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An appreciable energy gap of non-magnetoelastic origin was observed experimentally in the 
spectrum of the low-frequency (quasiferromagnetic) antiferromagnetic-resonance branch 
during a second-order spin-flip transition in a magnetic field directed along the a axis of the 
rhombic weak ferromagnet YFeO,. A theory that takes into account the susceptibility in the 
antiferromagnetism-axis and the dissipation processes is developed. It follows from this theory 
that a relaxation mode of oscillations, which is "soft" in the transition in question, should exist 
besides the usual oscillatory AFMR modes. The energy gaps, the kinetic coefficients, the 
Dzyaloshinskii field, and the ratio of the longitudinal and transverse susceptibilities are 
determined from an analysis of experimental data obtained in fields up to 130 kOe and at 
frequencies 60-400 GHz at room temperature. 

INTRODUCTION tion line, at least one of the roots of the secular equation goes 

The dynamics of multisublattice magnets is usually de- 
scribed using equations of first order in the time derivatives 
of generalized coordinates. Among the equations of this type 
are the most widely used Landau-Lifshitz equations. In a 
system of dynamic equations, the secular equation that de- 
scribes the dependence of the natural frequencies w i  of the 
magnetic subsystem on the external conditions and on the 
phenomenological parameters, takes in the general case 
(with allowance for damping) the form 

Here Sp,R are the traces of derivative matrices constructed 
in a definite manner from the dynamic matrix R (Ref. 2) ;  n 
is the number of magnetic sublattices; A , A ,  is the determi- 
nant of the dynamic matrix R, and is a product of the deter- 
minant A ,  of the matrix of the kinetic coefficients (in the 
Landau-Lifshitz equations these are the g-factors and the 
relaxation parameters) and the determinant A2 of the sys- 
tem-stability matrix (discriminant matrix) whose elements 
are the derivatives of the Landau potential with respect to 
the components of the generalized coordinates that describe 
the dynamics of the systems (the projections of the sublat- 
tice magnetic-moment sublattices for one method of descrip- 
tion or spin densities in the symmetry approach). In some 
papers (e.g., Ref. 3) account is taken also of inertia, and then 
the equations that describe the system dynamics contain sec- 
ond derivatives with respect to time.' In the general case, 
analysis of the magnetic-subsystem Lagrangian which de- 
pends on the generalized coordinates and ve l~c i t i e s '~~  leads 
to a secular equation of the form 

through zero. A real root is said to correspond to a soft mode 
in the active subsystem,'-" and an imaginary root to a soft 
relaxator. This general property of dynamic systems is pre- 
served if the dynamics equations have a special form (e.g., 
the Landau-Lifshitz equations, where the determinant A ,  of 
the kinetic coefficients is identically zero). The vanishing of 
A ,  means simply that several integrals of the motion exist. In 
the Landau-Lifshitz equations these integrals are the 
squares of the sublattice magnetic moments. It is necessary 
in this case to exclude right away from consideration the 
cyclic coordinates and the form ( 1 ) of the secular equation, 
where everything pertains to noncyclic generalized coordi- 
nates is preserved, but the degree of the equation is lowered. 
Note that neglect of dissipation also causes A ,  to vanish; in 
this case the integral of the motion is the total energy of the 
magnetic subsystem. 

Thus, it can be stated rigorously that on the stability- 
loss lines one of the natural frequencies (of the reciprocal 
relaxation times) always goes through zero. In a phenome- 
nological description of the dynamics of magnets, however, 
a situation is possible in which the use of equations of motion 
of special form presupposes the existence of several integrals 
of the motion, which in fact they are not. In this case, a 
number of natural frequencies of the magnetic subsystem 
drop out, including possibly also those which should vanish 
in a phase transition. 

Our aim here is to call attention to cases in which a soft 
mode is not the long-lived spin-wave excitation that is stud- 
ied, in particular, in experiments on antiferromagnetic reso- 
nance. All the frequencies of the usual AFMR modes can in 
this case differ from zero at the second-order phase-transi- 

(2 )  
tion point even if there is no interaction between the magnet- 
ic and elastic subsystems. 

