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The polarizability of a macroscopic object of arbitrary shape is examined by expanding the 
potential in eigenfunctions of local (surface) modes. Some of the properties of these functions and 
of the corresponding eigenvalues are discussed. A general formula is derived for the spectral 
representation of the polarizability tensor. The connection between the proposal approach and 
standard perturbation theory is elucidated. The splitting of local levels due to interactions 
between two objects is considered. 

1. INTRODUCTION 

The calculation of the polarizability tensor ; for homo- 
geneous macroscopic objects is a classic problem (with a 
multitude of applications) in the electrodynamics of con;in- 
uous media. '-' It also becomes necessary to determine a in 
the theory of inhomogeneous media, for example in calculat- 
ing the electrical conductivity (as well as the permittivity, 
thermal conductivity, and so forth) of systems with a low 
concentration of one component (see Refs. 4-6). However, 
the exact solution for the polarizability is available only in a 
few cases: for ellipsoidal objects,'-' pairs of circular cylin- 
ders (see Ref. 6, for example), and certain others. I t  is of 
interest, therefore, both to elucidate the general properties 
(particularly the analytic properties) of the polarizability 
tensor for arbitrarily shape! inclusions, and to devise a regu- 
lar method of calculating a in such cases. 

Note that the natural variable for a is not the frequency 
w, but the quantity z = z(w) ,  where in the electrical conduc- 
tivity problem, for example, z is the ratio of the conductivity 
of the inclusion to that of the medium. The analytic proper- 
ties of; are correspondingly found to be much simpler in the 
complex z-plane than in the complex w-plane (see Ref. 1 ). It 
can be shown (compare with Ref. 7 )  that the polarizability 
is analytic over the entirez-plane, except for the negative real 
axis, where there are singularities. I t  was suggested in Refs. 6 
and 7 that these singularities are associated with the eigen- 
frequencies of local modes of the so-called LC model,'.' for 
which z (w)  = - w2/R2, where S1 is the Thomson frequen- 
cy.' This suggestion was confirmed in Refs. 6 and 7 through 
some exactly solved examples. In these same examples, it can 
be shown (see section 6 ofthe present paper) that the electric 
potential in the polarizability problem is an expansion in the 
eigenfunctions of the appropriate local modes. I t  seems logi- 
cal to use such an expansion for arbitrarily shaped objects as 
well, including those that are multiply connected. 

In the present paper, several general properties of the 
local modes associated with an arbitrarily shaped object are 
discussed. I t  is shown that local modes exist only for real, 
negative z = - E,, where the E, >O are the eigenvalues (the 
spectrum) for this problem, and depend only on the shape of 
the object. The eigenfunctions $, ( r )  corresponding to the 
E, possess a number of specific features. Thus, not only are 
the $, ( r )  orthonormal, but so are their gradients V$, ( r ) .  I t  
turns out that neither the set {$, ( r ) )  nor the set {V$, ( r ) )  
is complete in the usual sense (note that such completeness 
is not required in the polarizability problem). I t  has not been 
possible to find a relation to replace the usual completeness 
condition in the present case. In this paper, therefore, we 

establish only a sufficient condition for solubility of the po- 
larizability problem by expansion in the set of functions 
C*, 

The proposition that the potential can be expanded in 
the set {$, ( r ) )  makes a formal solution of the problem pos- 
sible for an arbitrarily shaped object in a uniform external 
electric field. This solution satisfies the original equation 
whenever a certain condition (the expandability condition) 
holds [see Eq. ( 18) 1 .  It is highly significant that the expan- 
dability condition (which has a simple meaning-see section 
2 )  is a much weaker constraint on {$,, ( r ) )  than the usual 
completeness condition. We will show in this paper that the 
validity of Eq. (18) is sufficient for a systematic and consis- 
tent solution of the polarizability problem. In the exactly 
soluble cases examined (see section 6) ,  Eq. ( 18) holds. For 
arbitrarily shaped objects, the validity of the expandability 
condition is an assumption which must be mathematically 
justified; its validity is assumed in the present paper. 

The spectral representation of derived here (see Eqs. 
(26) and (28) ) possesses the required analytic properties in 
the complex z-plane. The polarizability is given by a sum of 
terms of the form a,/(z + E,. ), where a, is the square of the 
"dipole moment" of the vth local mode, and E,  is its corre- 
sponding eigenvalue. The dimensionless quantities E,, and 
a,, are determined solely by the geometry (shape) of the 
inclusion, and can be found by solving for the eigenvalues, 
for example numerically. A knowledge of the sets of 
numbers {E,) and {a,) for an arbitrarily shaped object en- 
ables one to find its polarizability for an arbitrary, possibly 
complex, value ofz. For the static polarizability, the charac- 
teristics of the local modes then play the formal role of auxil- 
iary quantities. 

