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Ifthe spectrum ofone-electron states in a metal has a relatively narrow density-of-states peak due 
to the presence of a narrow band, of hybridization, or in general of any phase region with low 
group velocity, then the electron polaron effect (EPE) [Yu. Kagan and N. V. Prokof 'ev, Sov. 
Phys. JETP 63, 1276 ( 1986) ] leads to a drastic decrease of the width of this peak. This narrowing 
is due to Coulomb interaction between the electrons in the density peak and the electrons in the 
remaining part of the phase space, and is pronounced stronger the less the one-particle value of the 
width and the stronger the effective interaction. If the renormalized width becomes smaller than 
the Debye temperature, an additional narrowing of purely phonon origin appears and is found to 
be nonlinearly amplified by the EPE. It becomes possible to explain the existence, in metals with 
transition elements, of heavy electrons with itinerant-motion energy scales on the order of 100 K 
or 10 K. At lower temperatures thecoherent width decreases exponentially with Tand incoherent 
motion sets in under disrupted-band conditions. Analysis of the heat capacity, of the magnetic 
susceptibility, and of the resistance agree qualitatively with the experimental behavior of these 
quantities as functions of T. At high temperatures the physical properties of the system have a 
power-law behavior with an exponent that depends on the interaction. 

1. INTRODUCTION Here A is the width of the band in the absence of the polaron 

1. We have reported in a preceding paper1 a detailed 
analysis of the nature of the electron polaron effect (EPE) 
produced when a heavy (compared with the electron) parti- 
cle moves in a metal. The EPE is produced because the 
many-electron wave function modified by the interaction 
with the particle contains a component that does not follow 
the moving particle adiabatically. This part ofthe wave func- 
tion is due to virtual electron-hole pairs whose energy is low- 
er than the characteristic energy w ofthe motion of the heavy 
particles. In fact, the energy of these pairs is bounded from 
below by the reciprocal lifetime of the particle in the unit cell 
T - I  (we use here and below f i  = 1)-states with pairs of 
lower energy have no time to be formed before the particle 
leaves the cell. The projection of the nonadiabatic part of the 
many-electron wave function formed during the time of stay 
of the particle in the unit cell on the corresponding state in a 
neighboring cell is what produces the EPE. At low tempera- 
ture T, the EPE leads to ; strong decrease of the amplitude of 
the tunneling transition from cell to cell. This is due to the 
presence, in the restructured many-particle electron func- 
tion of the metal, of a large number of low-energy electron- 
hole pairs which are known to be responsible for the so- 
called "orthogonality catastrophe" in the static case,233 and 
for the infrared divergence4 in transitions. The first ideas 
concerning the role of the "orthogonality catastrophe" in 
the problem of diffusion of a heavy particle in a metal were 
advanced by Kondo,' whose results were later summarized 
in a review paper." 

EPE causes a drastic narrowing of the band. The scale 
of this narrowing depends substantially on the cutoff of the 

effect; 

! I = ? . ~ ~  (FF) I 17(k-k') 12(1-c ( )~  (k-k') g),  (1.2) 

where V ( K )  is the Fourier component of the particle interac- 
tion with the electrons (with allowance for screening); the 
averaging is over the directions of the vectors k and k' on the 
Fermi surface; g is the displacement of the particle in the 
transition. Expression (1.2) corresponds to the Born ap- 
proximation. 

As T- 0 the parameter T is determined by the coherent 
character of the motion between the wells, and is equal to 

The width of the band is then 

In the region T g  A there is pure itinerant motion with scat- 
tering by the electrons that do not participate in the forma- 
tion of the EPE. At R, > yA. Where 

Q,=2nbT, (1.5) 

A,,, ( 1.1 ) decreases exponentially with rise of temperature. 
What is decisive then are transitions with excitation of the 
electronic subsystem. For these transitions the effective tun- 
neling amplitude of the transition of the particles between 
the neighboring equivalent wells is equal to' 

6 , = A 0  csp (-b l n ( u / n T )  ). (1.6) - - 

infrared divergence at low frequency. This cutoff is due to 
the finite lifetime of the particle in the unit cell7: The reflective fluctuations of the levels in neighboring cells, 

which are determined by R,, despite the increase of A,(T) 

( 1.1 ) ( 1.6), slow down the tunneling which progresses continu- 
ously with increase of T. This result reflects a phenomenon 
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common to all problems of tunneling in a crystal, called "dy- 
namic disruption" of the band.9."he result is a regime of 
diffusion that slows down with the increase of T, and an ever 
increasing quasilocalization of the particle in the cell. 

2. Once the physical nature of the EPE is understood, it 
is logical to conclude that a similar polaron effect should be 
e~~er iencec fno t  only by heavy particles, but also by any 
group of electrons near the Fermi surface, having a group 
velocity u, that is small compared with the velocity of the 
electrons in the remaining part of phase space. Indeed, in 
this case the reciprocal time of stay of the electron in the unit 
cell is 

where E" is a characteristic scale of the electron energy, of the 
order of E~ or of the width of the band. The characteristic 
frequency of the electron motion inside the unit cell and in 
the tunneling transition (in imaginary time) has naturally 
the same scale Eo. This means that the nonadiabatic energy 
interval spans practically the entire spectrum and, at the 
logarithmic accuracy with which expressions ( 1.1 ) and 
( 1.4) were obtained, w should be replaced by E,. As a result, 
the Coulomb interaction of this group of electrons with the 
remaining electrons leads to a polaron effect that causes 
further decrease of u, and smoothing of the spectrum; the 
latter is more drastic the stronger the initial inequality ( 1.7). 

The entire picture is particularly clear when a narrow 
and broad band cross a Fermi level located inside the narrow 
band. The EPE leads inevitably to an additional strong nar- 
rowing of the narrow band, at a rate that depends on the ratio 
A/E, in (1.4), i.e., on the bare relation between the band 
widths. 