(the notation is the same as above). Note that gaps of nonmagnetoelastic origin were appar- 
It can be seen that in all the dynamic descriptions the ently already observed earlier in the AFMR spectra for spin- 

free term of the secular equation is proportional to the deter- flip phase transitions. For example, it follows from data on 
minant of the stability matrix. As a result, one of the roots of AFMR in YCrO, (Ref. 1 1 ) that a gap reaching 40-60 GHz 
the secular equation always vanishes on the stability-loss exists in a field in which spin flip takes place, whereas the 
lines. In particular, in second-order phase transitions, when magnetoelastic gap, according to our estimates, amounts to 
the stability-loss line of some phase coincides with the transi- only" 15-20 GHz. 
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We show in this paper that the energy gap experimen- 
tally observed by us in the low-frequency (quasi-ferromag- 
netic) branch of AFMR in YFO, in a spin-flip phase transi- 
tion of second order, in a field directed along the a axis, 
exceeds considerably the magnetoelastic gap, and the "soft" 
mode in this transition is the relaxation one (soft relaxator). 
What is fundamental here is that this mode appears in the 
calculation only when dissipation processes are taken into 
account, and is due to the presence of at least two degrees of 
freedom which must be taken into account for this phase 
transition. One of them, usually invoked to describe orienta- 
tional phase transitions, is connected with the rotation of the 
antiferromagnetism vector relative to the crystallographic 
axes. The other degree of freedom reflects the possibility of a 
change of the sublattice magnetic moments in the direction 
of the antiferromagnetism axis. The Landau-Lifshitz equa- 
tions can therefore not be used to describe the antiferromag- 
netism dynamics for such phase transitions, and it is neces- 
sary to use the thermodynamic  equation^.'.'^ 

Investigations of the low-frequency mode of AFMR in 
YFeO, near a spin-flip transition in a field directed along the 
a axis were carried out earlier. The measurements in Ref. 12 
were made for a limited set of generator frequencies (at  
wavelengths 2, 4, 6, and 8 mm) ,  and did not yield the true 
dependence of the AFMR frequency on the applied field. We 
note that the authors of Ref. 12 failed also to relax the 
AFMR frequency (to split the absorption lines) in the tran- 
sition field at frequencies lower than 128 GHz. This, how- 
ever, was attributed to inexact orientation of the crystal in 
the magnetic field. The temperature dependences of the gap 
in the AFMR spectrum of YFeO, in a zero external field 
were investigated in Refs. 14-16. The frequencies of the qua- 
siferromagnetic modes were measured in Ref. 17 in magnetic 
fields up to 12 kOe. Thus, the experiments performed to date 
on AFMR in YFeO, were not complete, and this prompted 
the present investigation which led to hitherto unknown 
properties of magnets. 

We have investigated the quasiferromagnetic AFMR 
mode in YFeO, at room temperature and at a large number 
of frequencies in the 60-400 GHz  (A = 5-0.75 mm) interval 
in stationary magnetic fields up to 130 kOe. Analysis of the 
experimental results revealed the form of the phase diagram 
at the observed spin flip, the thermodynamic variation of the 
system with change of the magnetic field, and the values of 
the energy gaps, of the thermodynamic-potential param- 
eters, of the transport coefficients of the equations of motion, 
as well as of the ratio of the parallel and perpendicular sus- 
ceptibilities. These are fundamental properties of antiferro- 
magnets with weak ferromagnetism. 

GROUND STATE AND PHASE DIAGRAMS FOR SPIN FLIP 

To analyze the static and dynamic properties of YFeO, 
we start with the following thermodynamic potential 

<I) (M.  L )  = ' / L B l 1 2 + ' / ~ I ) ( l I L ) ' - t  '/~~)'hI'IA2i-~l,!~fTl,z--~13,~I:/,, 
- - ~ ~ ~ I - t 1 / 2 ~ l , I ~ , ~ + 1 / ~ ~ l ~ l , , 1 2 - k ~ / ~ ~ l  , / , ~ ~ + ~ / ~ / l l l L x ' ~ + ' / ~ , ~ i 2 ~ l , , l " + ' / ~ / l  <,%l,:; 

S '/,cr,,/,,'l,,,? t'/,n,.!l,,'I,;? t~/,t~,,~I,,~~,~~+ h ( I A 2 - L , 2 ) .  ( 3 )  

Here M = M ,  + M ,  and 1 = M I  - M I ,  where M ,  and M ,  
are the sublattice magnetizations; B, D, and D ' are the con- 
stants of the symmetric isotropic exchange interaction; d l  
and d, are the constants of the antisymmetric exchange in- 
teraction (the Dzyaloshinskii-Moriya interaction), a ,  and 

a, ,  are the constants of the anisotropic interactions; H is the 
external field, and R is a Lagrange multiplier. 

