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The transition of an incommensurate structure into a commensurate intermediate state, induced 
in Heisenberg magnets by temperature and by an external magnetic field, is investigated. With 
rise of temperature, both the phase and the amplitude fluctuations decrease the wave vector of the 
modes (in crystals with inversion centers). When the field is increased, the thermal fluctuations 
of the phases (in contrast to the amplitude fluctuations) increase, so that the temperature interval 
in which a modulated structure is produced becomes narrower. In easy-plane magnets, quantum 
fluctuations lead to an additional decrease of the wave vector of the modes, and in an external field 
this effect becomes stronger. The spatiotemporal spin correlations are calculated in the region of 
low temperatures and are used to investigate the stability of the incommensurate states on 
different lattices. 

1. INTRODUCTION 

There are now many compounds in which a modulated 
magnetic structure is realized. The phase-modulation period 
usually varies with temperature (various experimental tem- 
perature dependences are contained in the review.' In sys- 
tems with linear Lifshitz invariants, the change of the struc- 
ture period is due to the presence of anisotropy. The 
magnetic transition from an incommensurate to a commen- 
surate phase in such systems was investigated also by Dzya- 
loshinski?: with decrease of temperature, the purely sinusoi- 
dal (helical) structure changes into a soliton structure 
whose period increases continuously to its limiting commen- 
surate value (see also Ref. 3). In other systems, where insta- 
bility of conical points is produced by dipole in te ra~t ion ,~ .~  
the change of the period of the modes takes place in one of 
two intermediate states, when a longitudinal and transverse 
modulation wave are simultaneously produced. The interac- 
tion of these waves also leads to an increase of their period 
with decrease of temperature. The resultant configurations 
feature both a spatial change of the phases and a spatial 
change of the amplitudes of the nonlinear wave.6 

Heisenberg magnets (which include halides of transi- 
tion are at present the subject of intense experi- 
mental study. Since their neutron-diffraction patterns re- 
veal, on the contrary, an increase of the helix period with rise 
of temperature, and transition to an intermediate antiferro- 
magnetic state. The point of transition between these two 
states can be varied in a wide temperature range either by 
changing the pressure (the helical structure can even vanish 
at a certain critical pressure9) and by partially replacing 
some nonmagnetic ions by others.'' Resonance measure- 
ments" of these compounds have shown that a modulated 
structure is realized in crystals having an inversion center as 
a result of competition between exchange interactions of op- 
posite sign. 

The task of the present paper is to study the change of an 
incommensurate phase in a Heisenberg magnet into a com- 
mensurate intermediate state under the influence of pressure 
and of an external magnetic field. We confine ourselves here 
to the field H oriented along the c axis of a crystal containing 
an inversion center. It was already indicated earlier by Vil- 
lain, l2 with classical two-dimensional (XY) spins as an ex- 

ample, that it is important to take into account, in tempera- 
ture measurements of the wave vector of the structure, the 
thermal renormalizations, by the interaction of spin waves, 
of the exchange constants. These renormalizations are 
achieved even in the framework of the self-consistent har- 
monic approximation with a temperature dependent effec- 
tive Hamiltonian. For planar spins, this approximation is 
equivalent to the variational procedure13 used in the adiaba- 
tic problem of the nonlinear response in a two-dimensional 
isotropic nematic; on the other hand, the results obtained in 
Ref. 13 agree with (or are close to) the more rigorous results 
of BerezinskiY14 for the same physical problem. We use be- 
low the Villain approach for our case of three-dimensional 
(Heisenberg) spins and consider the field dependence of the 
wave vector both at temperatures corresponding to the clas- 
sical limit and in the region where quantum effects are signif- 
icant. We consider also the transition point from an incom- 
mensurate phase into a commensurate one as a function of 
the change of the exchange interaction J' between spins lo- 
cated in different (neighboring) layers of the crystal lattice 
(on which a finite modulation period is in fact realized). 

We investigate the spatiotemporal behavior of spin cor- 
relations in the limit of low temperatures. The stability of the 
incommensurate states depends strongly not only on the di- 
mensionality of space, but also on the type of lattice (trian- 
gular or quadratic) the spins are located in the crystal layers, 
since the spectrum of the long-wave fluctuations differs sub- 
stantially for states made up of these different lattices. 

