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The steady-state distribution function of the energies of nonequilibrium electrons and holes 
formed as a result of a cascade of electron-electron collisions in the presence of a primary electron 
flux is found by solving the linearized transport equation in the isotropic scattering 
approximation. The distributions obtained in this way include dependences on the energy of 
primary electrons and on the characteristics of the medium. Near the Fermi level they have a 
singularity and are close to a power law far from this level. A study is made of the possibility of 
deriving distributions for crystals with a complex energy band structure. 

1. INTRODUCTION 

Theoretical models of steady-state distributions of non- 
equilibrium electrons have been developed primarily for the 
interpretation of the experimental results on secondary elec- 
tron emission (SEE). Back in 1923 P. L. Kapitza proposed a 
thermal mechanism of SEE1 which describes well the inte- 
grated characteristics, such as the dependences of the SEE 
current on the primary electron energy, but gives contradic- 
tory results in the interpretation of the differential ~ p e c t r a . ~  
In 1954 P. A. Wolff solved a linearized transport equation 
in the isotropic scattering approximation using a model 
function representing energy losses and found that the spec- 
tral density of the number of secondary electrons obeys the 
law N, (E) a E 2. This result has been used, for example, to 
reveal the fine structure of the SEE ~pect rum.~I t  was shown 
in Ref. 5 that distributions of the N,  (E) a E s  type are 
steady-state in the case of classical particles when external 
fluxes are present. The power exponent s is determined by 
the nature of the cross section, for example, in the case of the 
screened Coulomb interaction we haves = - 5/4. The pow- 
er-law dependence N,  (E) is used in surface Auger spectros- 
copy6 to subtract the background and to identify the spectral 
line of an SEE source. Special experiments7 designed to test 
the power-law spectral distribution of secondary electrons 
emitted as a result of irradiation of a crystal with a particles 
demonstrated that the power exponents is generally energy- 
dependent varying, for example, in the case of aluminum 
from - 3.5 to - 1.92 when the energy E is increased from 
10 to 40 eV. Moreover, the limits of variation of s are differ- 
ent for different metals. These observations do not fit the 
existing models of Ne (E). 

A steady-state distribution of the energies of secondary 
electrons in a crystal should obviously depend on the pri- 
mary electron energy E, and also on the characteristics of 
the medium in which the scattering takes place. Such a dis- 
tribution should be universal because the method of excita- 
tion of primary electrons is of no significance. For example, 
in the case of photoelectron emission when the depth of ab- 
sorption of light is much greater than the mean free path of 
photoelectrons, the combined spectrum including an 
allowance for the scattering can be described by a convolu- 
tion of Ne (E)  in respect of the parameter E, with the prob- 
ability of photon absorption on excitation of an electron to a 
level E,. The spectrum of bremsstrahlung isochromats is a 

convolution in E with the probability of photon emission due 
to relaxation of an electron from a level E. Interpretation of 
the radiative recombination spectra of nonequilibrium elec- 
trons (electron-photon emission) also depends strongly on 
the form of Ne ( E ) .  The energy of a level E from which a 
radiative transition originates may be higher or lower than 
the energy E, of the Fermi level. In the latter case it is neces- 
sary to know the distribution of nonequilibrium holes 
N, (El .  

Our aim will be to determine the steady-state distribu- 
tion function of the energies of nonequilibrium carriers when 
the primary (excitation) energies E, do not exceed the plas- 
ma energy EF + h,,, so that this function should satisfy as 
much as possible the above requirements. The first step in 
this direction was made by one of the present authors in Ref. 
9 where, as in Ref. 3, a solution was obtained of the steady- 
state transport equation, but the rate ofenergy losses and the 
average electron lifetime T(E) were calculated using a the- 
ory of an interacting electron gas. '' The following approxi- 
mate analytic solution was obtained for the case when 
Ep <EF + ~ p , :  

where N, is the concentration of primary electrons. In the 
present paper our task will be to obtain simultaneously the 
distributions of nonequilibrium electrons and holes using 
the relevant equations formulated in Sec. 2; we shall also 
study the possibility of modeling the energy loss function for 
real crystals in Sec. 3 and give numerical analytic solutions 
for the investigated models in Sec. 4. The results will be dis- 
cussed in Sec. 5. 

2. SYSTEM OF EQUATIONS FOR THE DISTRIBUTION 
FUNCTIONS OF NONEQUlLlBRlUM ELECTRONS AND HOLES 

The steady-state condition for a distribution function 
f(E) dependent only on the energy specifies that the colli- 
sion integral should vanish in the range E < E, . This integral 
can be linearized because in the case of the problems under 
discussion we find that the condition f (E ) )  1 is satisfied 
well when E > EF + E and the condition 1 - f(E) 9 1 is 
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obeyed when E < EF - E; here, E is a small region near EF 
where these conditions are not met. In fact, the range of 
energies of nonequilibrium carriers encountered in the ex- 
periments described above never overlaps this region. For 
convenience, we shall not speak of the distribution functions 
but of the energy densities of the concentrations of nonequi- 
librium electrons and holes: 

N.(E) =f(E)p(E), E>EF, (2)  

where p (E)  is the density of states. We shall discuss the 
range of energies where the electron-electron scattering pre- 
dominates, at least in metals. Such scattering of excited elec- 
trons creates a certain concentration Nh (E) of nonequilibri- 
um holes which in turn are scattered giving rise to 
nonequilibrium electrons. The excitation energy of the latter 
is limited by the maximum excitation energy of holes. 