Let us discuss the assumptions made for the potential 
( 3 )  above. First, the customarily employed additional as- 
sumption M ,' = M2' = const, which eliminates two degrees 
of freedom right away, were replaced by the condition 
L' = const, which excludes only one degree of freedom. Sec- 
ond, we disregard the four-sublattice structure of orthofer- 
rites,'' confining ourselves to the two-sublattice approxima- 
tion. As shown in Ref. 19, allowance for the presence of four 
sublattices leads to the appearance of two more (exchange) 
oscillation modes and influences little the relatively low-fre- 
quency AFMR modes considered here, which lead only to 
renormalization of anisotropy constants. Account is also 
taken in the expression for the thermodynamic potential of 
the fact that the inequality M2/L '<  1 is actually satisfied in 
orthoferrites in realistically attainable fields (on the order of 
hundreds of kOe), and therefore isotropic terms of order not 
higher than the second are retained in the expansion of the 
potential in terms of M. The expansion in terms of the com- 
ponents of the vector L was carried out only up to biquadra- 
tic terms. Since it is known from experiments on the magne- 
tization of YFeO, (Ref. 19) that the constants d ,  and d ,  are 
equal to within several percent, we put d ,  = d ,  = d .  In addi- 
tion, we disregard in the present paper the interaction 
between the magnetic and the elastic subsystems. We shall 
estimate below the contribution of the magnetoelastic inter- 
action to the AFMR frequencies. 

Let us determine the ground state of the system. The 
equilibrium value of the vector M is obtained by minimizing 
the potential (3 )  with respect to M,, M y .  and M,: 

To find the equilibrium values of the vector L it is more 
convenient to transform to the angular coordinates 

I,,=L,, cos 0 c o q .  /,,=I,, sir) 0, I , ,= - - / ,  cos 0 sill qm, ( 5 )  
Os.Os;n/?. -x/?< .,,, .<x/?. 

It is easy to verify that in the absence of an external field 
there exists a solution 0 = p = 0 which agrees, in orthofer- 
rites with nonmagnetic R-ions, with the actually observed 
state2' ( the L,M, state). 

The analysis of the ground state and, next, the calcula- 
tion of the frequencies in the presence of an external field, 
will be carried out for two cases, with the field directed along 
the c axis (z axis) or the a axis (x axis). 

We introduce first the notation used hereafter: 

In a field directed along the c axis, the ground state of the 
vector L does not change; we do not obtain the range of the 
thermodynamic-potential constants in which this state is 
stable. 

In a field directed along the a axis, the equilibrium val- 
ues of the angle e, are determined from the equation 

=cos (1 (H,:H,,. sin cl:+H,,, si l l , '  ( P - I ~ H ' s ~ I ~  (p I I H , , )  4). (6)  
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It can be seen from (6 )  that in the case Hlla there can exist a 
collinear phase 

and a canted phase determined by the vanishing of the 
expression in the parentheses. 

To construct the phase diagram, we consider the sec- 
ond-derivatives matrix 

Calculations have shown that in the case Hllc the initial 
L,M, phase remains stable. 

The most interesting situation arises in the case Hlla. 
The matrix {a;)  is reduced here to a block-diagonal form 
(8, My and M,, M,, and p are separated). It is k n o ~ n ' ~ . ' ~ - ~ '  
that in a magnetic field parallel to the a axis of the crystal the 
spin flip takes place in the ac plane; we consider therefore the 
stability with respect to the variables M,, M, ,  and p. From 
the condition that the collinear phase (cos p = 0 )  be stable 
to variations of the angle and to variation of the combination 
of the variables M, and p, we obtain equations for the fields 
in which the transition to the canted phase takes place: 

As seen from a comparison of (9)  and ( l o ) ,  allowance for 
the nonzero susceptibility xII in the direction of the antifer- 
romagnetism axis increases the transition field (H,/H; 
= 1.1 in YFeO, at xll /x, = 0.3); at xIl = 0 the conditions 
(9 )  and (10) are identical. Note that (10) can be obtained 
from the equation of state (6 )  by putting in the latter 
sin p = 1. 