If the EPE causes r-  ' to become smaller than the char- 
acteristic frequencies 8, of the phonon spectrum, the ordi- 
nary phonon polaron effect (PPE) due to the overlap of the 
phonon wave functions upon localization of the electrons in 
neighboring cells will set in simultaneously. The two polaron 
effects are realized independently, and A,,( A) in ( 1.1 ) and 
( 1.4) should be taken to mean in this case 

where @ is the usual phonon polaron exponent which re- 
mains finite as T-0 in a three-dimensional crystal. 

It is interesting that the EPE, as follows from (1.4), 
enhances the role of the PPE, since A. - f " ' I -  b ' .  

Although the parameter b does not exceed ; (the uni- 
tary limit), its value is usually comparable with this limit. It 
can therefore be assumed that the narrow one-frequency 
band will always undergo an additional strong narrowing by 
the EPE. 

The foregoing results remain qualitatively in force also 
when the spectrum of the one-particle electronic states has a 
density-of-states peak due to hybridization of the f or d levels 
of the ions, which make up the regular crystal, with the wide- 
band electrons. Let the Hamiltonian term responsible for the 
hybridization be of the standard form. 

- 

electron-hole pairs of the wide band to be formed via the 
electron-electron interaction. In the band k state, however, 
there is no such polarization effect in practice. (Arguments 
favoring the appearance of a polaron effect in this case were 
discussed for the limit T = 0 in Ref. 10). Adhering to the 
premise of one-electron interactions in hybridization at low 
T, we should take v in ( 1.9) to mean a transition amplitude 
that is diagonal in the occupation numbers of the electrons 
(and phonons). This leads to a many-electron wave-func- 
tion overlap integral that has the same structure as in the 
normal EPE. As a result, the bare vertex in ( 1.9) should be 
replaced in analogy with ( 1.1 ) by 

where b '  differs from b (1.2) by the replacement 
1 - cos(k - kf)g-  1/2. Allowance for the PPE requires a 
replacement similar to ( 1.8) for u. This leads to a narrowing 
of the effective-hybridization energy interval and to further 
flattening of the spectrum in this region. Hybridization leads 
to the appearance of a density-of-states peak whose width is 
now of the order of T,,, -U~,,/E,, with the total number of 
the states in the peak conserved. Recognizing that 
T -  ' -- T,,, in this case (see below) we obtain from ( 10) in 
the limit as T-0 

where I? is the width of the peak in the absence of the EPE. 
The situation is thus similar to the narrowing of the narrow 
band in the two-well model. 

One more remark is in order here. We have neglected in 
(10) the change produced in the hybridization matrix ele- 
ment by the restructuring of the electronic state produced by 
the transition near the Fermi surface (see Ref. 4 for details). 
In our case the transition from the d m  state to the contin- 
uum causes the decisive role in this restructuring to be as- 
sumed by scattering from an ion with orbital angular mo- 
mentum 1 = 2(3) .  We assume the corresponding scattering 
phase shift to be small. We note also that although the hybri- 
dization matrix element undoubtedly depends on k ,  it enters 
in all the final results only in the form Iv'l averaged over the 
angles. Thus allows us, without loss of generality, to put 
v = const in (1.9). 

Thus, if within the framework of the one-electron prob- 
lem there exists an energy density-ofstates peak in an interval 
noticeably smaller than E,,, due to the presence of a narrow 
band, to hybridization, or in general of a group of electrons 
with low group velocity, then the interelectron interaction 
leads inevitably to a substantial narrowing of the peak by the 
electron polaron efect, and this narrowing can be enhanced 
under certain conditions by the PPE. If the Fermi level is 
located inside the initial one-particle peak of states, it re- 
mains inside also after a narrowing of arbitrary scale. (A  
possible exception is the case when the bare density peak 
contained an anomalously small number of electrons.) It is 
important that the narrowing does not presuppose a special 
position of E, relative to the fine structure of the one-particle 

I?' = [ u (k) exp ( - i k ~ , )  &.+i,,, + h.c.1. ( . 9 )  
spectral density or a rigidly determined number of electrons 

LOI in the narrow band per atom of the transition ion. In this 
If u & E ~ ,  the time of stay of an electron in a quasiloca- sense, the narrowing has a universal character. 

lized state at a site is sufficient for a polarization "jacket" of Note that in the general case the converse is also valid: if 
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experiment reveals an anomalously narrow peak of the den- 
sity of states in a metal near the Fermi level, part of the 
narrowing of this peak must be due to the EPE. 

The scale of the narrowing, as follows from (1.4), 
( 1.8), and ( 1.1 1 ) can be very appreciable, especially if b and 
b ' are close to their limiting values 1 and a, respectively. At a 
sufficiently low value of the bare ratios A/&, or V / E ,  the true 
width of the band or of the density peak readily reaches val- 
ues of the order of hundreds or even tens of degrees while the 
one-particle values of A and r can be larger by one or even 
two orders of magnitude. It seems that the peculiarities of 
the behavior of many metallic compounds of rare-earth ele- 
ments and actinides (see, e.g., the review by Lawrence et 
al.") can be caused by the onset of narrow density-of-state 
peaks due to the EPE. This can pertain, in particular, to 
what are customarily called heavy-fermion systems, a fea- 
ture of which is the appearance of an energy scale quite un- 
usual for metals, on the order of tens of degrees (see, e.g., the 
reviews of Stewart et al.'* and Lee et al. "). A similar state- 
ment can be made also with respect to many metallic systems 
containing elements with unfilled d shells. Thus, in the con- 
text of the developed premises one can understand the na- 
ture of the anomalies properties of A- 15 compounds, whose 
explanation calls for a density-of-states peak of width on the 
order of hundreds of degrees with E, located within this 
peak, whereas all the one-electron calculation yield much 
larger energy scales (see, e.g., the revies of TestardiI4 and of 
Veger and Goldberg15). It is in fact the universality of this 
scale, as also on the whole of the properties of a large number 
of members of this family of compounds, which had re- 
mained the stumbling block for all theoretical models (see 
the article by Gor'kov,lh written as a postscript to the trans- 
lation of the Refs. 14 and 15). 