For the dynamic polarizability (z = z(w ) ), the local 
modes have a real physical meaning, since they can appear as 
resonances in a at the frequencies w = w, where the w, are 
determined by the equation z(w, ) = - E, . (Here the quan- 
tities a, are directly related to the corresponding oscillator 
strengths.) Such modes have long been known for simple 
objects, such as spheres and cylinders: these are surface 
(neglecting delay) phonons, plasmons, and so on (see Refs. 
8 and 9 for example). The local modes in the LC model 
considered in Refs. 6 and 7 also fall into this category of 
excitations. From a formal standpoint, the only thing that 
distinguishes one of these modes from another is the specific 
way in which z depends on w. The approach taken here 
therefore enables one to examine such surface modes with a 
common outlook, for arbitrarily shaped objects. 

Note that local modes can be treated as a set of quasi- 
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particles. The polarizability problem then takes the guise of 
a problem dealing with the response of an ideal (or, with 
nonlinear effects taken into account, nonideal) gas of quasi- 
particles to an external influence. Apart from the felicity of 
casting the polarizability problem in the familiar language of 
quasiparticles, this is also convenient in that it enables one to 
make use of various methods, including approximate meth- 
ods, analogous to those used in quantum mechanics. As an 
example, we consider in section 5, the splitting of local levels 
due to the interaction of a pair of inclusions. 

2. LOCAL MODES 

For definiteness, we shall consider local modes within 
the confines of the conductivity problem. 

In a medium of conductivity a , ,  let there be an arbitrar- 
ily shaped (possibly multiply connected) inclusion of finite 
size, with conductivity a,. If such a system is immersed in a 
uniform (quasistationary) alternating electric field of fre- 
quency w, then a, and a, will depend on w [ u ,  = a, (w),  
o2 = a 2 ( w )  1,  and will in general be complex quantities. 

In an inhomogeneous medium, the electric field poten- 
tial $ ( r )  obeys the relation 

(the coordinate origin is assumed to be at the center of the 
inclusion). We may write a ( r )  in the form 

where 0 ( r )  = 1 inside the object and 8 ( r )  = 0 outside. Mak- 
ing use of (2),  the equation for the potential takes the form 

The usual boundary conditions apply to p ( r ) :  continuity of 
both the potential and the normal component of the current 
density J = - u ( r ) V p  at the surface of the inclusion. 

For certain constraints (see below) on z = z(w),  Eq. 
(3 )  will have nontrivial, nonsingular solutions $, ( r )  at cer- 
tain frequencies w = w, (where $, ( r )  -0as r- cc ), even in 
the absence of an alternating external field. We shall refer to 
the functions $,, ( r )  as the eigenfunctions (the subscript v 
enumerates the various solutions), and, to the quantities 
E,, = - Z(W, ) at the corresponding frequencies w, as the 
eigenvalues of the local-mode problem. Thus, the equation 
determining $,, ( r )  and E, is of the form 

At the boundary of the inclusion, both $, ( r )  and the normal 
component of the "current density" are continuous: 

where n is the unit vector normal to the interface, and $:I' 

and $!:' respectively refer to the medium ("conductivity" 
1 ) and the inclusion ("conductivity" z(w, ) = - E, ). Fur- 
thermore, the functions $, ( r )  must satisfy the condition at 
infinity: $, ( r )  -0 as r -  OZ. Note that in general, the func- 
tions $, ( r )  are complex, while the quantities E,  are real and 
positive, as will be shown below. 

Multiplying Eq. (4 )  by $, *( r ) ,  where the asterisk de- 
notes complex conjugation, and integrating over all space, 

we obtain (after integrating by parts) 

Here 

For brevity, we shall call the e,, ( r )  the eigenvectors. 
According to (6 ) ,  the eigenvalues E,. are real and posi- 

tive (E, >O), SO that local modes arise only for real, negative 
values of the parameter z ( w )  in the appropriate range of 
frequencies (for w =o , , ,  where the a , ,  are given by 
z(w, ) = - E,, ). This condition is satisfied, for example, by 
systems in which there are surface phonons, plasmons, and 
the like,x.%s well as the LC model.",' In general, local modes 
must exist in all systems of the type considered (inclusion in 
a medium) with a real, negative ratio of conductivities, per- 
mittivities, etc. Note also that the E, are dimensionless, and 
depend solely on the shape of the inclusion, not on its vol- 
ume. The set of numbers {E,) comprises the spectrum of an 
arbitrarily shaped object. 