Substitution of the equation of state in the condition for 
the stability of the canted phase changes the latter into 

The principal task of the present paper is to construct 
the phase diagram for the investigated spin flip. It turned out 
that the phase diagram, which depends as usual on the coef- 
ficients of the Landau thermodynamic potential and is a 
complicated formation in multidimensional space, can be 
mapped uniquely, by a nonlinear transformation of the co- 
ordinates, on a two-dimensional planepq, where 

are dimensionless parameters. In terms of these somewhat 
unusual coordinates the phase diagrams shown in Figs. 1 
and 2 have a standard form (first- and second-order phase- 
transition lines, tricritical point, etc. ). We point out special- 
ly that for a variable magnetic field and a constant tempera- 
ture the thermodynamic plot on the given phase diagrams is 
no longer a straight line parallel, as usual, to one of the coor- 
dinate axes, but is a curve, some part of which is shown in 
Fig. 1 for the thermodynamic plot investigated by us (line 
MN, only the magnetic field changes). 

In terms of the indicated variables, the stability condi- 
tions ( 11 ) and the equations of state (6 )  reduce to the form 

y sin cp-pfsign HA? sirl"=O. 
sign H..,i=H.,,lIH,,I. 

FIG. 1. Phase diagram in a field directed along the a axis for the case 
H,, >O; q = ( H E  H,, - vH')/H,IH,, 1 ;  p = HH,/H,IH,, 1; I-sta- 
bility region of the collinear (cos p = 0) phase; 11-stability region of the 
canted phase. The dashed line shows the thermodynamic path for YFeO, 
at T = 2 9 3 K .  

Since the topology of the phase diagram depends on 
sign HA, ,  we consider hereafter separately the situations 
HA, > O  (sign HA, = 1) and HA, <O (sign HA, = - 1).  
In the former case we find from ( 13) that the stability of the 
canted phase is lost only at sin p = 1. The stability-loss line 
p = q + 1 of the canted phase coincides in this case with the 
line of the onset of the collinear phase. This means that in our 
case the transition between the canted and collinear phases 
can be only of second order. The corresponding phase dia- 
gram is shown in Fig. l .  

The phase diagram for the case HA, < 0 is shown in Fig. 
2. A t p > 2  the stability-loss lines of the canted and collinear 
phases coincide and here, just as in the case HA, ,  a second- 
order phase transition takes place. At OG p ~ 2  the stability 
regions of both phases overlap, and the transition between 
the canted and collinear phases should be of first order. We 
note once more that in the variables p and q the phase dia- 
grams of the spin flip in a field Hlla are the same for all 
orthorhombic crystals with magnetic configuration M,L, .  

Reduction" of the experimental data on the magnetiza- 
tion of YFeO, has shown that HA, is positive at 4.2 K and 
amounts in our notation to -0.1 H,, . Consequently, if the 
field is exactly oriented along the a axis, the transition from 
the canted to the collinear phase should in this case certainly 
be of second order. 

FIG. 2. Phase diagram in a field directed along the a axis for the case HA 
< 0; BAD-stability-loss line of collinear phase; OAD-stability-loss line 
ofthe canted phase; CA-line of equal energies. The remaining notation is 
the same as in Fig. 1. 

176 Sov. Phys. JETP 66 (I), July 1987 Balbashov etal. 176 



DETERMINATION OF THE AFMR FREQUENCIES 

To find the antiferromagnetic-resonance frequencies 
we use first the hydrodynamic equations of motion without 
dissipation292': 

Here, H, = aA@/dAM; H, = dA@/aAL; A@ is the addi- 
tional thermodynamic potential due to the deviation of the 
system from equilibrium: 

B = {av)  is the matrix of the stability (of the second deriva- 
tives) with respect to the variables X = (M,,M,,M,,L,,L,, 
L, ). Taking ( 16) into account, we can also express the equa- 
tions ( 15) in the form 

where r is an antisymmetric dynamic matrix.22 
Note that the approximation M: = M: = const corre- 

sponds to r ,  = r, = r, (the Landau-Lifshitz equations). 
The constraint L2 = const chosen by us corresponds to the 
condition" y, = 0. 