2. WAVE VECTOR OF STRUCTURE. EXTERNAL FIELD 

Consider a Heisenberg magnet with one-ion anisotropy 
of the easy-plane type, placed in an external field. The Ham- 
iltonian of such a system is given in the form 

where the anisotropy constant is D > 0, and the field H is 
applied along the crystal c axis which coincides with the z 
axis. We assume that exchange interactions of opposite signs 
exist in such a magnet. Let these interactions result in a 
ground state having a modulated structure. The wave vector 
q of such a structure at nonzero temperatures, as well as the 
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dc component of the magnetization m along the field H, 
should be obtainable from the condition that the free energy 
F be a minimum. 

We investigate first the variation of q and m at tempera- 
tures corresponding to the classical approximation. It is con- 
venient next to consider the Hamiltonian ( 1 ) in terms of 
cononical variables, viz., the azimuthal angle 
pi = arctan(Sf/S ;) and the spin projection S f ,  The vari- 
ables qi and Sf are generalized coordinates and momenta, 
and satisfy the commutation  relation^'^"^ 

{q i ,  S,"} =i&, (2)  

where the curly brackets correspond to Poisson brackets. 
We express the fluctuating quantities qi and Sf in the form 

Here 0, and < are small deviations from the equilibrium 
values of the helix q-r, at site i and of the dc component of the 
spin m along the field. 

At sufficiently low temperatures (when the system is 
far from the transition to the paramagnetic state), the prob- 
ability distributions of 8, and < are Gaussians. The effective 
Hamiltonian % corresponding to this distribution can be 
obtained by approximating 2Y in ( 1) by a temperature-de- 
pendent harmonic Hamil t~nian '~. '~  

where a, and b, are variational parameters determined 
from the conditions that F be independent of a, and b ,  : 
aF/aa, = 0, dF/dbk = 0. The varied free energy is of the 
form" 

The angle brackets ( . . . ) denote here thermodynamic aver- 
aging with a distribution function determined by %: 
p = exp( - /?%)/z. Averaging in (5) with the distribution 
function p and assuming that m <S and (Sf )' <S we get 

F= [ (m2-S2)  N +  z ( 1 s k z  1 ) ] J ,  cos qri,+rn2(D-I.) N 
k 1-1 

where N is the number of spins, TV = J (cos(8, - Oj ) ) are 
the exchange interaction constants renormalized by the 
thermal fluctuations, and 

J k =  Is exp ( ikri j) .  
i-j 

For Gaussian fluctuations we have 

so that 

In the classical limit T)&, , where w, = 2(akbk ) ' I 2  are 
the frequencies of the Hamilton equations, we have 

The correlators of 8 and s' in (6)  and (7)  are determined by 
the corresponding variational parameters a, and b, : 

The wave vector of the helix q, the dc component of the spin 
along the field m, and the parameters a, and b , are found 
from a system of equations obtained by minimizing (6)  with 
respect to these variables: 

1 H 
Yijrij sin (qri,) =O, rn = - 

2 D+3:-I. ' 
(9) 

i-j 

1 
Jk8 =x 3,, cos(qrii) eikrf1 = - (Jq+k+lq -k )  

i - j  2 

It follows from (9)  that the temperature-induced changes of 
m, just as those of the wave vector q, depend on the thermal 
renormalizations yv.  In the classical approximation, and if 
T<DS ', the contribution of the fluctuations of s' to these 
renormalizations becomes small compared with the fluctu- 
ations of the phases 8, i.e., at these temperatures the Heisen- 
berg spins are effectively planar. 