It must be noted that the idea that the existence of an 
ultranarrow band or an ultranarrow peak of the density near 
E~ could explain the anomalous properties of all these com- 
pounds is prevalent in the literature explicitly or implicitly. 
We cite in this connection the article by Overhauser and 
ove el'' in the case of heavy fermions and the article by 
Aleksandrov et al." The latter is remarkable in that it ad- 
vances the idea that the narrow peak in the density of states 
of A- 15 compounds can be due to the phonon polaron effect. 
It seems however, that the PPE by itself cannot ensure the 
required narrowing in these compounds. 

3. A distinctive feature of the narrowed band produced 
by the EPE is that its width varies with temperature and that 
the character of the motion changes with increase of T. At 
a,- < yA. (r. ) we have Fermi-liquid motion of electrons 
with a heavy effective mass m. /m, -&, /A .  (I?.). But at 
R, > yA. (r, ) there is already dynamic disruption of the 
band and a transition to a diffusion that slows down with 
increase of T, and a tendency to quasilocalization and to 
appearance of independent (spin-carrying) scatterers. A 
continuous transition is realized here in natural fashion from 
a coherent pattern to an incoherent one, which the authors of 
Ref. 13 regard, for example, as the principal feature of 
heavy-fermion systems. The fact that at T> A. (r.) the 
light electrons "see" the heavy ones as quasilocalized, and 
furthermore randomly arranged (with v < 1 electrons per 
transition ion) is the reason why the resistivity assumes al- 
ready at T 5  A. (T, ) a value of the order of the maximum 

one with a subsequent relatively weak dependence on T (see 
Sec. 5).  The distinctive character of the motion in the inco- 
herent region is due to the nontrivial law of decrease of the 
specific heat with Tin this region (see Sec. 3 ) .  In all cases, 
the power-law dependences of the physical quantities Tare 
governed by the interelectron interaction (via 4 and b '). 

Note that the anomalous narrowing and the large effec- 
tive mass are due in final analysis to electron-electron inter- 
action, but only with that part of the interaction which is 
connected with the interaction of electron groups that differ 
in their kinematic properties that determine the EPE. The 
remainder of the interaction, particularly the interelectron 
interaction in the narrow band (under the assumption that 
v < 1 ) can be regarded as weak or, at any rate, indecisive. In 
this sense, the model considered is an alternative of models 
extensively discussed in connection with heavy fermions, 
with an almost-localized Fermi liquid, and with the Kondo 
lattice; these models require, in particular that v be close to 1 
(see Ref. 13 and the literature cited there). Moreover, our 
model pertains to all systems with m , / m , )  1 and is in no 
way connected with that extremely large value of this ratio, 
which is used to distinguish formally heavy-fermion systems 
(see Ref. 12). 

2. INITIAL RELATIONS 

We write the system Hamiltonian for a narrow band 
intersecting with a wide one in the form 

Here 

is the Hamiltonian in the absence of tunneling transitions of 
heavy electrons (the subscriptsHand L label the heavy and 
light electrons) : 

We have separated here the interaction (2.4) between the 
heavy and light electrons, which is fundamental in our prob- 
lem, and left out the exchange part of this interaction, which 
does not play a decisive role in the formation of the EPE. The 
contribution of the allowance for the exchange interaction to 
the structure of the final results will be discussed separately 
later. As already noted, the interaction of the light electrons 
with one another will bz neglected. 

The Hamiltonian H ' has the standard structure. 

When considering hybridization, we shall understand 2 ' in 
(2.1) tomeanEq. (1.9). 

We begin with the case of an intersection of a narrow 
and a wide band. We neglect first the interband inieraction 
UHH of the electrons, and retain the interaction H ,  that 
determines the EPE. The problem is then equivalent to that 
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ofthe motion of a heavy particle in a metal (see the Introduc- 
tion), and we can use the results of Ref. 1. As -0 the width 
of the band narrowed-down by the EPE is given by (1.4) 
with account taken of ( 1.8). The parameter y [see ( 1.3) ] 
can be obtained by directly determining the time of coherent 
of the spreakling of a state localized at the initial instant in the 
unit cell n A 0: 

Here 

P 

and the probability of observing a particle in the cell n = 0 at 
the instant of time t is equal to 

For short times, expanding the exponential, we have 

In the tight-binding approximation we obtain directly for 
lattices of cubic symmetry 

where z is the number of equivalent sites in the nearest co- 
ordination spheres. Recognizing that 

(c< 1 is a known numerical factor for lattices of various 
types), we get by comparing (2.6) with ( 1.3) 

We point out that the reciprocal time of departure from the 
cell is in all cases 

As the temperature rises, the bandwidth retains the val- 
ue (1.4) and (2.7) all the way to a,-yA. At a ,  > yA the 
damping of the pair correlation on neighboring sites, deter- 
mined by the frequency R,, leads to disruption of the itiner- 
ant motion of the electrons.' This motion becomes now inco- 
herent, and the probability of a transition to a neighboring 
cell decreases with increasing T like (apart from a coefficient 
of order unity) 

It follows from the form of (2.8) that in the coherent-transi- 
tion regime the role of the effective tunneling amplitude is 
played by the amplitude ( 1.6). 