We seek the solution of the system ( 17), as usual, in the 
form 

Solving thz secular equation of the system ( 17), we obtain 
two natural oscillation frequencies w , and w, corresponding 
to the quasiferromagnetic and quasiantiferromagnetic 
modes. 

In a field directed along the c axis, the frequencies are 
given by the equations (here and elsewhere Ay = y, - y,) 

In a field directed along the a axis, the frequencies in the 
collinear phase (H>H, ) are given by 

and in the canted phase (H<H, ), the expressions are un- 
wieldy and are given here under the assumption3' 
y ,  = yz = y:  

where 
P = l I ~ : ( l / o l , + / ~ , ~ ~  sin2 cp) +l/Ij2-,,/12, 
(I=//,:( /I,, +::I/ ,, sill' (p)c.os2 cpS.l12(si~~'q:-I]), 
/ ~ = / ~ ~ ( i + t l ) ~ r o . ~ ~ ( ~ .  (24) 

Substitution of the threshold field HI of the transition 
from the canted to the collinear phase in Eq. (2 1 ) leads to a 
nonzero frequency of the quasiferromagnetic mode at a sec- 
ond-order phase-transition point: 

XI1 @ ~ ' I ~ = ~ , = - [ ~ ~ H . + A ~ ~  XI XII  ( H , + H , )  1' .  

As already noted in the Introduction, the presence of a 
gap may mean that some oscillation modes were lost in the 
analysis of the secular equation of the system ( 17) because of 
the special form of the equations of motion (in the present 
case, because dissipation was not taken into account). We 
consider next, therefore, equations of motion containing 
terms that describe dissipative processes: 

Here a ,, a,, b, and p2 are phenomenological relaxation pa- 
rameters. Equations (25), just as ( 15), are written in the 
exchange approximation. 

We consider the case of the collinear phase at H)H,. 
This simplifies substantially the calculations and yields ex- 
act equations for the low-frequency oscillation modes of in- 
terest to us: 

(-io+~') AL,+~~AM,I+~'Fl~l.II=O, 
c,AL,f (-io+e,)AM,,+c~A1tI,=0, (27) 
F"'AL,+c,AM,,+(-io+~,,)l,I/.=O. 

Here 
11+-//1, 

c,=y,l/,. c,=Ay------ Ii+//oc+l/.,,~, 
I/, 

Since the inequalities HE $HI,  H, $Ha,, HA, are satisfied 
in the considered orthoferrites, we have the following rela- 
tions for the parameters E connected with the dissipation: 

With (28) taken into account, the secular equation of the 
system (27) is of the form 

where 

w , is the frequency of the quasiferromagnetic mode without 
allowance for dissipation and is given by Eq. (21). We see 
that when dissipation is taken into account the secular equa- 
tion becomes cubic. Solving this equation (assuming low 
dissipation) ,4' we obtain the following three complex natu- 
ral frequencies of the oscillations: 
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FIG. 3. Approximate plots of the real and imaginary parts of the AFMR 
quasiferromagnetic mode (o,, = wid + iw;b) and relaxation mode 
( w , ,  = iwYd) near a second-order phase transition. 

the first two of which are the frequencies of the quasiferro- 
magnetic mode with damping 

and the third is the frequency of the relaxation mode. Quali- 
tative plots of the real and imaginary parts of w ,, and a,, are 
shown in Fig. 3. I t  can be seen that it is precisely the relaxa- 
tion mode which has a singularity in the phase transition, 
viz., besides the real part, which is identically zero, the 
imaginary part of the complex frequency is also zero. We 
emphasize once more that without allowance for the suscep- 
tibility in the direction of the antiferromagnetism axis and 
for the dissipation, the relaxation mode simply drops out. 
We note also that experimental observation of a gap in the 
spectrum of the quasiferromagnetic mode at a second-order 
phase-transition point is an indirect indication of the exis- 
tence of a relaxation mode. 