We now elucidate the orthogonality conditions im- 
posed on the set of eigenfunctions {$, ( r ) )  by the form of 
Eq. (4) .  Divide (4 )  by 1 + E,, multiply by $, *(r),  and inte- 
grate over all space. Integrating by parts, we then obtain 

1 
- j ev (r) ep' (r) dr= ev (r) ev* (r)  0 (r) dr, 
I+&,  

where e,, ( r )  is the same as in (7 ) .  Next, writing an equation 
like (4 )  for $p * ( r ) ,  multiplying it by $, ( r ) ,  and integrat- 
ing, we arrive in similar fashion at Eq. (8 ' ) ,  which differs 
from (8 )  by the replacement E, -E,. Subtracting (8 ' )  from 
(8) ,  we obtain 

i.e. the vectors e, ( r )  and e, ( r )  are orthogonal when 
E, # E ~ .  We assume that the e, ( r )  are normalized: 

Then if the eigenvectors are nondegenerate, the vectors 
e, ( r )  form an orthonormal set, 

j ev(r)e; (r)dr=p,,.. (10) 

We shall assume hereafter that when there is degeneracy, the 
set {e, ( r ) )  can similarly be orthogonalized, so that Eq. ( 10) 
also holds for that case. Note that when (10) is taken into 
account, the following local orthogonality conditions follow 
from (8) :  

1 j e. (r) e; (r) 0 (r) dr = - 6,,, 
l + e v  

E v  J ev (r) e; (r) [ 1-0 (r) ] dr = - 6,,,. 
It&" 

(10') 

In the first of these equations, the integration is over the 
inclusion volume (or area in the two-dimensional case), 
while in the second, it is over the region outside the object. 
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We now determine the asymptotic behavior (for r-  w ) 
of $,, ( r ) .  In order to do so, we define the Green's function of 
the Laplacian operator 

V:g(r-r') =6 (r-r'), (11) 

which is well known (see Ref. 2, for example) to be of the 
form 

1 & '  
g r -  = 1 - ' 1  ( ~ = 2 ) .  

2n 
(12) 

where D is the dimensionality of the space. Making use of 
( 11 ) and integrating by parts, Eq. (4 )  can be written in inte- 
gral form: 

In the three-dimensional case, as r- CU, the function 
g ( r  - r ' )  takes the form 

g(r-r') = - - 
rr' 

,I {f +,+ 
in 

so that we obtain from (13) the following asymptotic 
expression for $,, ( r ) : 

dvr r -m:  Q v  (r) = - 
r' ' 

Similarly, in the two-dimensional case, we obtain 

According to ( 15) and ( 17 ), when u,, f O(d, f 0 )  the func- 
tion $I, ( r )  becomes dipolar as r-  cz (note that such a func- 
tion is not normalizable in the two-dimensional case). If in 
the state Y we have u, = O(d, = 0) ,  then the trailing terms 
in the expansion ( 14) must be taken into account, so that as 
r-  W ,  $, ( r )  will be a quadrupole (or octupole, etc.). Note 
that such states (with u, = d, = 0 )  do not contribute to the 
polarizability tensor of an inclusion in a uniform external 
field (see (26) ). 

As we have already remarked in the Introduction, the 
set of functions {$, ( r ) ) ,  and the set {e, ( r ) )  as well, is not 
complete in the usual sense. We can be assured of this by 
considering some exactly soluble cases. Because of the 
unique nature of the local modes, it is difficult to formulate 
relations which are the inverse of the orthogonality condi- 
tion. We therefore limit ourselves to deriving a sufficient 
condition (the expandability condition) for solving the po- 
larizability problem by expansion in the set {$, (r)) .  This is 
most simply accomplished as follows. 

