  M,=A exp (-nlg). 

The Fourier transforms of the kernels of the integral equa- 
tions are: 

S ( W )  = (2  cosh a ) - ' ,  

K(o) = sinh( 1 - l/v)o/2 cosh o sinh(o/v), 

bj ( o )  = coth(o/v) sinh j(o/v)/cosh a, 

4. THE LIMIT OF MAXIMUM ANISOTROPY (v+ m, i.e., y +0) 

We shall now derive the equations describing the ther- 
modynamics of the sigma-model ( 1 ). As indicated above, 
this can be done by passing to the limit as v+ co in the equa- 
tions describing the spectrum of physical particles, i.e., in 
Eqs. (5 )-(8). We recall that, as v- oo, the mass of the first 
breather m, = m must be assumed finite. 

As v- 03, the kernels of the integral equations degener- 
ate: 

B~, (A)  =a min (i, k ) 6  ( A ) ,  EI(h) =G(h) 

Equations (7) thus become algebraic: 
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F, Trn 
-= -- Jd~cosh,$~n(~+evp{-y}) , (18b) 
L 4 

j , k = l , 2  , . . .  

(9)  
Inverting the kernel, we obtain (9)  in the more convenient 
form 

lim xj (A) l j = m  cosh (nA/2)  SEO ( A ) ,  
j+ a 

(10) 

Cjh(0) =6jk-'/~(6j,  k - ~ + B j ,  h+l). 
This set of equations was first obtained by Takahashi:"' 

1 + exp --'---- ( ' )  = [ sinh [ E $ : ) ( j + l ) - u ( ~ )  - 
T I I 

We can now use ( 10) with j = 1 to express u (A) in terms of 
E l :  

(1 + cxp 2) - = ( d n h ( s  - u)/sinh $I2. ( 1 2 )  

Next, the sum in (8)  must be expressed in terms of u and E,: 

An analogous sum appears in the expression for the free en- 
ergy (5): 

2 j ln(l+e-Y/T) =- ln ( l - eZu-e~ 'T)  
j=1 

--In (It e c g f T )  1  ( l - e -eo fT) .  (14) 

In Eqs. (8 ), we must put Nf = ocr . Equations (6)  are unnec- 
essary because the mass ofthe kink satisfies M,-+ ocr and the 
kink is not excited. 

Finally, we obtain the following set of equations: 

lim &,Ij=H, 
j ,  m 

Thus, the free energy has split into the two independent 
parts F, and F2. The latter is the free energy of a free massive 
Bose-field. This part of the energy corresponds to the de- 
grees of freedom of the system that are singlets in SU(2) 
color. 

Equations ( 15)-( 17), ( 18b) describe the thermody- 
namics of the sigma-model. They include condition ( 17), 
which does not follow from the foregoing presentation and 
requires further elucidation. 

The transition to the Nf - limit in (8)  makes this set 
of equations incomplete. The requirement that the solution 
of ( 15), ( 16) is unique can be satisfied only by imposing a 
condition on the behavior of E, for j- m .  Equation (17) is, 
in fact, this condition. The constant J has the following sig- 
nificance. The model ( 1 ) has the following conservation 
law: 

and the field His  the conjugate of it. This constant of motion 
did not appear in model (3) for finite Nf, so that the field H 
did not appear at the preceding stages of the solution. 

It is important to note that the thermodynamic equa- 
,tions ( 15)-( 17), ( 18b) that we have obtained are precisely 
the same as would have been obtained had we examined the 
set of particles with relativistic spectrum ~ ( 0 )  = mcosh8, 
for which the factorized scattering is described by the two- 
particle S-matrix of Ref. 6. 

5. ANALYSIS OF THERMODYNAMIC EQUATIONS 

The thermodynamic equations contain sufficient infor- 
mation on the spectrum of the particles and their interac- 
tion. In particular, the expansion of the free energy in terms 
of exp( - m/T) for T g m  can be used to obtain the formula 
for the statistics of single-particle excitations, and to help 
understand how the interaction renormalizes the density of 
states. 

At high temperatures In( T/m) 1, the interaction 
between the particles is small and the behavior of the free 
energy is determined by the dimension of the manifold G of 
the sigma-model: 

In our case, G = S 2, dimG = 2. 
To achieve a better understanding of confinement phys- 

ics, it is interesting to evaluate the correction to the free ener- 
gy in (18) for small but finite y. We shall now evaluate the 
first correction in y. 