EXPERIMENTAL PROCEDURE AND REDUCTION OF 
RESULTS 

We measured in the experiment the positions of the ab- 
sorption lines, due to the electromagnetic radiation incident 
on the sample, as functions of the applied magnetic field at 
T = 293 K. The measurements were made with the setup 
described in Ref. 23. The radiation (60-400 GHz, il = 5- 
0.75 mm) was produced by backward-wave oscillators. The 
wavelength was measured with a Fabry-Perot interferome- 
ter24 with reticular mirrors, at an accuracy not worse than 
0.5%. The radiation was transmitted through a multimode 
light waveguide to a receiver based on n-InSb and cooled to 
4.2 K. The magnetic field was produced by the "Solenoid" 
apparatus of the strong-magnetic-field department of our 
institute." The field was calibrated to within 1% from the 
positions of the EPR lines in DPPH mounted on the sample. 
The YFeO, samples were obtained by crucibleless zone 
melting with radiative heating2' and were plates with trans- 
verse dimensions 3 X 6 mm, oriented perpendicular to the a 
or c axis of the crystal. We investigated only three samples, 
of which two were cut from one bulky single crystal and were 
oriented by x-ray diffraction accurate to f lo in the direc- 
tion of the a or c axis of the crystal. The sample thicknesses 
were 0.5 and 1 mm, respectively. The third sample, obtained 

from a different melt, was perpendicular to the c axis and 0.1 
mm thick. All the samples were annealed in oxygen in accor- 
dance with the following schedule: 2 h heating to 1300 "C, 4 
h kept at this temperature, and 2 h cooling. The AFMR line 
width of the annealed crystals was 0.5-1 kOe, as against 2-5 
kOe for those not annealed. According to calculations made 
in Refs. 27 and 12, the minimum value of the AFMR fre- 
quency in a field applied to along the a axis is extremely 
sensitive to even a small deflection from the axis in the ac 
plane and depends little on the deflection of the field in the ab 
plane. 

In view of the fundamental importance of the results 
(observation of an appreciable energy gap in the spin-wave 
spectrum at a second-order phase transition point), let us 
dwell in greater detail on the procedure used to orient the 
sample. Precise orientation of the crystal in the magnetic 
field in the direction of the a axis was implemented with a 
rotating stage on which the sample was mounted, and ad- 
justing screws that permitted to the waveguide to be tilted in 
two planes, and was effected in two stages. During the first 
stage, the crystal was positioned in such a way that the split- 
ting of the AFMR lines for H < H ,  and H > H ,  was a maxi- 
mum. The frequency was then lowered and the orientation 
was improved; this was repeated down to frequencies at 
which the splitting of the resonance lines was still noticeable. 
In the second stage the external magnetic field was fixed at a 
value at which the change of the resonance-line intensity was 
a maximum, and the final setting was adjusted by coordinat- 
ed rotation of the adjustment screws. (The second adjust- 
ment stage is illustrated in Fig. 4, which shows examples of 
the AFMR lines obtained at different frequencies at the best 
achieved orientation of the sample.) In the presence of a 
practically continuous frequency spectrum, this procedure 
made possible a highly accurate ( f 3') orientation of the 
sample in the magnetic field. 

The measurement results (which were the same within 
the limits of experimental error for all three samples), in a 
field applied in the direction of the axis a or c, are shown in 
Fig. 5. The inset shows in enlarged scale the dependence of 
the squared AFMR frequency on the field close to the com- 

FIG. 4. Typical plots of AFMR lines of YFeO, for T = 293 K and differ- 
ent frequencies: 1-75 GHz, 2-127 GHz, 3-130 GHz, 4-131.6 GHz, 
5-168.5 GHz. The arrow shows the change of the signal intensity on 
improvement of the orientation in a fixed magnetic field. 
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pletion of the spin-flip transition. Curve 1 of the figure corre- 
sponds to the maximum attained accuracy of the sample ori- 
entation. Curves 2  and 3  were obtained with the magnetic 
field deflected 5' and 30' respectively from the optimum po- 
sition in the ac plane. The minimum energy gap obtained in 
the experiment was 126 GHz f 2%. I t  should be noted that 
at exact field orientation there was observed, near the com- 
pletion of the spin-flip transition, all the way to 60 GHz, 
gradually fading unsplit absorption lines, just as in Ref. 12, 
which we attribute to "tails" of the AFMR lines. Observa- 
tion of these lines made it possible to determine the transi- 
tion field H, = 7 1.5 kOe accurate to + 0.5 kOe. 