We consider below systems in which change interac- 
tions of opposite sign are realized only in the basal plane, and 
the spins are located in this plane in sites of a triangular (or 
quadratic) lattice. Since furthermore the basal plane is si- 
multaneously also the easy-magnetization plane, the wave 
vector of the helix in such system will lie in the spin-polariza- 
tion plane ( a  state of the type of a plane spiral). The energy 
spectra of the a, phase oscillations and also the spectra of 
the spin waves o, = 2(ak b, ) 'I2 are substantially different 
for structures produced on layers made up of triangular and 
quadratic lattices. Thus, at T = 0 the spectra of the phase 
oscillations of helical structures with wave vector qo are giv- 
en in the limit of small k by the following expressions (the x 
axis is directed along the elementary translation vector 
(a = a(l,O), k, = 0): 

for triangular lattices and 

for square ones. Here S : = S - m2 and E = 4\52 1 - J1 > 0, 
where J, and J2 are the exchange integrals in the basal plane, 
with J, > 0 for the nearest spins and J2 < 0 for spins with a 
common neighbor about which they are symmetric. It is seen 
from ( 11 ) that for structures made up of triangular lattices 
the long-wave spectrum in the (k, , k,, ) plane is anisotropic, 
whereas for square ones it is isotropic. 

Far from the point of transition to the paramagnetic 
state, TV takes the form 

T I - exp (ikr,,) 
Ji, = I i j [  I - - x- 

2N k ak 

where a, is defined in (10). With increase of temperature 
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FIG. 1. a)  Temperature dependence of the magnetization m along the c 
axis in a rhombohedral lattice (weak fieldsd2/Jl = - 0.255, J'/ 
J, = - 0.1, D /J, = 0.05; b) temperature dependence of structure wave 
vector q on triangular lattices ( D  /Jl = 0.05 ) : Solid lines-in field H = 0, 
J1/J1 = - 0.1; dashed-at H/J ,S= 0.01, J1/J, = - 0.1; dash-dot-at 
H=O,J' /J ,=  -0.15. 

(and field), jq in ( 12) decreases but the Fourier component 

30' = E3(j cos tqrsj) 
i-j 

increases, on the contrary, at q#O. This leads in turn to a 
decrease of the magnetization in (9)  with increase of this 
growth of T. The dependence of m on T for rhombohedral 
lattices is shown in Fig. la, and is similar to the dependence 
observed in experiment.' It is easy to obtain for the same 
lattice an equation for q in the limit T4DSlZ, here 
a , = : ( ~ ~ - m ~ ) ( ~ ~ - - J ~ )  in (10): 

Here qo4 1 and J '  is the exchange interaction constant 
between the nearest spins of the neighboring layers (triangu- 
lar lattices). The external-field-induced decrease of the spin 
projection in the basal plane, S, = (S - m2) 'I2 leads to an 
increase of the phase fluctuations characterized by the last 
term of Eq. ( 13). As a result, the wave vector of the helix 
decreases with rise of temperature more strongly than in the 
case when no field is applied to the system. In a second-order 
phase transition, q vanishes at the point 
Ti = (S2 - mZ) Jlq;/4F(O). The contribution due to 
allowance for the nonlinear terms in the Hamiltonian (4) is 
small if TF (qZ)/Jl 4 1. Thus, at the transition point Ti the 
influence of the fluctuation is also small when the inequality 
qo2(F(0) 4 1 is satisfied. At small values of J ' ,  the principal 
term of the integral Fa t  q = 0 is proportional to ln(J,/I J ' 1  ), 
so that near the point of transition from the incommensurate 
to the commensurate phase the approximation of the varied 
Hamiltonian in harmonic form is no longer valid if the con- 
dition E In(J1/IJf() 4J, is not met. The fluctuations can in 
this case be small, as before, only in the region of sufficiently 
low T, where T 4  Ti. 

We consider now the change of q in the temperature 
interval k, T 5  h,, where the quantum spin fluctuations 
are significant. In this case the canonical variables pi and fl 
are Hermitian operators whose commutation relations are 
analogous to the commutation relations (2).  The effective 
Hamiltonian 2 is easily diagonalized after changing from 
6, and s: in (4)  to the boson operators 

Calculating the free energy with the density matrix 

and again minimizing with respect to the wave vector q, the 
dc spin component m, and the parameters a, and b, , we 
obtain for these quantities the same system of equations (9) 
and ( 10) with renormalized exchange integrals in which, 
however, the correlators of the fluctuating quantities are 
now specified with allowance for the zero-point oscillations 
( i i= 1): 

In the quantum region, in contrast to (8),  these relations are 
expressed in terms of the spectrum of the spin waves w, and 
do not depend individually on a, and b, . As a result, the 
wave vector q becomes explicitly dependent on the anisotro- 
py constant D. Figure lb  shows a plot of q and T for go equal 
to 0.07 and 0.1. The curves obtained take into account the 
thermal and quantum fluctuations of both 6 and s'. With 
increase ofH, the temperature region of the helical structure 
decreases, as can be seen from a comparison of the lower 
curves of the figure for go = 0.07. With increase of inter- 
planar interaction I J ' I, however, the region of existence of an 
incommensurate phase, conversely, increases and this can be 
seen in turn from a comparison of the upper curves for 
qo = 0.1. 