Using an expansion in the set {$,, ( r ) ) ,  we find in sec- 
tion 3 an expression for the electric field strength E ( r )  (see 
(24) ). Inside a perfectly conducting inclusion (2- w ), 
E ( r )  must vanish. Taking the limit asz- w in (24), we find 
from this requirement that (from here on, we assume that 
the function $,, ( r )  is real) 

where e,. ( r )  and u, are the same as in (7 )  and ( 16). (Note 
that Eq. ( 18) fails to converge to an identity only for points r 
inside the object). It is straightforward to show that when 
( 18) is satisfied, the expression (23) derived in section 3 for 
the potential satisfies the original equation ( 3 ) .  Thus, ( 18) 
is the desired expandability condition, which is consistent 
with the requirement of physical sensibility. We may rewrite 
(18) in the form 

Up to a certain constant factor, the expression in the braces 
is the expansion (inside the object) of the vector r in the set 
of functions {3,, ( r ) ) .  It is therefore clear that the condition 
( 18) is a rather weak constraint on {$, ( r ) ) .  

Consideration of a number of specific shapes (cylinder 
sphere pair of cylinders-see section 6 )  indicates that ( 18) is 
valid for these cases. Equation ( 18) obviously also holds for 
an ellipsoid, since the field inside is uniform. ' As we shall 
show later (see sections 3 and 4 )  when ( 18) is satisfied, one 
can consistently solve the polarizability problem in the gen- 
eral case as well. We therefore proceed from the assumption 
that the expandability condition ( 18) is valid for an arbitrar- 
ily shaped inclusion. 

Note that integration of ( 18) with respect to r gives 

Y 

where u is the volume (area, for D = 2)  of the inclusion. 

3.GENERAL EXPRESSION FOR THE POLARlZABlLlTY 
TENSOR 

We now consider the polarizability problem for an in- 
clusion in a uniform external electric field E,,. We write the 
potential p ( r )  in the form 

v (r)  =-Ear+$ ( r )  , (20) 

where the first term on the right-hand side of (20) corre- 
sponds to the field E,, and the second describes the distortion 
of the potential due to the inclusion. Substituting (20) into 
(3 )  gives an equation for $(r ) :  

The function $(r )  is localized to the region surrounding the 
inclusion ($ ( r )  -0 as r-  cu ), so it is natural to seek $ ( r )  as 
an expansion in the set {$, ( r )  ): 

Here the $, ( r )  are the real eigenfunctions of the local-mode 
problem, and are associated with an object having the same 
geometry as the inclusion under consideration. Substituting 
(22) into (21) and making use of (4 )  and ( l o ) ,  we can 
determine the coefficients A , .  The result is 

where the u, are the same as in ( 16).  Equation (23) satisfies 
Eq. (3)  if ( 18) holds. 

Equation (23) gives for the electric field E = - V p  
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For a perfectly conducting (z- co ) inclusion with ( 18) tak- 
en into account, E = 0 inside the object. The exterior surface 
(S'")  boundary condition for such an inclusion is then auto- 
matically satisfied: the tangential component of the electric 
field vanishes. If the inclusion is in fact a dielectric (a, = 0, 
i.e., z = O ) ,  then the normal component of the current den- 
sity at s " ' ,  j, = a,E, must vanish: 

I+&, 
rs~,, [IS,,+ - e:.' (r) ur.] =O.  

EV 8(1) 

Hence, making use of (5 ) ,  we can transform to a condition at 
the interior surfaces "'which is satisfied identically by virtue 
of (18). 

Far from the object ( r -  w ), the potential must be that 
of a dipole: 

,, .. 
(F (r) =-E,r+pr/r'+ . . . , pa=-iuBEoR, i \=~a. (25 ) 

Using ( 15), we determine from (23) the asymptotic form of 
the potential p ,  whereupon by eqkating this to (25),  we ob- 
tain an expression for the tensor A: 

When r-  cc in the two-dimensional case, we have 

where s is the area of the inclusion. Note that the dipole 
moment p determined via (27) is half that in Refs. 5 and 6. 
Using the same approach in this case (D = 2),  we also ob- 
tain Eq. (26) for the tensor A. 

Equation (26) provides a spectral representation of the 
polarizability tensor of an arbitrarily shaped macroscopic 
object (inclusion). The dependence of A on the argument 
o,/a, is set out explicitly in (26) .  All of the information 
about the geometry of the inclusion is in fact contained in the 
quantities E, and u,,, which can be determined from the lo- 
cal-model problem, and are associated with the given shape. 
Equation (26) takes a more lucid form if we introduce the 
dipole moments of the local modes d,, as defined in ( 15 ) and 
(17):  

h 

It is straightforward to show that the tensor a = u-'A is 
dimensionless, and therefore depends only on the shape of 
the object. 

