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It is shown theoretically that in a metal irradiated by a large-amplitude radio wave there can exist 
low-frequency induced magnetic-field self-wave structures. A self-wave constitutes a moving 
domain wall that divides the sample into two regions in which the induced field h is parallel and 
,antiparallel to the external field h,. The velocity and direction of such a switchover wave are 
determined by the magnitude and sign of the field h,. I t  is proved that the current state with an 
induced field h antiparallel to the field h,, is metastable. This conclusion confirms the principle of 
minimum entropy production for a metal in a current state. The results of the paper explain the 
available experimental facts. 

The recently initiated active experimental investiga- 
tions of nonlinear electrodynamic properties of metals con- 
tinue to this day to provide nontrivial result. Although many 
nonlinear effects have been theoretically explained, many 
experimental facts have not even found a physical interpre- 
tation. These include the spatially inhomogeneous magnet- 
ic-field structure induced by a radio wave of large amplitude 
and observed by Dolgopolov and Chuprov,' the metastabi- 
lity of current  state^,^ and nonlinear-wave propagation ac- 
companied by reversal of the magnetic moment of the sam- 
ple.2 The theoretical investigation reported here shows that 
the above experimental facts have a common cause and can 
be explained in the context of self-wave (SW) theory. 

In contrast to other wave processes, self-waves have 
unique properties: their characteristics depend only on the 
properties of the medium, are independent of the initial con- 
ditions, and are independent far from the edges of the bound- 
ary conditions and of size of the samples. A particular case of 
self-waves are the waves in which the system is switched over 
from a high-energy to low-energy state. In  this case the ener- 
gy consumed in maintaining the waves is not recovered. The 
mathematical model used to describe such waves is a para- 
bolic equation of the Komogorov-Petrovskii-Piskunov 
(KPP)  type.3 

Self-wave theory is used to explain various processes in 
nonequilibrium media (see, e.g., Refs. 4 and 5).  Note that in 
the case of weak spatial dispersion the distribution of an elec- 
tromagnetic field in a metal can be described by a diffusion 
equation (of parabolic type). It is therefore natural to expect 
the appearance of electromagnetic self-waves in metals un- 
der certain conditions. We show here theoretically, for the 
first time ever, that low frequency self-waves of the induced- 
field structure are produced in a metallic plate irradiated by 
a radio wave of high amplitude and are describable by an 
equation of the K P P  type. 

1. Let a monochromatic wave of frequency w and ampli- 
tude Z b e  normally incident on the boundary of a metal and 
let its polarization be such that the vector of its magnetic 
component is collinear with the external magnetic field h,. 
The frequency and amplitude of the incident waves are such 
that a quasistatic anomalous skin effect is produced: 

6-Tu  ,,,,-csp (-2ny) ] /ho)o , ) ' . ,  
( 1  

Here e, pf, v, and I are respectively the charge, Fermi mo- 
mentum, relaxation frequency, and mean free path of the 
electron, 6 is the skin-layer depth at the frequency w of the 
incident wave, uo is the static conductivity of the unbounded 
metal, R is the curvature radius of the electron trajectory in a 
field 2X, and c is the speed of light. 

I t  is known6 that at amplitudes 

a magnetodynamic nonlinearity effect appears in metals and 
its mechanism is connected with the influence exerted on the 
conduction electron dynamics by the proper magnetic field 
of the current excited in the sample. Note that in this case the 
electronic system is in slight disequilibrium even in the 
strong-nonlinearity regime: the addition eEl to the electron 
energy as a result of the disequilibrium is always small com- 
pared with the Fermi energy. The magnetodynamic nonlin- 
earity leads to the onset of a current state (CS),  meaning 
appearance of an intrinsic magnetic moment in the irradiat- 
ed sample. The theory describing the excitation of a constant 
and homogeneous magnetic field h was developed in Refs. 7- 
10. An analysis was made there of the dynamics of the depen- 
dence of the induced field h on the external field h,, with 
change of the amplitude X, and it was proved that at ampli- 
tudes higher than a certain critical value re, the function 
h(h,) becomes multiply valued in some regions. In other 
words, there exists an interval of external fields h,,, within 
which the sample is a multistable system. The actual state of 
the metallic sample depends on the prior history, i.e., on the 
state from which the transition takes place, on the character 
of the perturbation that causes the transition, and on the 
dynamics of the transition itself (see Refs. 1 ,  2, 6 ) .  