At T = 0 the renormalization of the exchange integrals 
in (7)  is due only to the zero-order approximations 
( ( 16,12) = (a,/b, ) '12/2), SO that for the case of triangular 
lattices the value of q will be determined from the equation 

This leads to the following: the quantum fluctuations de- 
crease the value of q = go= (8~ /3J , )  'I2, and this value de- 
creases both with increase of D and with increase of the field 
H. If the wave vector of the helix is small enough, the sinu- 
soidal state vanishes even in weak magnetic fields. 

3. SPATIOTEMPORAL CORRELATIONS 

We consider in this section the behavior of the pair cor- 
relation function in the investigated system. We confine our- 
selves to calculation of the most important transverse part 
connected with fluctuations without a helix in the easy-mag- 
netization plane 

Gij(t) =(COS (~~-cpj(t)) >m(S:St(t) )+(SI~Sju(t) ). ( 17) 

Substituting in ( 17) the values from (3 )  for the phases at the 
sites and using again the properties of Gaussian fluctuations, 
we get 
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where the expression for the unequal-time correlator 
( 6  ,*6, ( t )  ) is obtained from the equations of motion with the' 
Hamiltonian (4) : 

<e;ek ( t )  >= (2) " 2 [ 4 e x p ( i o k t )  + exp cosok t  ( p o k )  -1 1,  ( 1 9 )  

so that with allowance for the quantum fluctuations we have 
for GV (t)  

Gu ( t )  =g,j ( t )  yij ( t )  cos qrij, (20) 

" 1 - cos o k t  cos k r i j  
y . , ( t ) = e w [ - ~ ~ ( $ )  k exp  ( p a r )  - 1  ] . (21b) 

We neglect hereafter in the temperature dependences of 
a, and b ,  ; this is valid, naturally, only in the region of very 
low T(T<&). We consider first the properties of GV ( t )  for 
the simplest case of one-dimensional systems with compet- 
ing interaction. Then, retaining in ( 10) the terms quadratic 
in k, we get a, --,2S2&k 2, bk z D  ( H  = 0). In the ground 
state yV ( t )  = 1, and the behavior of GV ( t )  in (20) is set by 
the factor gV ( t) .  Over small scales of rV and t the mean 
squared deformations of the phases, determined by double 
the exponent of the reciprocal function gV - ' ( t) ,  increase 
quadratically with distance and with time: 

where 

On the other hand, over large spatiotemporal scales the de- 
formations due to the quantum fluctuations diverge logar- 
ithmically: 

( ( e i - e , ( t ) ) 2 )  = a  
In r i j ,  r i j>c t  

{ In ct ,  r i j<c t  . 
Here a = (27~s)  - ' (D /2&) ' I2  and c = ~ s ( ~ E D )  'I2 is the 
spin-wave velocity. As a result we have for the static correla- 
tion function 

Gij=rij-a cos ( q r i j ) ,  q= ( ~ E / J I )  '", (24) 

i.e., Go takes a form typical of states of the floating-phasela 
type. 

At nonzero temperatures we have yV ( t )  < 1. Over small 
scales rV and t, the thermal fluctuations, just as the quantum 
ones, increase quadratically, so that yV ( t)  takes on at these 
scales a Gaussian form: 

with characteristic lengths at times 

Over large spatiotemporal scales, the transverse corre- 
lations fall off exponentially. Neglecting in the long-wave 
limit the final quantum corrections, we obtain from (21b) 

tuations that increase linearly with distance destroy com- 
pletely the long-range order at rV R I. Nonetheless, at suffi- 
ciently low temperatures, when 

a helical short-range order is possible at times t < rV /c, since 
its length 1 is much longer than the wave period 257/ 
q = r(2J1/&) ' I2 of the structure. 