We dwell now on the case when the peak of the density 
of states is due to hybridization. In the case of the one-elec- 
tron problem, hybridization leads to a peak having a charac- 
teristic width 

Let the c h e ~ i c a l  potential lie inside this peak. When the 
interaction H,, (2.4) is turned on, the resultant EPE leads 

to a renormalization, described by relation ( 1 .lo), of the 
vertex ( 1.9). A direct determination (based anew on consi- 
deration of the temporal evolution of the initial localized 
state) of the lifetime of a particle on an atomic level at a fixed 
site under hybridization conditions, shows convincingly 
that as T-0 

A self-consistent solution of (2.9) and ( 1.10) leads to the 
limiting value ( 1.1 1 ) of I', . 

At R, > r., the coherent pattern of the motion is dis- 
rupted [see ( 1.10) 1. The electron transitions from a local- 
ized level to the continuous spectrum and back assume now 
the character of uncorrelated hops. The probability W,-, 
from an atomic level to a continuum state with energy E 

actually coincides with the probability, obtained in Ref. 1, of 
a transition with relatively shifted levels 6 = E (if E is mea- 
sured from the energy of the atomic level). The matrix ele- 
ment of the transition is constructed now from the Hamilto- 
nian (1.9) rather than (2.5), which leads simply to 
replacement of A,, by u. The fact that the EPE is due in this 
case to restructuring of the wave function of the light elec- 
trons only in the initial state, as was already noted, leads 
simply to replacement of b by b '. As a result we have 

Here 

The total probability of departure of the electron from the 
level is 

It can be seen from (2.12) that the role of the level shift is 
now played effectively by the chemical potentialp reckoned 
from the position of the atomic level. At lp/ /T< 1 we have 
W, zrrpLfi2, and from a comparison with (2.9) we can con- 
clude directly that in the case of hybridization in the pres- 
ence of EPE the role of the effective matrix element is as- 
sumed by fi(T) (2.11). 

If Ip I/T% 1 (this takes place at very low or, conversely, 
nearly maximum occupation of the f ( d )  levels), it follows 
from (2.12) that 

The appearance of the large factor ( IpI/T)2b' is due to the 
decrease of the polaron effect. The effective hybridization 
matrix element is then [cf. (2.1 1 ) ] 

in full analogy with the results of the two-well problem. ' 
The results demonstrate the very strong influence of the 

inter-electron interaction via the EPE on the decrease of the 
energy parameters that describe the fine structure of the 
spectral density for hybridization. 
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Notwithstanding the qualitative similarity of the nar- 
rowing in the case of a narrow band and in hybridization, 
attention must be called to one fundamental difference. The 
point is that in the case of hybridization the density of states 
is not cut off at a definite value of the energy but, on the 
contrary, decreases slowly like 

This difference is manifested in the thermodynamic and ki- 
netic properties. 

The scale ( 1.1 1 ) of the narrowing suggests that in many 
cases direct overlap of the atomic states on neighboring sites 
(with the EPE taken into account) will yield for A, ( 1.14) a 
value exceeding ( 1 . 1  1 ). In this case we return in fact to the 
two-band situation. 

We have so far disregarded the intraband interelectron 
interaction, which can naturally play a significant role in the 
case of narrow bands. It must be pointed out, however, that 
the heaviest electrons produce by themselves very effective 
screening, and the amplitude of their scattering by one an- 
other is of atomic scale. Therefore, at least at v < v, < 1, the 
heavy-electron subsystem at T g  A, (T. ) can escape local- 
ization (Wigner crystallization, cf. Ref. 19) or magnetic or- 
dering, and remain a Fermi liquid. We consider below only 
this case, assuming that the Fermi-liquid effects are less pro- 
nounced than the effects that follow from the electron-po- 
laron narrowing of the band or of the peak of the density of 
states. 

At high T, when effective quasilocalization of heavy 
electrons takes place, the interaction U,, can be represent- 
ed in the standard form of Hubbard repulsion at the site 

3. SPECIFIC HEAT 

We consider first low temperatures T<A, assuming 
that the number of states under the Fermi level in an EPE- 
narrowed band of width A. is comparable with the total 
number of ions of the transition element. By virtue of the 
inequality A. &E, the density of states is then 
pH ( E , )  %pL (E,), and the specific heat is determined in 
practice only by the heavy electron. In the gas approxima- 
tion we have then the standard expression 

where v is the number of electrons per transition-element 
atom in the heavy-fermion band ( c ,  in Eq. (3.1 ) is also de- 
fined per atom of the transition element; this definition is 
adhered to hereafter). 

If the density-of-states peak is the result of hybridiza- 
tion, the specific heat at T g  T. is determined by a relation 
similar to (3.1) but with the substitution A. - T.. 

With rise of temperature, relation (3.1 ) becomes rapid- 
ly invalid. As soon as Tbecomes noticeably smaller than A, 
the electrons begin to feel the limit of the energy width of the 
band, and the increase of the specific heat is replaced by a 
decrease of c, with increase of T. If the temperature depend- 
ence of the band width ( 1 . 1  ) is neglected and the width is 
assumed to be fixed and equal to A,, we readily obtain for the 

specific heat at T% A. in the gas approximation 

It can be concluded directly from a comparison gf (3.2) with 
(3.1) that the maximum occurs when Tis close to T,, where 

The temperature dependence of x,,, due to the interac- 
tion between the heavy and light interaction, can no longer 
be taken into account by using the relations obtained in the 
gas approximation. Moreover, after the onset of dynamic 
disruption of the band, the concept of the spectrum of coher- 
ent one-particle states becomes altogether meaningless and 
the heavy electron moves under conditions of strong irre- 
versible interaction with the light electrons. All the excita- 
tions that determine in fact the specific heat now become 
collective and involve inevitably the light electrons. 