( A )  Thus, weshall solve (15)-(17), (18b) by iteration 
in exp( - m/T). In the zero-order approximation, the term 
containing In [ 1 + exp ( - f /T) ] can be neglected in ( 16). 
The set of equations given by ( 16) then becomes algebraic 
and its solution is 

E j  l+exp- = m 2 ( j ) ,  
T 

(20) 
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We now use this solution to obtain from ( 15) the expression 
for the first iteration: 

Let us now calculate the first correction in exp( - m/ 
T) to the function 

Linearizing ( 16), we obtain the following set of equations 
for d, ' I '  : 

[m2(j)/@ (j-I) @ (j+I) ]d,(')-s* (aj!': +dj i :  ) 
'=6,,2~*T ln(l+e-6rT).  (22) 

The solution of this islo 

where the Fourier transform of the kernel is 

The second interation for 6 is obtained from (23) : 

This formula contains integration with respect to rapidity, 
which gives a contribution of order - ( T/m) 'I2. Corre- 
spondingly, the third iteration (the formula which is given in 
the Appendix) contains two integrations and, consequently, 
is of order T/m. We can identify in the free energy the contri- 
bution due to the single-particle excitations by replacing the 
function 6 in ( 18b) with its first iteration (2 1 ) : 
F(1) 
-- ~a (A)  

L - - ~ ~ d h c a h ~ l n ( ~ + @ ( 2 ) e r p { - - - T - - } ) .  4 2 (25) 

When interaction is taken into account, this results in cor- 
rections of the order of (T/m)'I2 in the coefficients of 
exp( - nm/T) in the expansion of (25). 

We now introduce the chemical potential into ( 15) by 
adding - p on the right-hand side. Differentiating ( 18b) 
with respect top,  we obtain the formula for the mean num- 
ber of particles: 

where 

specifies the formula for the statistics of the single-particle 
excitations. 

We note that corrections of the order of ( T /  
m)lt2exp( - 2m/T) in (26), due to particle interaction, 
cancel out. 

( B )  We now turn to the description of the high-tem- 
perature limit In ( T/m ) 1. The main contribution to the 
free energy of the system is then provided by the region 

lA 1 ) 1, where meffAI2 - T. In this region, the distribution 
densities of the particles and holes, p, , p, , are related to the 
energies E, by the following expressions that are valid for 
any system with a linear spectrum: 

We can now use these expressions to obtain the following 
formula for the entropy:" 

2 
S/TL = - ~ ~ { r n a a ( n ( e . ) ) ,  rnin(n(e.))), (28) 

5E n 

where L(a ,b)  is the Rogers dilogarithm. 
According to (28), the entropy is determined only by 

the asymptotic values of the functions E, (A), which are re- 
lated to the degree of degeneracy of the corresponding states. 
When IR I -, a, the solution of ( 16) is given by (20), i.e., 
n({) = O f o r H = O , a n d n ( ~ ~ )  = ( j +  l)-'.WhenIA 1-1, 
the free term in ( 15) can be discarded to within O[ l / ln(T/ 
m ) 1. In this case, ( 15 ) and ( 16) again become algebraic 
equations and their solution is 

Substituting these values in (28), we obtain 
m 

The high-temperature limit is thus correctly reproduced 
[see (19)l.  

(C) We must now evaluate the correction to the free 
energy for small but finite y. We shall retain terms of order 
1/v in the expansions for the kernels of (7)  and (8): 

As before, Eq. (6)  is unnecessary because the inclusion of E, 

yields the corrections to the free energy of order exp [ - (m/ 
y)/T], which we shall not consider here. 

Having used ( 3 1 ) in ( 7 ) and ( 8 1, we obtain a modified 
form of ( 15 )-( 18 ) after some simple rearrangement. In par- 
ticular, the corrections to the free energy are expressed in 
terms of the function 

f (o )=o  tanh o. 

The quantity - &A(A) must be added to the right-hand side 
of ( 15), Eqs. ( 16) and ( 17) remain unaltered, and E, in 
( 18c) must be replaced with E, - A (A ) . 

The correction to the free energy assumes the simplest 
form for T< m: 

I nrn @ (2) 
-6F = -- (m (2)+r)  (I + - ) j d l d ) :  
L 4v 2 
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2m n i  nh' 
.exp ( -- cosh - coshl-) -1-0 (o-""lT). 