A metal in which a CS is excited is similar in a certain 
sense to a system with several metastable states in thermody- 
namics. Each such state corresponds to a relative minimum 
of the free energy and therefore, being stable to small fluctu- 
ations, is unstable to fluctuations of finite amplitude. The 
lifetime of the system in the metastable state is determined 
by the probability of producing such a fluctuation. An abso- 
lutely stable state corresponds to an absolute minimum of 
the free energy. 

No general principle similar to the free-energy-mini- 
mum principle was established for essentially nonlinear non- 
equilibrium systems. Attempts to use the principle of mini- 
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mum entropy production as the general principle cannot be 
regarded as sufficiently well founded, since it was proved 
only for linear nonequilibrium systems." To determine 
which of the states is absolutely stable it is necessary to ana- 
lyze in detail the complete set of equations. In this case, as 
shown in Ref. 12, a large class of initial conditions for an 
equation of the KPP type leads to solutions that tend asymp- 
totically (as t - + m ) to SW systems. This fact makes it 
possible to detect metastability of states on the basis of an 
analysis of the SW solutions. 

2. Assume that the magnetic field h induced in the sam- 
ple outside the limits of the high-frequency (hf) skin layer is 
not constant and not homogeneous. The characteristic times 
of variation of this field will be assumed long compared with 
the period 2r/w of the incident wave. Since the electromag- 
netic field in the metal contains in this case two substantially 
different time scales, it is natural to expect two characteristic 
space scales to appear. Added to the scale S over which the hf 
fields attenuate is a scale 6 %S due to the presence of the low- 
frequency (If) time dependence. 

The nonlinear interaction between the magnetic fields, 
which excites the current state in the metal and gives rise to 
the self-wave structures, takes place in the skin layer S.  It is 
quite obvious that a current localized in this depth is a sur- 
face current from the standpoint of the low-frequency prob- 
lem. Therefore the effect of magnetodynamic nonlinearity 
can be described in terms of a nonlinear boundary conditions 
for the If fields. This effective boundary condition is derived 
in the Appendix. 

Consider bilateral excitation, symmetric with respect to 
the magnetic field, of a compensated-metal plate ( - d / 
2<x<d /2, - m <y,z< + m ) by a hf wave. We direct the z 
axis parallel to the vector of the constant and homogeneous 
external magnetic field h,, (see Fig. 1 ) . 

We seek the electric and total magnetic fields in the 
metal in the form 

E={E,(x. Y, t ) ,  Eu(x, y, t ) ,  0), H={O, 0, H ( s ,  y, t ) ) .  (3)  

In this geometry, the Maxwell equations are 

0 .  J ,  t 4.r~ 
- = __ d f  (x. y ) 4n 

( x  y f )  ----- = - 
d s c d y i x ( x ,  Y, t ) ,  

To find the low-frequency field induced outside the hf skin 
layer we must supplement the Maxwell equations (4)  with 
effective boundary conditions on both sides of the plate 
(X = + d / 2 ) .  Assuming the plate to be thick enough 
( d ) S ) ,  we can formulate the boundary conditions indepen- 
dent of one another. According to (A. 13) we have 

The function @ ( x )  defined by Eq. (A. 12) can be easily writ- 
ten in explicit form by using a simplified model that does not 
take into account the inessential time dependence of the con- 
ductivity of the trapped electrons. In this model, @(%) is 
described by the expression 

FIG. 1. 

( 6 )  
where a = h,/2X and b = (8R6) I t 2 / Z  = (h / 2 P )  ' I 2  is the 
nonlinearity parameter. We assume here for simplicity that 
the metal boundary is diffuse. A nondiffuse reflection of the 
electrons from the sample surface can be accounted for in a 
manner similar to that used in Ref. 10. It will be shown below 
that the feasibility of self-wave structures is determined by 
the most general properties of the function @ ( x )  . Therefore 
allowance for the non-diffuse reflection does not lead to 
qualitatively new effects. 

We confine ourselves to finding smooth distributions of 
the low-frequency fields, i.e., 

The inequalities (7)  make it possible to use the local connec- 
tioil between the density of the current and the electric field 

We substitute the current density (8)  in the Maxwell equa- 
tions (4)  and eliminate from the latter the electric field. 
With allowance for the boundary condition (5 )  we obtain a 
complete system that determines the distribution of the mag- 
netic field in the interior of the plate: 

Recall that outside the hf skin layer 6, where Eqs. (9)  and 
( 10) are valid, the quantity x is the sum of the external mag- 
netic field h,, and the induced low-frequency field h (x,y,t) in 
units of 2 Z .  