According to Refs. 5 and 6, the effective conductivity 
a, of a system with a low density of inclusions can be ex- 
pressedjn terms of their polarizability. The analytic proper- 
ties of A are therefore the same in the complex z-plane as 
those of the conductivity (see Ref. 7 ) ,  except at z = C O ,  

where in contrast to a,, A does not have a pole. In fact, in 
accord with Ref. 7, Eq. (26) is analytic over the entire z- 
plane except for the negative real axis. Along this semi-axis, 
the polarizability has simple poles (the spectrum E,, being 
discrete), which coalesce into a cut if the spectrum E,. is 
continuous. Note that like the conductivity, Eq. (26) satis- 
fies a dispersion relation, which in the present case takes the 
form (compare with Ref. 7)  

I ~ m : i ( - t + i ~ )  i(z)=.i(m) -- j dt. 
n , t+z 

We remark that it is possible to arrive at a general 
expression for the polarizability tensor in a number of other 
ways. The dipole moment of an inclusion in a medium can be 
expressed as 

The integration here is over the volume of the object. Substi- 
tution into (39) of the electric field from (24) leads to the 
following expression for the tensor A: 

It is not hard to see that Eqs. (26) and ( 3  1 ) become identical 
if ( 19) is satisfied. On the other hand, Eq. ( 19) f2llows from 
( 3  1 ) as the condition for the absence of a pole of A at  z = co . 

According to $92 of Ref. 1, the scattering of electro- 
magnetic waves from a small (relative to a wavelength) di- 
electric particle is completely determined by the polarizabil- 
ity of the particle. Consequently, dipolar local modes, 
particularly optical surface phonons, can be detected as re- 
sonances in the scattering cross section of long-wavelength 
electromagnetic radiation. For a particle in vacuum, z(w)  is 
the permittivity of its constituent material. In the frequency 
range where z(w) is real and negative, there can be surface 
modes with frequencies w, determined by the equation 
z (w,, ) = - E, , where E, is the spectrum of local modes as- 
sociated with an object of the specified shape. If the spec- 
trum E, is discrete, then when w -a, ,  

h 

where F,, is the corresponding oscillator strength. Consider 
two (geometrically) identical particles with different per- 
mittivities zU'(w ) and zUi (w ). The frequencies wL1 ' and wL2' 
of the surface modes of these particles, corresponding to a 
single value of E,,, are given by the equations 
~" ' (w," ' )  = - E,, and zQ'(w,"') = - E,. Thus wL1' and 
wL2' are related by 

h 

The spectral expansion (28) of A also gives a relation 
between the corresponding oscillator strengths: 

These two relations, which are easily established for objects 
having a simple geometry (sphere, cylinder), should be val- 
id (although with different z (w)  ) for particles of any shape. 

4. PERTURBATION THEORY 

If the conductivity a2 of an inclusion is almost the same 
as the conductivity o, of the medium ( I (a, - a , ) /u ,  I < 1, 
i.e., 1 - z 9 1 ), then we can use standard perturbation the- 
ory, expanding in the small parameter 1 - zAto calculate the 
potential p ( r )  and the polarizability tensor A (see Ref. 6, for 
example). This does not mean, however, that an analogous 
perturbation theory can also be developed for the quantities 
E,, and I),, ( r ) ,  since the appropriate parameter in those cases 
is not small: 11 - z(w,, ) / = 1 + E,. > 1. It can thus be shown 
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that when 11 - z /  < 1, the method of the previous section is 
no longer valid, since it requires, at first glance, a prelimi- 
nary accurate determination of e, and $,. ( r  ). 

I t  turns gut, however, that the appropriate expansions 
for p ( r )  and A in powers of 1 - z can also be derived directly 
from the general expressions (23) and (26),  without calcu- 
lating E,, and $, ( r ) .  In deriving these expansions, we make 
use of certain sum rule~stemming from ( 18).  The fact that 
the series for p ( r )  and A derived in this way are the same as 
the results obtained from standard perturbation theory is 
indicative of the consistency of the method employed in the 
present paper, and of the assumption made in deriving it that 
Eq. ( 18) is valid. 

To obtain the perturbation theory series in 1 - z, we 
write Eq. (3 )  in integral form: 

aq  (r') ag (r-r') 
9 (r)  =-Ear- (1-2) J dr'0 (PI) - 

dxar axa' 
, (32) 

The function g ( r  - r ' )  here is defined by ( 1 1 ) and ( 12). 
Carrying out an iterative solution of (32), 

q ( r )  = ( F ( ~ )  (r)+rq(') ( r )  + ( F ( ~ )  ( r )  +. . . , (33) 

where p'"' a ( 1 - z)"  , we obtain 

(F('" ( r )  =-EL,r, 

acp("-') (r') 3g (r-r') 
c p i n r  (r) =- (1-1.) j dr10 ( r f )  , 1221. 

ax,' arcaf 

Together with (34),  the recursion relation (35) enables one 
to find any term of the perturbation series for the potential 
p ( r ) .  From (32)-(35), it is also ezsy to obtain the corre- 
sponding expansion for the tensor A (see Ref. 6, for exam- 
ple). 