For exponentially decreasing correlations (27), the 
Fourier component of the function GV ( t )  takes in the classi- 
cal limit the form 

where 

( R = r - I  =CX, x = I - ' =  T/8S2&). At low values of 
(k + q(  ( < X )  the maximum of the function G(k,o ) , which 
is even in w, has zero frequency. At q > x, however, i.e., when 
a helical short-range order exists, the maximum of the spec- 
trum G(k,w) is located at frequencies that differ from zero. 
Thus, at k = 0 there is one maximum at the frequency 
w = (w: - f12) 'I2 (curve 1 of Fig. 2). With increase of k, 
this maximum splits into two peaks, one of which shifts 
towards the wings of the G(k,o) spectrum, and the other to 
the region of small w (curve 2). At q - I k I (x  there remains 
one peak (curves 3 and 4) with nonzero frequency 
( W  = (a:+ ,,, - i12)112). Further increase of k leads again 
to the appearance of a second peak (curve 5) at the frequency 
@ = ( ~ ; k ~ - ~ -  R2)'I2, if the condition 1x1 - q >  K is met. 
Thus, in structures with helical short-range order, the appear- 
ance in the spectrum of spin waves propagating counter to the 
direction of the wave vector of q of the helix is possible (in 
contrast to wavespropagatingalongq) only at Iq - k I > x. At 
q < x (there is no helical short-wave order) there exists in the 
spectrum not more than one peak; in the limit q +O only spin 
waves with Ik I > x can be obser~ed. '~ 

In two-dimensional spin systems, the spatiotemporal 
correlations depend substantially on the type of the plane 

FIG 2. Fourier component of correlation function Go ( t )  for structures 
with helical short-range order ( q  > x ) ;  a) for wave vectors Ik I < q; curves 
1 and 2 correspond to k = 0 and k  = 0.1; b) for Ik (>q.  Curves 3,4, and 5 
wereconstructedrespectively for k  = q, k = q + x ,  and k = q  + 1 . 2 ~ ;  the 
last two curves are drawn in a different scale ( G ( q  + x,O) is taken to be 
unity ). 
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lattices. We consider here the correlation properties of such 
systems using as examples triangular and square lattices, for 
which a, (in the approximation quadratic in k)  and q = q, 
are given by ( 11 ) (in this case, just as for one-dimensional 
systems, b ,  z D ) .  For the case of triangular lattices yii ( t )  in 
large spatiotemporal scales is independent o f t  and of one of 
the coordinates y, : 

Thus, mean square phase deformations that are constant in 
time (and are characterized by the argument of the exponen- 
tial in (29) will increase linearly along a direction corre- 
sponding to the orientation of the wave vector q = q( 1,O): at 
xii > L the helical long-range order is completely destroyed 
as before. The Fourier component is G(k)  = Z'(kx )S(k, ), 
in which the function G(kx ) is described by two Lorentzian 
lines whose maxima are located at kx = + q. 

At the same time, the calculation of yii ( t )  for the case of 
square lattices using Eq. (21b) yields a power-law depen- 
dence of the correlation function at large values of rii and t 
(Ref. 20): 

where the cutoff parameter kc and the exponent a are of the 
form 

k,=min (T lc ,  n ) ,  a = T / 8 n S Z ~  

(the velocity c of the spin wave on a square lattice is equal to 
the value of c determined in (23) for one-dimensional spin 
waves). The static function G(k,t = 0)  diverges at the 
pointsk= + q i f a < 2 : G ( k , t = O ) - I k ~ q l " - ~ . F o r t  dif- 
ferent from zero, y, ( t )  in (30) increases with increase of r, 
until rii < ct. At rin = ct expression (30) has a square-root 
singularity, which leads at values a( 1 to divergence of the 
Fourier components of G(k,w) at frequencies w = w,., 
and w = - w, + , : at a < 1 these frequencies are branch 
pointsofthe function G(k,w)- Iw a,,, la-', a n d a  = 1 
the function G(k,w) diverges logarithmically. 