The system (9) ,  ( 10) has static homogeneous solutions 
implicitly specified by the equality 

These solutions x ( a )  were obtained in Ref. 9. I t  follows from 
that reference that at amplitudes 2'Y lower than the critical 
value XCr the function @ ( K )  decreases monotonically at all 
values of the external parameter a. This corresponds to a 
unique % ( a )  dependence, i.e., to absence of hysteresis of the 
induced field as a function of the external one. At amplitudes 
2Y > Xcr the function @ (x  ) becomes N-shaped (Fig. 2). In 
this situation we get a range of external fields - a* < a  <a*  
in which Eq. ( 11 ) has three solutions ?ti < ?t2 < x, at a fixed 
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FIG. 2. 

a .  In other words, the % ( a )  dependence becomes multiply 
valued, corresponding to onset of hysteresis of the induced 
field. 

Let us test the static homogeneous solutions (i = 1,2,3) 
Eq. ( 11 ) for stability to perturbations of the form 

Substitution of x i  + Ax in the linearized Eq. ( 7 )  yields the 
dispersion law 

Allowance for the boundary condition ( 10) leads to a "se- 
lection rule" for the wave number k: 

where the prime denotes the derivative with respect to the 
argument. 

At @' < 0 Eq. ( 14) has only imaginary solutions. Ac- 
cording to ( 13), this means damping, with time, of the fluc- 
tuations ( 12 ) near the homogeneous solutions x , and x, (see 
Fig. 2). At @' > 0 Eq. (4 )  has, beside the imaginary solu- 
tions, one real solution that corresponds at lql < lk 1 to 
growth of fluctuations, long-wave in y,  near the homogen- 
eous solution x2. Thus, the branches of the multiple-valued 
functions % ( a )  that correspond at fixed a to the minimum 
and maximum values of the induced field are stable, while 
the inner branch is unstable to infinitely small If electromag- 
netic perturbations. Note that the stability criterion @' < 0 is 
the same for perturbations that are both symmetric and anti- 
symmetric with respect to the magnetic field. 

The physical meaning of the stability condition @' > 0 is 
quite lucid. The fluctuating lf electric field produces in the hf 
skin layer a current that contains, besides a smoothly modu- 
lated hf component also a purely If component (rectification 
effect). According to ( 101, the magnetic field AH = 2 X A x  
produced in this case by the rectified current in the transition 
region is connected with the electric field by the relation 

It follows hence that the direction of the x-projection of the 
Poynting vector on the effective boundary is uniquely con- 
nected with the sign of the derivative @'. If @' > 0 the Poynt- 
ing vector is directed into the interior of the plate at both 
boundaries, and at @'<O it is directed outward. The fact 
that at @'>O energy transfer is possible from the hf skin 
layer to the interior of the plate leads to instability and al- 
lows us to expect formation of self-wave structures that are 
due to competition between the transfer of the electromag- 

netic energy from the hf skin layer and its dissipation over 
the entire thickness of the plate. Indeed, it will be shown 
below that the static homogeneous distributions of the in- 
duced magnetic field are not the only solutions of the prob- 
lem (9 )  and (10).  

It is impossible in the general case to obtain inhomogen- 
eous solutions of the system ( 9 )  and ( 10). We confine our- 
selves therefore to a limiting case when the plate thickness d 
is much less than the spatial scale 8 of variation of the fields. 
Expanding in (9)  in powers ofx/8  and using the boundary 
conditions ( l o ) ,  we obtain an equation that describes the 
magnetic field distribution and is independent, in the princi- 
pal approximation in d /8, of the transverse coordinate: 

Here 7 is a dimensionless coordinate in the direction of the 
hf current, T is the dimensionless time: 

We seek the self-wave solutions of Eq. ( 15) in the form 

Putting 6 = (y  - ~ t ) / 8  in (15),  we obtain the follow- 
ing ordinary nonlinear differential equation: 