L 4 4 (33 

This is wholly due to the interaction, but the singularity of 
the kernel f [cf. (32) ] leads to the appearance of the addi- 
tional factor - m/T, which cancels the small quantity due to 
the integration with respect to rapidity. 

It is clear that a perturbation theory in l/v is a theory 
with singular kernels. All corrections of order - v - "  are 
exclusively due to the interaction between the triplet and 
singlet degrees of freedom. The excitation of kinks leads to 
corrections that are exponential in l/v. 

6. CONCLUSION 

We have thus obtained Eqs. ( 15)-( 17), ( 18b) that de- 
scribe the thermodynamics of the sigma-model. Their form 
is typical of integrable theories. Hence, the formulas for the 
statistics of the excitations (27) and the low-temperature 
expansion are also typical of all integrable theories in which 
the spectum of excitations is separated by a gap from the 
ground state. These formulas can be used as a basis for recon- 
structing the wave function of the excitations. 

It follows from (25) and (27) that (a)  excitations 
transporting kinetic energy do not have internal degrees of 
freedom and (b) double occupation of a state with given 
rapidity is not possible. Hence, the N-particle wave function 
must be written as a product of functions describing the dis- 
tribution of rapidities and the isotopic state of the system, 
respectively: 

The state la) is the physical vacuum and 10) is the isotopic 
vector corresponding to the maximum component of the to- 
ta lspin,S =N, M = N - F .  

The energy of the system is 

When H = 0, a state of given energy [given set of rapidities 
{B,}] is degenerate and its isotopic structure is specified by 
the function qsp. This function is the eigenfunction of the 
N-particle scattering matrix: 

where S(8) is the two-particle scattering matrix of the sig- 
ma-model. h 

The matrix (36) can be diagonalized, and hence repre- 
sention can be found for the operators B(1)  by the method 
proposed in Ref. 12. It turns out that the S-matrix of the 
sigma-model satisfies the following relation: 

where a, S are, respectively, the spin and spin 1 operators. 
By virture of (37), the scattering matrix (36) commutes 
with the trace of the monodromy matrix: 

so that the wave function Ysp is also the eigenfunction of the 
operator 

Sp 9 (A) =L?ji(A) +sz2(h). (39) 

It is well known that, in this case B(1 )  = 9; ( A ) ,  and the 
parameters {Ai} satisfy the  equation^^.'^ 

We have thus constructed a representation of the operator 
B(A) in the form of an element of the monodromy matrix 
(38). 

As far as the operator R + (8) and the conjugate opera- 
tor R (8)  are concerned, it is reasonable to suppose that they 
satisfy the following commutation relations: 

R+(0i)R+(8z)=Sa(Oi-0z)RC(82)R+(01), 
R(@i)R(~z)=So(0,-0z)R(0z)R(0i), 

R+(8,)R(02) =Sa(Oz-O1)R(O~)Rt(O,)+m ch 016(01-02), 
(41 

where 

is the unitarizing factor in the S-matrix of the sigma-model. 
Since S,(O) = - 1, it follows from (41) that [R + (8)12 
= 0 is a state with given rapidity that cannot be occupied 

twice. 
A representation of the wave function analogous to that 

given above was constructed in Ref. 13 for the case of two 
excitations in the Heisenberg XXX-chain. Our representa- 
tion of the wave function may be useful in the derivation of 
the Gel'fand-Levitan-Marchenko quantum equations for in- 
tegrable models. 

The author is greatly indebted to P. B. Wiegmann for 
numerous discussions and help in this research. 

APPENDIX 

We shall now calculate the correction - exp ( - 2m/T) 
to the function dj = T ln( 1 + e'/T). It is determined by the 
following set of equations: 

To evaluate this correction, we must know the Green's 
function of the operator on the left-hand side of (A1 ). The 
Fourier transform of the Green's function is 
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For the required function, we have 

d , ' 2 ' = ~ , , +  (d,,("@ ( k ) / @  ( k S 1 )  @ ( k - 1 ) ) 2 .  

The second iteration of the function 6 is 
c ( z ) = - T S ~ d , ( 2 ) .  

When T < m ,  

i.e., when f '2 '  is taken into account, the result is oforder ( T /  
m)3'2, as compared with the leading term in the expansion 
for the free energy of order exp( - 3 m / T ) .  
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