The measurement results were reduced as follows. The 
field dependences of the AFMR frequencies in a field ap- 
plied along the c axis, and also in a field along the a axis at 
H > H,, were approximate in accordance with Eqs. ( 19) and 
(21)  by polynomials of the form 

where rO is the gyromagnetic ratio. We first calculated by 
least squares the experimental values of a,, a,  and f i r ,  8, as 
functions of T in the range 0 . 8 ~ 7 ~  1.2; we determined at the 
same time the mean squared deviation 6 , "  ( 7 )  of the calcu- 
lated curve from the experimental one. It was found that 6, 
depends little on r; 6, shows only a weak minimum near 
r  = 1. The calculated values of a,  and a,  remain within the 

FIG. 5. Plots of the squared frequency of the quasiferromagnetic 
AFMR mode of YFeO, in a field directed along the axis s or c at 
T = 293 K. Points-experimental data, solid curve-calculat- 
ed. The inset shows in enlarged scale the v Z ( H )  dependence near 
the completion of the spin-flip transition at small deviation of 
the sample position from exact orientation: I-exact orienta- 
tion, 2-5', 3-30'; v,  = 302 GHz f 296, v, = - 326 
GHz f 3%, v,,, = 126 GHz f 2%, v,, = 107 GHz + 2%, v,, 
= 20GHz, H, = 71.5 + 1 kOe. 

limits of the experimental accuracy as r is varied from 0.8 to 
1.2, and turn out to equal (a t  r  = 1 )  

a,=- ( l 3 7 i 3 )  l o L  kOe2, a,= (1  1(i+ir0.3) 10' kOe2. 

The same values of a,  was obtained by reducing the experi- 
mental results with the aid of Eq. ( 33 )  in the case Hlla in 
fields up to 15 kOe. 

To  determine the values o f 8 ,  and 8, we used the fact, 
which follows from ( 19 )  and ( 21 ) ,  that they should satisfy 
the following relations: 

with 

The values of 8, and 8, coincide for the calculated 8, (T) 
and 8, (7 )  dependences at a single points with coordinates 
r  = 1 f 0.0 1 and D =  ( 140 f 2)  kOe. From the experimen- 
tally obtained value for 7 = 1, and from the fact that for an 
ion in the S state, such as Fet', we should have A y / y <  1 ,  it 
was concluded that this compound we have, accurate to 
about one percent, 

Y~=Yz"fa (34)  
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The condition (34) makes it possible to simplify Eqs. ( 19) resonance was developed for a rhombic antiferromagnet 
and (21 ) and to determine the energy gaps and the Dzyalo- with weak ferromagnetism for the case of spin flip in a field 
shinskii fields: directed along the a axis, with dissipation processes taken 

into account. It was shown that besides the known oscilla- I I , I~ , ,= (11f i fO .5 )  1O2kOe', 
tion modes of the antiferromagnetic resonance there should 

IIJ,HA?= ( 2 1 f 3 )  10' kOe2, RD= ( 1 4 0 t 2 )  kOe. exist also a relaxation mode of the oscillations, which is 

The quantity H,H,, agrees well with the data of Refs. 
15 and 16 and differs somewhat from those of Ref. 14. The 
field H, agrees with the value obtained from a static2" exper- 
iment. The value of HA, at T = 293 K, just as at T = 4.2 K 
(Ref. 19), turned out to be positive. This circumstance, as 
well as the fact no hysteresis phenomena whatever were ob- 
served in the experiment near the completion of the spin-flip, 
indicates that the phase transition in this case is of second 
order. 