A standard analysis of this equation (see, e.g., Ref. 13) 
makes it possible to find a large class of self-wave solutions. 
All but one of them, however, are unstable to fluctuations of 
the form Ax(g)exp(/lt). The only stable solution is of the 
kink type, corresponding to a self-wave of the induced mag- 
netic field 

which is a domain wall of width 8. Induced-field values cor- 
responding to the homogeneous solutions x ,  ( a )  and x , (a)  
are realized on both sides of the domain wall. The domain- 
wall velocity Vis determined by the magnitude and direction 
of the external magnetic field h,,. To be able to determine the 
direction of the velocity V and to estimate its magnitude, it 
suffices to multiply Eq. (17) by x2dx/d6 and integrate it 
with respect to 6 from - w to + w . Recognizing that dx /  
d l  = 0 for kink-type solutions at 6 = + W ,  we get 

In the absence of an external magnetic field h,,, the domain- 
wall velocity vanishes and the induced field in the sample has 
a static inhomogeneous distribution whose values on oppo- 
site side of the wall are of equal magnitude and opposite 
direction. In a nonzero external field, the domain-wall mo- 
tion is such that the region in which the induced field is 
parallel to the external wall crowds out the region in which 
these fields are antiparallel. 
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3. The fact that the sample is bounded in the direction 
the domain-wall motion means that the SW solutions in a 
zero field h,, describe a transient process-a switchover 
wave. Perturbations of finite amplitude change the sample to 
a state in which its intrinsic magnetic moment is parallel to 
the external magnetic field. Thus, the state in which the mag- 
netic moment is antiparallel to the external field is metasta- 
ble. This conclusion agrees with the principle of minimum 
entropy production. It  is known (see, e.g., Ref. 14) that the 
rate of entropy production in an isothermal process is de- 
scribed by the expression: 

The angle brackets denote here averaging over the period 
~ T / W  of the incident wave (see the Appendix), and Z,  is the 
surface impedance of the metal at the frequency w .  Figure 3 
shows schematically the dependence, obtained in Ref. 15, of 
the real part of the impedance 2, on the external field h, for 
a metal located in a current state. The arrows on the curves 
indicate the direction of the change of h,, and the markings 
on the curves indicate the homogeneous state to which they 
pertain. It can be seen from (20) that the entropy production 
is a minimum in a state with an induced field x = x, > 0 if 
h,, > 0, and in a state with x = x I < 0 if h, < 0. The principle 
of minimum entropy production is valid for a metal in a 
current state. 

4. It is undoubtedly of interest to ascertain the possibil- 
ity of existence of self-wave structures of an induced magnet- 
ic field at an arbitrary plate thickness. Progress in the answer 
to this question can apparently be made only be making 
some minor simplification, viz., replace the quantity K and 
its order-of-magnitude estimate in (8)  by unity. This means 
neglect of the influence of the inhomogeneity of the induced 
magnetic field on the surface. The system (9)  and ( l o ) ,  
which describes the distribution of the total magnetic field 
outside the hf skin layer, takes then the form 

From the definition ( 6 )  of the function @(%,a) it is seen that 
in the case of strong nonlinearity ( b  = h / 2 X )  'I" 1 ) we 
have 

( 1-u-) 1 - - . . < u. 
( AI'CTOP ( I  ' 

0 (z,  (7) = - % + ( ~ i -  
( 1 - ( ( 2 )  '1' 

(23) 
- z > 0. 

FIG. 3.  

The system (21) and (22) with the function @(%,a)  in the 
form (23) is mathematically equivalent to a problem investi- 
gated in Ref. 16. The authors of that paper proved the exis- 
tence of SW solutions at arbitrary plate thickness and ob- 
tained an implicit analytic expression for the domain-wall 
velocity (Eq. (22) of Ref. 16 at x(6-  cc ) > 0):  

x 

In our case we have 

( L J I  
( I -aZ) lh I / [  (I-a') ' '> 

8. = [-a+ -- 
arccos a A ~ C C O S  (-a) arccos a 

Inathinplate ( B 4  1) t h e p a r a m e t e r p ~ B  ' I 2 (  1 - 20,  ), i.e., 

This agrees with the result ( 19) above, thus confirming to 
some degree that the approximation made in the present sec- 
tion is admissible. In a thick plate ( B B 1 )  we have 
p z B ( 1  - 20,  ), i.e., 

Note that the stability (metastability) criterion is the same 
for plates of any thickness. 