At T S  T,, however, a thermodynamic perturbation 
theory can be used (see, e.g., Ref. 20), with T. / T  the small 
parameter. T̂o this end we return to the Hamiltonian (2.1 ) 
and regard H'  (2.5) as a perturbation. Retaining only terms 
quadratic in H ', we have for the thermodynamic potential 

Here fl, is the thermodynamic potential of the system in the 
absence of a channel for tunneling of the heavy electrons, 
with allowance for the spin degree of freedom, whileD= 1/ 
T .  It convenient to characterize the state of the Hamilto- 
nian H, by a set of occupation numbers {v, , )=a of heavy 
electrons with index m that characterizes the state of the 
heavy electrons at fixed a. Then 

The state m is determined by a set of one-electron states in 
the field of static defects whose role is assum%d by the heavy 
electrons. Recognizing that the HamiltonianH ' corresponds 
to a transition of only one particle, the states m and m' corre- 
spond to one and the same static configuration of heavy elec- 
trons around the tunneling particle. The presence of static 
defects, however, at least when scattering of light electron is 
taken into account in the Born approximation, does not alter 
the picture of the infrared divergence due to production of 
electron-hole pairs near a Fermi level. This divergence is de- 
termined only by the density of the energy states near E,, and 
the electron polaron effect for a heavy-electron transition in 
(3.4) will hardly differ from the case of tunneling of an indi- 
vidual particle in a metal (see Ref. 1 ) . 

Taking the foregoing into account, we can rewrite (3.4) 
in the form 

P '2 
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, . 
where {,, + , = El - El + ,; A is the electron polaron opera- 
tor whose explicit form is given in Ref. 1; &, is the density 
matrix of the light electrons. The symbol ( . . . ), denotes 
averaging over the configurations of the heavy electrons. 

The structure of the expression contained in the angle 
brackets in (35) is exactly equal to the integrand of the time 
integral that determines the probability of the transition of a 
particle from cell 1 to cell 1 + g, if the substitution x-it is 
made (see Ref. 1 ) . Therefore, using the results of Ref. 1, we 
obtain directly 

0 ' 2  

where the function x is given by 

de d ~ '  
n ( -  ( l - e x e - e ' ) .  (3.7) ~ ( 2 .  T ) = ~ ~ J J -  (e-e') 

In this expression b is defined according to ( 1.2), and n, is 
the Fermi distribution of the electrons. Since T <  E,, expres- 
sion (3.7) can be transformed into 

Expression (3.6) was written for a metal with arbitrary dis- 
tribution of the static level deviations between the cells and 
makes it possible, in principle, to take into account both the 
influence of the deviation of the crystal from ideal and the 
electron-electron interaction in the narrow band (in the lat- 
ter case it is necessary to take into account the dependence of 
{,, +, on the distribution of the occupation numbers a ) .  If 
the relative level deviations on going over to the free cell are 
c,, + , g T, and on the contrary, for a transition to a cell occu- 
pied by an electron with an arbitrary spin projection we have 
according to (2.16) c,, + , =: U,) T, the averaging in (3.6) 
becomes trivial. As a result we get for the correction to the 
thermodynamic potential per transition-element atom 

P I 2  

Calculating this integral, we obtain ultimately (E,% T )  

(the last factor is retained only to be able to take correctly 
the limit as b-. 1/2). 

We have accordingly for the specific heat 

Z A , ' ( T )  I'(3i2-b) ~ ~ 1 - b )  
C" = --- 

T 2  , . ( J / 2 )  I - )  - (  v( i -v ) .  

Note that in the considered high-temperature limit the ther- 
modynamic potential R, in (3.3) corresponds to a large spin 
entropy s, = In 2, but the corresponding specific heat is 
equal to zero. As a result, the total specific heat appears only 
as a result of tunnel motion and is determined by (3.11 ). At 
E,SA. the value Y varies very little with T, and we shall 
neglect this variation. As 6-0, Eq. (3.1 1) takes the form 

(3.2) except that for a noninteracting fermion gas we have in 
(3.2) the factor ( 1 - v/2) in place of the ( 1 - Y),  in (3.11 ) 
when account is taken of the Hubbard interaction (2.16). If 
we put U,, = 0 initially in the calculation of (3.6), the factor 
( 1 - v/2) is restored. 

The presence of the EPE leads to a decrease of the spe- 
cific heat with increase of T, given by 

The exponent depends now on the electron-electron interac- 
tion and ranges from 1 to 2. The slower decrease of c, com- 
pared with (3.2) is due to the decrease of the polaron effect 
with increase of T and by the same token to the increase of 
the effective amplitude of the tunneling transition ( 1.6). 

Comparison of (3.11 ) with (3.1 ) show that the specific 
heat reaches, as before, a maximum at a low temperature of 
the order of T. < A,. 

We consider now the high-temperature behavior of the 
specific heat in the case of hybridization. If R, ) l?. the in- 
teraction between the heavy and light electron again makes 
the concept of one-particle states of heavy electrons at the 
density peak meaningless. To find the specific heat in this 
case we use the the;fmodynamic perturbation theory in the 
form (3.3), taking H'  to be the Hamiltonian ( 19) and using 
the small parameter T,/T. Now a' in (3.4) differs by one 
absorbed (created) f ( d )  electron, and m' differs from m by 
one created (absorbed) light electron k and by a definite 
number of electron-hole pairs that appear when the polaron 
jacket is shaken-up. All the arguments used for the transi- 
tion from (3.4) to (3.5) remain in force, and a change of the 
state of one light electron influences little polaron effect (see 
the remark pertaining to Eq. ( 1.11 ) ) .  Assuming that the 
inhomogeneous spread of the levels is small compared with 
T, and that U,> T, we have in place of (3.6) 

The form of the expression in the square brackets corre- 
sponds to a strong Hubbard repulsion on the localized atom- 
ic level, and accordingly 

In (3.12), E is reckoned from the energy E, of the atomic 
level, a n d p  = E~ - The symmetric limits in the integral 
over d~ were chosen only for simplicity. The expression for 
x ( x , T )  in (3.12) differs from (3.8) in that b is replaced by 
b '. 