Let us now find the expansion for a potential of the form 
(33) from the general equation (23).  The latter equation 
implies that p '"'(r) is given by (34),  and when n >  1, we ob- 
tain 

In order to determine the quantities B f ( r )  (i.e., the afore- 
mentioned sum rules), we multiply Eq. (13) by 
u,;, ( 1 + E,. ) ' - ' and sum over Y .  The result is 

a&-, (r') ag(r-r') 
BnD(r)=- 1 dr'O(rr) , , 1 ,  (38) 

ax?'' ax, 
where, according to ( 18), 

0 (r)dBnB(r) /0.rrL=O ( r )  15%~.  

Equations (38) and (39) make it possible to find the desired 
values ofBf  ( r ) .  It follows from (36)-(38) that thep'"'  ( r )  
in (36) satisfy the recursion relation (35).  Thus, an expan- 
sion of (23) in powers of 1 - z gives the same results as 
standard perturbation theory. 

Similarly, we can find an expansion for the polarizabili- 
ty tensor as well. Accurate to ( 1 - z)" we find from (26) 
that 

To calculate the term of order ( 1 - z ) ,  we make use of Eq. 
(19).  For the term in ( 1 - z)', we note that from (38) and 
(39), with n = 1, 

9. (r) u,=- J drf 0 (ri) 
ag (r-r') 

ax,' ' 

In obvious fashion, we then obtain from (41) a string of 
equations: 

Substituting (19) and (44) into (40) gives the same results 
as in Ref. 6. In  particular, 

which agrees with Ref. 6. 

5. INTERACTION OF INCLUSIONS 

In considering an ensemble of particles (inclusions), it 
is sometimes necessary to take account of mutual effects 
("interaction") which lead to changes in the spectrum of 
local modes. Thus, when two identical particles interact 
there is a splitting of local levels that correspond to an isolat- 
ed inclusion. Averaging over various pairs of particles gives 
rise to a peaked broadening of these levels. This broadening 
must be taken into consideration when one investigates the 
analytic properties of the electrical conductivity of two-com- 
ponent media.'.' The same effect must also be taken into 
account in estimating resonance widths in cross sections for 
long-wavelength electromagnetic scattering from a system 
of particles. 

We consider a pair of identical inclusions, and find the 
splitting of some local level associated with an isolated inclu- 
sion, due to the interaction between the defects. As for the 
local level, we assume that it is nondegenerate and corre- 
sponds to a dipole state. We also assume that the distancep 
between inclusions is large compared with their characteris- 
tic size R,  so that we can make use of perturbation theory (in 
the parameter R /p < 1 ), as in quantum mechanics,'" to find 
the splitting. 

The equation for the eigenfunctions $,, ( r )  and eigen- 
values E,, of a system consisting of a pair of inclusions is of 
the form (4 ) ,  where 

Here 6"" ( r  - ri ) refers to the ith inclusion ( i  = 1,2) and r, 
is the location of its center. For an individual inclusion, we 
have 
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where EA is the unperturbed level. We seek a solution of ( 4 ) ,  
with O(r) taken from (47),  in the form (omitting the sub- 
script v )  

Substituting (49) into ( 4 )  (taking (47) into account), and 
after some manipulations involving Eq. (48),  we obtain 

Multiply (50) by $:"(r - r , )  and integrate over all r; then 
multiply by $y ' ( r  - r,) and likewise integrate over all 
space. As a result, using the normalization condition (9 )  
and omitting overlap integrals of order l/pD+ ' and higher, 
we obtain 

(1)  J ,  = J d r  o ' t l  (r-r,) V q h  (r-ri) v$A@' (rPr2) 

To calculate the overlap integrals (52) when 
p $ R ( p = r ,  - rz, R is the characteristic size of an inclu- 
sion), we make use of the asymptotic expressions (15) and 
(17). We find then that J, = J ,  = J,  where 