We note here that besides the linear excitations de- 
scribed by the harmonic Hamiltonian, it is necessary, gener- 
aly speaking, to take into account also the contribution of the 
topological excitations. These can exist even in Heisenberg 
two-dimensional systems characterized in the ground state 
by a wave vector q of the structure. In this case, just as in a 
three-sublattice Heisenberg magnet,21 point defects (dislo- 
c a t i on~ '~ )  are produced, denoted only by the vortex 
numbers zero or unity (2, structures). At low temperatures, 
however, the density of the Z2 vortical configurations is low. 
Thus, for example, for a two-dimensional three-sublattice 
magnet with Heisenberg spins, Monte Caro ca1cu1ations2' 
show that the spin density increases abruptly only near the 
point of transition into the paraphase. For the XY model 
with competing interaction, as in the ANNI model," linear 
defects (domain walls) can be formed in addition to point 
defects. Their presence in a planar system is due to the ap- 
pearance of discrete symmetry together with the continuous 
one, viz., two degenerate spiral configurations with opposite 
orientations of the field vector q can no longer be continu- 
ously transformed into each other. Nontheless, in contrast to 
the ANNI model, where the ground state is known to be 

strongly degenerate,23.24 the nonlinear excitations in the 
planar system cannot lower strongly the temperature of the 
transition into the paraphase. In the region of sufficiently 
low Tit  is therefore possible to confine oneself, as before, to 
the linear approximation. 

Exchange interaction between spins located in different 
layers of square lattices leads to the onset of long-range or- 
der. On the other hand, in systems made up of layers of trian- 
gular lattices, a long-range order is realized only in definite 
directions, to which there correspond in three-dimensional 
space the planes Clx, + Cg,  = 1 and Cg,  + C~Z, = 1 (Ci 
are arbitrary constants). Actually, at finite values (of any 
sign) of the exchange integral J '  along the z axis, the spatial 
correlations y, are described, neglecting quantum correc- 
tions in the following manner (the integrals in Eq. (21b) are 
calculated in the long-wave limit with a, =S2(3&k; 
+ IJ 'IkI)):  

where we have for the dimensionless parameters S and I 

It is assumed in Eqs. (3  1 ) that zV R 1, and that xV 2 I Ir ' (if 
xV < I li I ,  then y, is given as before by the exponential 
expression (29) ) . It follows from (3  1 ) that the spatial corre- 
lations between spins that do not lie in the planes indicated 
above fall off in power-law fashion. In the particular case z, 
= const the correlations are finite, so that a long-range heli- 

cal order exists between the basal planes located at the indi- 
cated distance (although, of course, this order becomes 
weaker with increase of the fixed values of z, ). 

CONCLUSION 

Thus, a temperature- and field-induced transformation 
of an incommensurate structure (such as a flat spiral) into a 
commensurate intermediate state was considered for easy- 
plane Heisenberg magnets whose crystal lattice contains an 
inversion center. The spatiotemporal dependences of the 
spin correlations were investigated in the low-temperature 
limit. 

It was shown that the thermal fluctuations of the helix 
phases increase in an external field applied along the c axis, 
and therefore the wave vector of the modes decreases addi- 
tionally (in comparison with H = O), while the transition 
point between the ordered states shifts towards lower T. At 
the same time, the increase of the exchange interaction J '  
between spins located in different layers of the lattice ex- 
pands the temperature range in which the incommensurate 
phase can exist. Next, owing to thermal renormalizations of 
the exchange constants, the susceptibility along the c axis 
decreases smoothly with increase of temperature, something 
that coincides with its analogous behavior observed in exper- 
iment.' On the other hand, at temperatures close to absolute 
zero, the zero-point oscillations of the phases become sub- 
stantial and decrease, together with the thermal oscillations, 
the wave vector q of the structure. In an external field this 
effect (the quantum shortening of q)  becomes stronger and 
can even destroy the helical structure at T = 0 if the wave 
vector q is small enough. 
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The stability of structures with helical order depends 
strongly not only on the dimensionality of space, but also on 
the type of lattices on which interactions of opposite signs 
are realized. In the one-dimensional case, at sufficiently low 
temperature, a helical short-range order is possible at times 
t < rV /c  is possible; for structures with such an order, spin 
waves can appear in the spectrum of the correlation function 
(in w,  k space) for wave vectors k that are not too close to the 
wave vector q of the helix. 