By making the integrals dimensionless, we get after sim- 
ple transformations 

Assuming that E,) r., we can neglect the change of the pop- 
ulation of the atomic levels with change of temperature. In 
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other words, we can assume that Y and the ratiop/Tremain 
unchanged. Taking this into account, we determine the en- 
tropy correction SS  = - dSR/dT. 

We use the fact that with exponential accuracy with 
respect to the parameter E(,/T) 1  we have 

Differentiating (3 .14)  with respect to T and transforming 
the resultant integral with allowance for these relations and 
(3 .13) ,  we get 

Here 

The first term in (3 .16)  determines the high-tempera- 
ture correction to the entropy on account of hybridization, 
into which the electron-electron interaction enters by virtue 
of the polaron-induced decrease of the hybridization ampli- 
tude fi=vexp{- 1 / 2 x (  1 / 2 , T ) )  (see ( 2 . 1 1 ) ) .  As 6-0  
this correction remains finite. The second term in ( 3 . 1 6 )  is 
due entirely to the interaction between the heavy and light 
electrons, and it vanishes as b '-0. The integral over d l  in 
(3 .16)  is well defined as 5-0 and ( 3 . 5 )  we can, in the range 
between the integration limits of ( 3 . 1 5 )  and ( 3 . 1 6 ) ,  substi- 
tute E(,/T+ w in the expression in the square brackets of the 
integrand. On the other hand, to the same degree of accura- 
cy, 

m 

dy 1-ch ( l -2E)  y x(E, T )  =x('/,. T )  +2bf J- 
o Y s h y  

= ~ ( ' ! 2 ,  T )  S 2 b 1  In sin n:. 

As a result we obtain ultimately by direct calculation 

6S=-2pLC2(T) ( I - v / 2 ) T - ' ( l + A  (T, b ' ) ) ,  
I. 

cI l (y  (1-2E) / 2 T )  
A ( v ,  b')  =2nb' cos nE - 

The value o f p / T  is easily expressed from ( 3.13 ) in terms of 
Y.  Note that (3 .18)  can be easily generalized to include arbi- 
trary values of U,,. In particular, at U,, = 0 it suffices to make 
in (3 .18)  the substitutions 

I t  is easily verified that at b '< 1 /4  

and the sign of S S  is uniquely determined. 
Just as in the case of a narrow band, the specific heat is 

connected only with the obtained correction to the entropy, 
and vanishes identically in the absence of hybridization. 

From ( 3 . 1 8 )  we get 

2pLF2 
C" = - 

T ( 1  - Y )  (1-26') (1CA (v, b ' ) ) .  ' ( 3 . 2 0 )  
2  

The specific heat now decreases with temperature like 

cY- (I'./T) ' - 2 b ' ,  ( 3 . 2 1 )  

i.e., much more slowly than in the case of a narrow band. For 
b l = O w e h a v e  

It  can be seen that the electron-electron interaction can alter 
noticeably the character of the decrease of c,, with T, espe- 
cially when the parameter b ' is close to the limiting value 1/ 
4 .  

It is of formal interest to analyze the specific heat in the 
case of hybridization when Y is close to 0 or 1 .  As T-0 the 
chemical potentialp,, is in this case outside the energy inter- 
val - r,,. At high temperature, which is now defined by the 
condition T$ /pol, r., the connection between Y and p will 
be determined as before by relation ( 3 . 1 3 ) ,  from which fol- 
lows the inequality T %  1. In this case the region of small 
6- T/ Ip  1 becomes significant in the integral ( 3 . 1 8 )  that de- 
fines A (v,b '). Direct calculation yields 

Assuming here that A $ 1 ,  we see that the value of the effec- 
tive hybridization is changed from (2 .11  ) into ( 2 . 1 4 ) .  This 
is natural since, as we have already noted, p plays the role of 
the relative collapse of the levels in the two-well problem. 
Note that by virtue ofthe linear relationp - T the form of the 
temperature dependence ( 3 . 2  1  ) remains the same. 

Thus, the electron-electron interaction due to the EPE 
leads to the following general picture of the temperature de- 
pendence of the specific heat in the case of a narrow band or a 
narrow peak of the density of states in the case of hybridiza- 
tion. At low temperatures, the anomalously rapid linear in- 
crease of c, with T, due to the large effective mass m, gives 
way to a decrease already at  T- T, , T, [see Eqs. ( 1.4) and 
( 1.1 1  ) 1 .  In this case c, decreases as the power law c, - T - ", 
where the exponent depends on the interaction between the 
heavy and light electrons and has a value between 1  and 2  in 
the case of a narrow band [see (3 .1  1  ) ] and between 1/2 and 
1  in the case of hybridization. The decrease will continue 
until the phonon specific heat, which increases with tem- 
perature, becomes larger than the electronic specific heat. 
Thec, ( T) dependence takes qualitatively the form shown in 
Fig. 1. The peak of the temperature dependence of the specif- 
ic heat will become more strongly pronounced the smaller 
T, or r, compared with the Debye temperature O D .  At 
comparable values of these parameters, only a nonmono- 
tonic growth of c, ( T )  can remain. 

The results in this section were obtained neglecting the 
exchange interaction between the heavy and light electrons, 
and by the same token the possible manifestation of the 
Kondo effect. If the exchange interaction is turned on, its 
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FIG. 1. 

role at low temperatures will depend on the relation between 
A*, T . ,  and the Kondo temperature TK that would obtain at 
A,, T .  = 0.  We assume here that the itinerant motion of the 
heavy electrons prevents the appearance or a substantial 
manifestation of the Kondo effect. 