For $j" in (53),  we must take Eqs. ( 15) and ( 17). Thus, the 
in three-dimensional case, we find from (53) and (15) that 

from which it follows that J ( p )  is of order (R /p) ' .  
The condition for the set of equations (51) to be solv- 

able, bearing in mind that J, = J2,  is A ' = B ', and hence 
B = _f A .  Thus, as in quantum mechanics,"' the eigenfunc- 
tions of the two-center problem are given by symmetric and 
antisymmetric combinations of functions belonging to an 
isolated inclusion. The levels for these states are 

with J ( p )  from (53) .  
As noted in Ref. 7, the imaginary part of the function 

f = gc /u, on the branch cut (for z = - t + iO, t > 0 )  plays 
an important role in the theory of conductivity of two-com- 
ponent media. Following the development in Ref. 6, let us 
investigation the form of Im f in the neighborhood of the 
isolated local level E, when there is a low number density of 
inclusions (c < 1 ). According to Ref. 6, to terms of the order 
of the square of the number density, we have ( t  ) 

A 

where A"' is the polarizability tensor of a pair of inclusions, 
and N is their number density. Making use of (26) and the 
results of the present section, we find from (57) (assuming 
that - 1 ) that 

I: 
Irn f - ~ ~ / ( t - ~ & [ ~ ,  c < ( t - ~ ~ I < i .  (58) 

Here c is the dimensionless number density of inclusions 
(the fractional volume that they occupy), and c <  1. 

Equation (58) holds for both two-dimensional (com- 
pare with Ref. 6 )  and three-dimensional systems. The con- 
straints on It - I indicated in (58) have the following ori- 
gin. Distances p S R  are responsible for the condition 
It - / < 1, which was put to important use above. (The 
range It - / - 1 corresponds to distances p -R, so that 
here Im f does not take on a universal form.) On the other 
hand, the interaction radius of inclusions 
( -R /It - E ,  S R )  should be small compared with the 
mean distance between inclusions ( - N -  ), which is the 
condition for applicability of the c2 approximation.' This 
gives the second constraint on It - / indicated in (58).  

According to (58),  at the boundary of the region of 
applicability ( t - E, / -c),  the quantity Im f is of order uni- 
ty. To study the region It - I <c, one must go beyond the 
scope of the c2 approximation. If we digress from considera- 
tion of this narrow range of values oft ,  the imaginary part of 
fa t  t will have a sharp peak of height - 1 and width -c. 
The combined width of the resonance lines in the long-wave- 
lergth electromagnetic scattering cross section from an en- 
semble of particles is of the same order of magnitude 
( - c < l ) .  

6. EXACTLY SOLUBLE CASES 
The exact eigenvalues E,, and eigenfunctions $,. ( r )  of 

the local modes can be obtained for certain simply-shaped 
objects. As our first example, we examine a spherical inclu- 
sion. In the polarizability problem, it is most convenient to 
employ real eigenfunctions. We therefore introduce two 
types of spherical harmonics YjL' ( 6 , ~ )  (A = 1,2), which are 
the real and imaginary parts of the usual spherical harmon- 
ics Y,, ( 8 , ~ )  (using standard notation-see Ref. 10): 

Y,!,/' (8, q) =n,.,l),"' (COS 0) sin mq, i<?nGj, 

According to (91, inside ( i )  and outside ( e )  a sphere of 
radius R ,  the normalized eigenfunctions in the local-mode 
problem for a sphere take the form 

g$,A (r ,  0, cP) = [ ( 2 l t l )  R I - ' ~ ( ~ / R ) ~ Y T ( : '  (0, cp )  r<R, 

HereO<m<l forA = 1,and 1<rn<l forA = 2and1= 1.The 
functions (60) correspond to the eigenvalues 
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which are degenerate in R and m. It is straightforward to 
demonstrate that the eigenfunctions (60) satisfy both the 
full and "local" orthogonality conditions (10) and (10') 
with Y = {Rlm). 

Only the three functions with I = 1 ($ ,,,, 3 , , , ,  and 
3, ,,,) show dipolar behavior outside the sphere, with corre- 
sponding vectors d,. from ( 15) : 

For a sphere with isotropic polarizability, (28) gives the well 
known relation' 

In the present case, the sums in (18) and ( 19) contain only 
the first term, so these relations converge to trivial identities. 