5. The dissipative structure (zero-velocity self-waves) 
of the induced field in a sample in a current state was first 
observed in experiment in Ref. 1. I t  was noted there that in 
an experiment with one sample the transition to an inhomo- 
geneous distribution of the induced field takes place at dif- 
ferent values of the incident-wave amplitude. This confirms 
the metastability of the current state. The feasibility of using 
a metallic sample in which a current state is excited as a 
memory element was investigated in Ref. 2. A pulsed mag- 
netic field was applied to one end of a long sample, and a 
signal was picked-off the other end. In full accord with our 
results, the signal proceeded to the receiving coil only if the 
magnetic moment of the sample at the initial state was anti- 
parallel to the external magnetic field. The transition, effect- 
ed by the self-wave, of a sample of length L from a homogen- 
eous metastable into a stable one occurs within a time 
T = L / V. Let us estimate the switchover time T under con- 
ditions of the experiment of Ref. 2. A bismuth sample of 
conductivity a,-3.10" s-', length L = 1 cm, and thick- 
ness d = 0.05 cm is placed in an external constant magnetic 
field h ,  = 0.15 Oe. The current state is excited by an electro- 
magnetic wave of frequency w = 1.6.10' Hz and amplitude 
2? = 17 Oe. The electron mean free path is I = 0.1 cm. Since 
the parameter B z  8.3. lo2 in this situation, we calculate the 
self-wave velocity V using expression (27) and expanding 
the function 1 - 20. in powers of the small a = hO/2Z:  

T7-'/,ofia. (28) 

Substituting in (28) and ( 1 ) the numerical values of all the 
quantities, we obtain a self-wave velocity V ~ 2 . 7 . 1 0 '  cm/s, 
and hence a switchover time T ~ 3 . 7 . 1 0 - 5 .  Thus, the re- 
sults of the proposed theory agree well with the experimental 
facts. 
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Note that allowance for the inhomogeneity of the exter- 
nal magnetic field and of the sample (e.g., on account of the 
impurities) permits certain features of the experimental ob- 
servation of self-wave structures of the induced field to be 
explained. It was shown in a cycle of studies (see Ref. 17 and 
the literature cited therein), in which the influence of var- 
ious inhomogeneities on the solution of the nonlinear equa- 
tion was analyzed, that domains and domain walls are 
pinned by the inhomogeneities. In the case of an inhomogen- 
eous external field (but smooth compared with the scale 8 )  
the domain wall is localized in a region where h, = 0. A 
situation with several such regions is possible, and the metal- 
lic plate is in a multidomain state. A domain wall can also be 
pinned by inhomogeneities much smaller than the wall 
thickness 8. 

In measurements of the intrinsic magnetic moment 
averaged over the sample, the influence of the inhomogene- 
ity is manifested in the following manner. By varying the 
electric field h, we land in the metastability region of the 
current state. The self-wave produced, which in the absence 
of impurities would change the sample from a metastable to 
a stable homogeneous state, is pinned. The intrinsic magnet- 
ic moment averaged over the sample assumes an intermedi- 
ate value. Further change of the external field tears the do- 
main wall away from the impurity, and the detached 
self-wave ultimately brings the sample to a homogeneous 
stable state. Thus, the presence of inhomogeneities explains 
the existence of additional hysteresis jumps of the intrinsic 
magnetic moments of the sample as functions of the external 
field, and also the onset of inhomogeneous structures of the 
induced field at h,#O (Ref. 1 ) . 
APPENDIX 

Derivation of the effective boundary condition 

Consider a semi-infinite metal in an external constant 
and homogeneous magnetic field h, parallel to its surface. 
We direct thex axis into the interior of the metal perpendicu- 
lar to its boundary x = 0, and the z axis along the vector h,,. 
The net magnetic field on the metal surface is 

H (0,  y, t )  =2% cos o)t+h,. (-4.1) 

To derive the effective boundary condition we deter- 
mine the distribution of the electromagnetic field in the re- 
gion x -8 and takes its asymptotic value at S < x  <8. 

Note that the inhomgeneity of the fields along the coor- 
d i n a t e ~  is due only the low-frequency time dependence, and 
the corresponding spatial scale is 8 % ~ .  Therefore the cur- 
rent density calculated in the principal approximation inti/& 
in the skin layer S does not depend explicitly on y. This de- 
pendence is contained in the current only via the y-depen- 
dence of the electric and magnetic fields, and we can use for 
the current density the expression obtained in Ref. 18. 