At high T the increase of the probability of electron 
departure from the atomic level (2.12) with increase of T  
will continue to hinder, in the case of hybridization, the de- 
termination of the local spin properties of heavy electrons. 
In  the case of the narrow band at R, % yA,, however, the 
slowing down of the diffuse motion of the heavy electron 
[see (2.8) ] causes the light electrons to begin to be scattered 
by the heavy ones practically in the same manner as by im- 
mobile spin-possessing impurities. This should lead in prin- 
ciple to an independent addition Ac, to the specific heat; in 
contrast to (3.11 ), this addition does not vanish if A, = 0  is 
assumed. The independence of these spins at  high tempera- 
tures yields a value of Ac, that is apparently close to that 
obtained for an individual impurity at T $  TK (see, e.g., Ref. 
2  1 ), multiplied by v. This addition decreases with increase of 
T  and the general form shown in Fig. 1 for the c,  ( T) depen- 
dence remains in force. 

A few words concerning the role of defects. If their den- 
sity is appreciable, static disruption of the band sets in, and 
as T--0 the heavy electrons become localized. This takes 
place at a characteristic atomic-level spread 
&,>SE> A. (I? .  ). The specific heat at low temperatures 
T<SE retains the form (3.1 ), with A. and T. replaced by 
SE. At high T>SE the specific heat differs from zero even in 
the zeroth approximation in A, and u. In this case cSo' de- 
creases as before with T i n  power-law fashion: 

where n = 2  or 1 for a Gaussian and Lorentzian level distri- 
bution, respectively. I t  is easy to conclude from a compari- 
son of this result with (3.11) and (3.20) that in the case 
n = 2  the specific heat begins to be governed by the hopping 
of the heavy electrons at  K ( T )  > 6E in the itinerant regime 
and at T  T ( T )  >SE under hybridization conditions. At 
n = 1 the static spread always plays the predominant role in 
the itinerant case, and in the case of hybridization the transi- 
tion to (3 .20)  takes place at  T (  T )  > SE. 

4. MAGNETIC SUSCEPTIBILITY. DEPENDENCE OF c, ON THE 
MAGNETIC FIELD 

Consider the susceptibility at low temperature, taking 
account in the electron-electron interaction only the leading 

h 

term of H,, ( 2 . 4 ) .  For the EPE-narrowed band we have 
then at T <  T.  an expression typical of the gas approxima- 
tion: 

wherep, is the magnetic moment of the f ( d )  electron. As a 
rule pi; ( E ~ )  < 0, SO that the susceptibility as a whole de- 
creases with increase of T,  although the true behavior de- 
pends in principle on the position of&, relative to the bottom 
of the band. 

With further increase of T,  the principal role is assumed 
by the finite character of the width A. of the band and its 
dynamic disruption. The site representation becomes ade- 
quate, and the heavy electrons become quasilocalized. The 
magnetic susceptibility differs now from zero even in the 
zeroth approximation in A,,, when it reduces simply to the 
Curie law 

The hopping correction to the susceptibility can be ob- 
tained from expression (3 .6 )  in which, however it is neces- 
sary to determine the dependence of the quantity 

'80 

on the magnetic field. It is readily found that this mean value 
is equal to 

It follows therefore that the correction A ,  to (4 .2 )  is alto- 
gether nonexistent in this approximation in the case of 
strong Hubbard repulsion, while at U,, = 0  it is equal to 

The change to  the Curie law ( 4 . 2 )  takes place at higher tem- 
peratures than the change to that branch of the c,, depen- 
dence which decreases with temperature, although as T - 0  
the ratio c, ( O ) / T ,  ( 0 )  is close to the gas ratio. It must be 
stated that this circumstance is typical of the behavior of 
heavy-fermion systems (see, e.g., Refs. 12 and 13).  Note 
that in real systems the Curie law changes into the Curie- 
Weiss law, for a large number of reasons. In  particular, this 
may be due to the crystal splitting of the degenerate narrow 
band,I2 to indirect interaction between quasi-localized spins 
via the light electrons, and others. 

The results presented remain in force, naturally, also in 
the case of hybridization. All that changes is the expression 
for A,, which takes now the form 

This general relation is valid both for U,, = 0  and for 
U, = co, depending on whether the relation betweenp and v 
is given by (3.13) or (3 .19) .  
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A quantity frequently measured is dc,/dH. I t  is easy to 
show that the following thermodynamic relation holds: 

Using expressions (4.1 ) and (4.2), we verify that at  high T 
we always have dc,/dH>O, and at low ones, conversely, 
almost always dc/dH < 0. This behavior is also typical of 
heavy-fermion systems. I 2 3 l 3  Note that since this result is not 
connected with the electron polaron effect, it was under- 
stood even earlier that the reversal of the sign of dc,/dH can 
be explained by assuming the presence of a very narrow band 
(see Ref. 12 and the citations therein). 

5. RESISTIVITY 

In contrast to the thermodynamic characteristics, a 
contribution to the conductivity of the systems considered is 
made by both heavy and light electrons. The conductivity of 
the light electrons is decisively governed by their scattering 
from heavy electrons. Direct calculation of a ( T )  at T g A  
yields, within the framework of the quasiclassical transport 
equation, 

u ( T )  =u,A,~/T'. (5.1) 

Here a,, is close to the conductivity of the light-electron 
band, when the heavy electrons assume the role of randomly 
distributed static defects. 

The conductivity of the heavy-electron band, with 
allowance for their scattering by one another and by the light 
electrons, is given by an expression similar to (5.1 ). The 
reason is that the amplitude of the scattering of light elec- 
trons by heavy ones and of heavy ones by one another have 
an interatomic-distance scale a of the same order, and the 
ratio r , /m,  ( T ~ ,  is the heavy-electron relaxation time) is 
practically independent of the effective mass. 