As we have noted, the fairly simple form of Eq. (63) is 
related to the fact that for the sphere, only three eigenfunc- 
tions out of the whole set {$, ( r ) )  are dipolar: the local 
modes associated with an ellipsoid also possess this proper- 
ty. These examples do not enable us to convincingly demon- 
strate the effectiveness of the spectral method in calculating 
the polarizability. Notice that according to the results of the 
previous section, taking the interaction ( forp  % R ) of inclu- 
sions into account leads to a splitting of the local levels and 
an increase in the number of eigenfunctions with dipolar 
behavior. A more complicated picture is to be expected for 
distancesp comparable to the size of the inclusions. It would 
be more interesting and convincing to test the spectral ap- 
proach in just such a nontrivial situation. Unfortunately, the 
polarizability problem for two spheres separated by an arbi- 
trary distance does not have a closed-form analytic solution: 
however, the corresponding two-dimensional problem for a 
pair of circular cylinders can be solved exactly (see Ref. 6, 
for example). As our second example, we therefore examine 
the spectral properties of this two-dimensional system. 

The problem of the spectrum of local modes for a pair of 
circular cylinders (see Ref. 6 )  can be solved in bipolar co- 
ordinates.' The centers of the circles of radius R are placed 
on thex-axis symmetrically about the point x = 0 (see Fig. 1 
in Ref. 6) .  We denote the distance between the centers of the 
inclusions p (p>2R ) . The bipolar coordinates ([,8) are de- 
fined by2 

a s11 x = -- u sill 0 
11 = 

ch g + cos 0 cll g + cos 0 
The boundary of the right-hand circle is 6 = g,,, and its inte- 
rior is {>go. Likewise, for the left-hand circle we have 
g< - go, and the region outside the inclusions is specified by 
- ~og{<gO. With this geometry, (64) gives 

As noted in Refs. 6 and 7, two sets of eigenvalues are 
associated with a pair of cylinders of the same radius: 
E,, = tanh ngO andE2, = coth n10 (n = 1,2, ...). Four types 
of eigenfunctions $,, ( r )  (A = 1,2,3,4) are found to corre- 

spond to these, so that each of the levels&,, and E,, is doubly 
degenerate. The normalized eigenfunctions of the first type 
(corresponding to E , ,  ) are of the form 

A,  ch ng sin n0, I E I <go, 

Here $ ( ' I ,  $"', and $"' denote functions 11 in the exterior 
region, inside the right-hand inclusion, and inside the left- 
hand inclusion respectively. Comparing the asymptotic 
expression for $I:' with (17) (g=.2ax/r2 and 
0 ~ 7 ~  - 2ayr-' as r-  ), we find the components of the 
vector dl, : 

The normalized eigenfunctions of the second type (cor- 
responding to E,, ) take the form 

( e )  - 
$2,, - B, sh nE cos no, 1 E 1 <to, 

In the same manner, we find the components of the vector 
4, : 

Functions $,, of the third type (with eigenvalues 
E,, = E , ,  ) are obtained from (66) via the replacement 
sin no-cos no. Finally, functions $,, of the fourth type 
(with levels E,, = E,, ) are obtained from (68) by replacing 
cos no with sin no. There are no dipolar terms in the asymp- 
totic expansion of $,, and $,,, , so d,, = d,, = 0. It is 
straightforward to show that the set of eigenfunctions {$,,, ) 
satisfies all of the orthogonality relations; conditions ( 18) 
and ( 19) are satisfied as well. The sum in ( 18) is then a series 
expansion of x and y in terms of $!,',', t j r f , '  and $:A', $::' 
(compare with Eq. (2.2) in the Appendix of Ref. 6 ) .  

From the general equation (28), we obtain 

for the diagonal terms of the polarizability tenLor of a pair of 
circular cylinders. A spectral expansion for A of the same 
form as (70) has been obtained in Ref. 6 using the customary 
method, by solving the electrostatic problem. When com- 
paring, it must be borne in mind that it has been assumed in 
Eq. (48) of Ref. 6 that z = - w2/R', E,,  = w:,/R2, 
E*,, = u;,/R2. Furthermore, because of a different defini- 
tion of the dipole moment (compare Eq. (27) of the present 
paper with Eq. (22) of Ref. 61, the result in Ref. 6 must be 
reduced by a factor of two for consistency with (70) .  With 

188 Sov. Phys. JETP 66 (I),  July 1987 B. Y. Balagurov 188 



these remarks in mind, Eq. (70) is the same as Eq. (48) of 
Ref. 6. Also note that with the method of Ref. 6, the electric 
potential is in fact an expansion in the set of eigenfunctions 

) and ), SO that the two approaches are equivalent 
even at this level. 

I thank K. Yu. Dadashyan and V. A. Kashin for discus- 
sions of this work. 
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