Substantial differences between the correlation proper- 
ties appear already in the two-dimensional case: on triangu- 
lar lattices the spin correlations are independent of time and 
fall off exponentially with distance, whereas on quadratic 
ones they decrease at a power-law rate-at times t < r V / c  
only a spatial growth of the mean squared phase deforma- 
tions takes place, while at t > ro /c  the deformations increase 
with time. In the three-dimensional case the spatial correla- 
tions are finite in spin systems made up of layers of quadratic 
lattices. If, however, the layers are triangular lattices, long- 
range order exists only in certain directions. While there is 
no long-range order in the other directions, the spatial corre- 
lations fall of nevertheless slowly-in power-law fashion. 

The author is grateful to V. a. Ignatchenko, V. V. Val'- 
kov, V. I. Ponomarev, A. F. Sadreev, and I. S. Sandalov for 
helpful discussions and critical remarks. 

'Yu. A. Izyumov, Usp. Fiz. Nauk 144,439 ( 1984) [Sov. Phys. Usp. 27, 
845 (1984)]. 

'I. E. Dzvaloshinskii, Zh. E k s ~ .  Teor. Fiz. 47, 992 (1964) [Sov. Phys. 
JETP 20,665 ( 1965 j I .  

3 Y ~ .  A. I Z V U ~ O V  and V. M. La~tev. ibid. 85.2189 ( 1983) 158, (1983) 1 .  
4H. ~hiba,kol. State Comm. 4i, 522 (1982). 
'H. Shiba and N. Suzuki, S. Phys. Soc. Japan 51,3488 ( 1982). 
6R. S. Gekht, Zh. Eksp. Teor. Fiz. 91, 190 (1986) [Sov. Phys. JETP 64, 
110 (1986)l. 

7A. Adam, D. Billerey, C. Terrier, and R. Mainard, Sol. State Comm. 35, 
l(1980). 

'S. R. Kuindersma, J. P. Sanchez, and C. Haas, Physica (Utrecht) B111, 
231 (1981). 

9A. Adam, D. Billerey, C. Terrier, H. Bartholin, L. P. Regnault, and J. 
Rossat-Mignod, Phys. Lett. A84, 24 ( 1981 ). 

'OM. W. Moore, P. Day, C. Wilkinson, and K. R. A. Siebeck, Sol. State 
Comm. 53, 1009 (1985). 

"L. P. Rennault. J. Rossat-Mignod, A. Adam, and D. Billerey, J. Phy- - .  

sique 43,-1283 ( 1982). 
12J. Villain, Physica (Utrecht, B86-88, 631 (1977). 
13G. Sarma, Sol. State Comm. 10, 1049 (1972). 
14V. L. Berezinskii, Zh. Eksp. Teor. Fiz. 59,907 ( 1970) [Sov. Phys. JETP 

32,493 (1971)l. 
15J. Villain, J. Phys. C6, L97 (1973). 
16R. S. Gekht and V. A. Ivnatchenko, Zh. Eksp. Teor. Fiz. 76,164 ( 1979) 

[Sov. Phys. JETP. 49, 84 ( 1979) 1. 
17R. Peierls, Phys. Rev. 54, 918 ( 1938). 
I'D. R. Nelson and B. I. Halperin, Phys. Rev. B19,2457 ( 1979). 
19S. W. Lovesey and R. A. Meserve, J. Phys. C6, 79 (1973). 
'OP. M. Morse and H. Feshbach, Methods of Theoretical Physics, 

McGraw. 
"H. Kawamura and S. Miyuashita, J. Phys. Soc. Japan 53,9 (1984). 
"P. Bak, Rep. Progr. Phys. 45, 587 (1982). 
231. Harada and K. Takasaki, J. Phys. Soc. Japan 54,2210 (1985). 
24T. Ala-Nissila, J. Amar, and J. Gunton, J. Phys. A19, L41 (1986). 

Translated by J. G. Adashko 

152 Sov. Phys. JETP 66 (I), July 1987 R. S. Gekht 152 