Extrapolation of the v2 ( H )  dependence from the region 
of strong magnetic fields to the spin-flip-transition field 
(point A in Fig. 5)  yields for the gap in the transition field a 
value v, = 107 GHz +_ 2%, which is stable to field disorien 
tation up to 2" relative to the crystallographic axes in any 
direction, if the data are reduced using the experimental 
points from the region H> 1. lH, .  As seen from Eq. (25),  
from the size of the gap in the transition field we can get the 
ra t ioxi  /x1 of the longitudinal and transverse antiferromag- 
netic susceptibilities. It is necessary here to subtract from the 
value of the gap the contribution due to the magnetoelastic 
interaction: 

yo2 Y,, = - 4 yo2 I Ea I Lao2 J[,H = - - . 
( a x ) '  "' 2  (2n)' xl ' (35) 

here E, is the elastic modulus in the direction of the a axis, 
andil,, is the magnetostriction in the direction of the a axis 
in a field applied along the a axis. 

To estimate this contribution we used the data of Refs. 
19 and 20, viz., X, -5. at YFeO, density p=:5 g/cm3, 
A,, = - 1.5. lop5, and E, = - 2. lo1* erg/cm3. We ob- 
tained for the magnetoelastic gap a value not higher5' than 20 
GHz, i.e., much lower than observed in experiment. This 
made it possible to determine from a dynamic experiment 
the ratioxi, /xi = 0.3 0.03 of the parallel and perpendicu- 
lar susceptibilities. This ratio agrees with the value obtained 
in the molecular-field theory. 

Using the values of HEHa,, HE HA, ,  H, and x,, /x, 
determined above, we used Eq. (23) to plot the v2(H) de- 
pendence in the canted phase at O<H<H,; as seen from Fig. 
4, the theoretical curve agrees, to within the plotting accura- 
cy, with the experimental points.6' 

CONCLUSIONS 

We conclude by formulating briefly our main results. 
1. Assuming L2 = const, phase diagrams were plotted 

for a rhombic antiferromagnet with weak ferromagnetism in 
a field directed along the a axis (which coincides with the 
initial direction of the antiferromagnetism vector); it was 
shown that the topology of the phase diagrams depends on 
the sign of the combination of the biquadratic anisotropy 
constants. An equation was obtained for the spin-flip-transi- 
tion field at nonzero temperature; this equation depends on 
the susceptibility in the direction of the antiferromagnetism 
axis. 

2. Assuming L2 = const, a theory of antiferromagnetic 

"soft" for the spin-flip transition. The frequency of the qua- 
siferromagnetic mode in a second-order phase transition 
should differ from zero. 

3. An appreciable energy gap of nonmagnetoelastic ori- 
gin was experimentally observed in the spectrum of the low- 
frequency quasiferromagnetic mode for a second-order spin- 
flip transition in yttrium orthoferrite YFeO,, in an external 
field directed along the a axis. 

4. The low-frequency AFMR mode in YFeO, was ex- 
perimentally investigated at frequencies 60-400 GHz and at 
T = 293 K, in magnetic fields up to 130 kOe directed along 
the axes c and a. The values of the energy gaps, transport 
coefficients, Dzyaloshinskii field, and the ratio of the longi- 
tudinal and transverse susceptibilities were determined. 

I '  However, the gap observed in this substance could be due also to inac- 
curate orientation. This was pointed out, in particular, by the authors of 
Ref. 12. 
This condition can be easily obtained by taking the scalar product of the 
last equation of (15) and L: id L2/dr = - y, H, [M,,x L,,], from 
which it can be seen that, since L,, is not collinear with M,,, it follows 
from the constancy of L' that y, = 0. 

"The equations obtained by us for the frequencies in the canted phase 
differ from those of Ref. 12 even in the case 7 = 1. 

4 '  This assumption, which takes the form w, , E , ,  E ,  is valid in the entire 
range of fields, since the AFMR spectrum of YFeO, has a gap. 

5 '  The estimate obtained by us for the magnetoelastic gap agrees well with 
the experimental value 15 GHz (Ref. 18) observed in the orthoferrite 
ErFeO, in a second-order phase transition at low temperatures. 

6' The value of H,H,, needed for the calculations was taken from Ref. 16. 
Calculation has shown that variation of the unknown parameter 
H,H>, in Eq. (35), in a range + 0.3H,HU,, necessitates insignificant 
(less than 1 % ) corrections for v'(H). 
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