At T ,  T, the light electrons are actually scattered by 
the heavy ones as by static defects. Their conductivity ap- 
proaches then a constant value a,, , which close in order of 
magnitude to W .  

In the dynamic band disruption regime 0, > T. the 
heavy electrons continue to move diffusely. The decisive fac- 
tor in this case is their interaction with light electrons, which 
was indeed the cause of the band disruption and of the ap- 
pearance of transport formally with a mean free path I < a 
(cf. Refs. 8 and 9).  The hopping probability and the asso- 
ciated diffusion coefficient D (Ref. 1)  decrease in this case 
slowly with temperature. 

Using the known connection between the conductivity 
and D, and taking into account the strong Hubbard repul- 
sion at the site, we get 

where no is the density of the transition-element atoms. The 
expression for a; is similar to that for aL, or aO but its 
numerical value can be noticeably smaller. 

Note that uL, is given by the same relation 

uLm-v(l-v),  

to the extent that the heavy electrons are randomly distribut- 
ed. It is easily understood that if v lies somewhat between 0 
and 1, a,, is close to the limit corresponding to the so-called 
"minimum metallic conductivity." The resistivity p will 
thus increase quadratically with T very rapidly at  low tem- 
peratures, in an interval - T., reaching a value close top,,, . 
At high temperaturesp will continue to grow slowly, now in 
accordance with 

The behavior pattern is shown qualitatively in Fig. 2 (curve 
a ) .  

In the case of the model with hybridization, the tem- 
perature dependence of the conductivity at T <  T. retains 
the form, with the natural replacement A, + T,. The value 
of a again decreases to close to a,,, in a narrow temperature 
interval on the order of T.. At high temperatures T$ T., 
however, the character of the a( T)  dependence for hybridi- 
zation will differ substantially from the case of a narrow 
band. The reason is that at RT  $ T. we have not only disrup- 
tion of the itinerant motion at the density peak and quasilo- 
calization of the heavy electrons but an opening of an addi- 
tion incoherent scattering channel for the light electrons, 
due to their capture by free atomic levels. Let us examine this 
question in more detail. 

The probability of a transition of an electron from an 
atomic level to the state of a continuous spectrum with ener- 
gy E is determined by Eq. (2.10). This enables us to write 
down right away an expression for electron capture from the 
continuum, using the detail balancing principle. The reci- 
procal relaxation time 7, ' (E)  for this inelastic scattering 
channel, which enters in the transport equation for light 
electrons, can be written in this case in the form 

We denote by T ,  the relaxation time corresponding to scat- 
tering of a Langmuir electron by randomly located defects, 
whose role is assumed by localized heavy electrons. I t  is easy 
to estimate that 

From this we have for the total relaxation time T the value 

in view of the fact that the light electrons are scattered only 
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and the high-temperature expression for the resistance takes 
the form 

1 + El( . \ . ,  b' )  - 
T 

where f ' and f are coefficients independent of T. 
We see that, in contrast to the narrow band, the resistiv- 

ity at high temperatures decreases with increase of T. The 
resistivity goes thus through a maximum with a value on the 
order of the maximum metallic resistivity p,,,, , and then 
falls off rapidly with increase of T, in contrast to the very 
rapid increase at low T. The transition region experience a 
lag on the low temperature side as T (  T) increases with T, 
and the general form o fp  ( T) is shown by curve b of Fig. 2. 

In the analysis of the two-band model we have implicit- 

ly assumed that the inequality T. -uf /&,,< A. is valid and 
have neglected the hybridization completely. The difference 
in the character of the temperature dependences of the resis- 
tivity (5.3) and (5.5) predetermines, however, even in this 
case the possibility that Sp ( T) can go over at high T from the 
two-band to the hybridization regime. If it is recognized that 
at SL, 9 A * ,  T, the channel of heavy-electron motion 
through a straight band and the hybridization channel caus- 
ing captureof the light electron by a level are independent, it 
is possible to write in this high-temperature level a general 
expression for the resistivity, in the form 

The result may be the p ( T )  dependence shown in Fig. 2 
(curve c ) ,  a feature of which is the appearance of a highly 
stretched-out gently sloping maximum (plateau). 

Note that a similar change of the regime, with transition 
from (3.1 1 ) to (3.20) under certain condition, takes place in 
fact also for the specific heat. 

Allowance for the exchange interaction at high tem- 
peratures includes an additional spin channel for scattering 
of light electrons by quasilocalized heavy electrons. This 
channel should lead to a resistivity increment Sp, with the 
logarithmic temperature dependence typical of the Kondo 
effect, whose sign is determined by the sign of the exchange 
interaction. Note that the weak logarithmic dependence of 
Sp, ( T) at a bounded value of the exchange interaction leaves 

qualitatively unchanged the form of the resistivity tempera- 
ture dependence shown in Fig. 2. 

Note that the presence of zero-spin defects has little 
effect on the high-temperature branch of the resistivity 
(5.3), (5.5), since the temperature disruption of the heavy- 
electron band leads already to their quasilocalization. 

Typical of many measurements o f p ( T )  in metallic sys- 
tems with heavy electrons (see, e.g., the literature cited in 
Refs. 11-15) is the behavior of the curves of Fig. 2. Thus, in 
the case of A- 15 compounds the picture observed is qualita- 
tively close to curve a of this figure (see Refs. 14 and 15). 
Metallic compounds of rare-earth elements and actinides are 
more likely to havep(T)  decrease with increase of T at high 
temperatures (curves b and c) ,  and the maximum of the 
resistivity has most frequently the form of a quasi-plateau. 

According to (3.11) and (5.3), and also (3.20) and 
(5.5), the temperature dependences of the specific heat and 
the corrections to the resistivity coincide in the region of 
high T. This circumstance can be directly verified in experi- 
ment. 
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