The conductivity operator is nonlocal, and it is conven- 
ient to write the connection of the current with the electric 
field for the cosine Fourier transform 

According to Ref. 18, the action of the conductivity 
operator on the long- and short-wave components of the 
electric field is different, and we represent the field 
g, (k,y,t) in the form 

The hf component of the electric field gkr(k,y,t) is localized 
at a distance S from the metal boundary, and its Fourier 
transform is a maximum at k -6- I. The low-frequency elec- 
tric field present in the skin layer S varies over much larger 
distances AX-8, and its Fourier components are of the or- 
der of k-8-'.  

Following Refs. 18 and 19, we represent the current 
density in the form 

00 I ,  (k, y, t )  = - [ l-e-2"T] -'S(Ic, y, t) g:f(k,y,t) 
kl 

(3 
(A.4) 

+"RE: kl (0) SO- 2 cth VT, cos ~ X ~ J ,  ( k x , )  x,,E:'(o), 
kl  

1 - exp (-2ny) 
a =  1 - exp (-2vT,) ' 0, - = @  

where x, is the x-coordinate of the surface on which the 
resultant magnetic field vanishes, He, is the resultant mag- 
netic field in the transition region (on the effective boundary 
in the case of the low-frequency problem), and J, is a Bessel 
function. 

The first term in (A.4) describes the response to the 
high-frequency electric field. The factor (k l )  - '  in this term 
is a reflection of the usual conductivity spatial dispersion 
observed in the anomalous skin effect. The function O ,  
takes into account the fact that different electron groups 
make the main contribution to the conductivity at different 
instants of time. In those instants when 

(2% cos c l ) l+hi , ) / / { , , , , , , , (~ .  t ) > O ,  (A.5)  

the spatial distribution of the resultant magnetic field is of 
constant sign and the effective electrons move along trajec- 
tories that are close to Larmor circles. In the case of the 
opposite inequality 

however, a new group appears in the metal, viz., captured 
electrons. Their trajectories wind around the surface 
x = xO(y,t) on which the resultant magnetic field vanishes. 
The period 2T3 of the captured electrons is much shorter 
than the period 2?ry/v of the Larmor particles. As a result, 
during the period 2r/w of the hf wave the conductivity in the 
skin layer S changes by a factor a $ l .  It is just this time 
dependence of the conductivity of the hf skin layer which 
rectifies the current and leads to excitation of an induced 
magnetic field at x > S. 

The function F(kx,,), which makes more precise the 
captured-particle conductivity dispersion, tends to (x0/6)' 
as kx,-0. The next terms of the current (A.4) describe the 
response to the low-frequecy field $:f(k,y,t), the first of 
them being the contribution of the surface electrons, and the 
second that of the captured particles. Since both the surface 
and the captured electrons exist in a space region that is 
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narrow compared with 6 ,  their current is proportional to the 
value of the low-frequency field at x = 0.  

The first of the Maxwell equations (4) takes in the k-  
representation the form 

4n , 
21td+ $%COS m t - k l l  ( k ,  y, t ) =  - j v ( k ,  y, t ) ,  

C 
(A.7) 

where H(k,y,t) is the sine Fourier transform of the resultant 
magnetic field. We divide Eq. (A.7) with a current density 
(A.4) by S(k,y,t) and average the result over the "fast" time 
(over the period of the hf wave) : 

- 4.v 0" - - N(S-'  ( k ,  y, t) >E:f(0) 
c k l  

-. - ( 3  G,. - - -  - E;f(0) ( (3  -S-I (I;, 11, t )  c111 vT, cos kx,,J, (kx,)x,>. 
c hl 

(-4.8) 
The angle brackets denote here averaging over the "fast" 
time: 

l t ? ; , ; ~  

Assuming satisfaction of the inequality 

we can neglect the first term in the right-hand side of (A.8). 
Equation (A.8) as k - 0  (letting k go to zero corresponds to 
using the asymptotic forms of the fields at x s S )  takes now 
the form 

where 

= S (  . f ) y=(S- '> ,  

Omitting the "If' superscript of the electric field and intro- 
ducing 

cos ot 
~ = ( ~ ) - . + a ,  (A. 12) 

we rewrite (A. 1 1 ) in the form 

Here a and K are respectively the external field h,, normal- 
ized to 2,T'and the resultant magnetic field outside the skin 
layer S (on the effective boundary for the If problem) : 

Expression (A. 13) is the sought-for boundary condi- 
tion. 
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