We have therefore two coupled subsystems of electrons 
and holes for which the steady-state condition gives the fol- 
lowing system of equations: 

Shh (E', E) Nh (El) dE'+ 5 Seh (El, E)  N. (El) dE' 

The system of equations (3) denotes equality of the number 
of particles arriving at a level E and leaving this level E per 
unit time; See ( E  ',E) is the rate of arrival of electrons at the 
level E because of the scattering of electrons by a level E '; She 
( E  ', E) describes the rate of arrival of electrons at the level E 
because of the scattering of holes by the level E '; Shh and S, 
are defined in a similar manner; re (E) and Th (E) are the 
total rates of relaxation or the reciprocal lifetimes of elec- 
trons and holes; the last term in the first equation of the 
system (3)  is the source function; I, is the number of pri- 
mary electrons generated per unit time in a unit volume. The 
limits of integration in the system (3)  obviously represent 
the regions of definition of the quantities occurring here and 
the energies should be measured from the bottom of the con- 
duction band. 

In the case of relative relaxation fluxes of the scattered 
particles 

me (E) EN, (E) re (E)/Is-6 (E-Ep) , E>Ep, (4) 
Oh (E) = N h  (E) r h  (E) /In, E<EF 

we obtain from the system (3) the following system of inte- 
gral equations 

6. (E) = I P.. (E', E) 8. ( E ' ) ~ E '  

+Pee (Ep, E) ,  EF+E<E<E,, (5 

c o h  (E) = P,,(E~. E) Q.(E')~E' 

-I- P.h (E', E) me (El) dE' 
ZEF-E 

+P,h (Ep, E), O<E<Ea-e, 

where 

The quantity defined by Eq. (6) represents the fraction of 
particles which decay in the El -+ E, channel. 

The following important properties of the system ( 5 )  
and of the quantities occurring there should be noted. 

1. IfE)2EF, the second term in the first equation of the 
system (5)  disappears and the electron energy distribution 
becomes independent of the hole energy distribution. This 
problem was considered in Ref. 9. 

2. Solutions of the systems Qe (E) and Q, (E) depend 
only on the partial fractions of the scattering characterized 
by a specific energy loss for each level Pa8 ( E l ,  E2 ) and are 
independent of the absolute values of the rates of relaxation 
SaS (El ,E2 ) and r, (El ), where a, p= e, h. Consequently, 
in the search for the solution we can use the scattering rates 
determined only to within an arbitrary factor g(El ). 

3. The quantities Pee, P,, and Peh , Phe are normalized 
differently: 

This occurs because when electrons are scattered we obtain 
two excited electrons and only one hole in the final state, 
whereas the scattering of a hole creates two holes and one 
excited electron. This difference between the normalizations 
gives rise to an asymmetry of the boundary conditions for 
the system (5)  and, as shown later, in some cases it causes 
divergence of the quantity representing the total charge of a 
sample: 

EF-P t~ 

0 E g i r  

These problems will be discussed in greater detail in the next 
section. 

3. MODELING OF SCATTERING RATES 

The total scattering rate is determined by the imaginary 
part of the self-energy correction to the energy": 
ImB(E) = fiI'(E)/2; the indices e and h introduced by us 
simply identify a specific range of E. We are considering here 
a quantity averaged over the directions of the wave vector k. 
The quantity re (El ) can be defined, for example, as the 
probability of the scattering (per unit time) of an electron at 
a level E, , summed over all the final states of the scattering 
products which are electrons at levels E2 and E, and a hole 
at a level E, : 
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The factor 1/2 appears because of the identity of electrons at 
the levels E2 and E, and, consequently, because of indistin- 
guishability of the states which differ by their transposition. 
In this respect our treatment differs from a theory developed 
for classical particles in Ref. 5. 

The partial scattering rates are then defined as follows: 

Integrating ratios representing division of Eqs. (10) and 
( 11 ) by Eq. (9),  we obtain the normalizations (7) and (8), 
respectively. 

The coefficient w (E, , E, ; E, , E ,  ) in front of the S func- 
tion in Eqs. (9)-( 11 ) represents the square of the matrix 
element of the scattering process averaged over the direc- 
tions of the wave vector k, . If we assume that it is indepen- 
dent of the energy, we obtain the familiar Berglund-Spicer 
approximation" in which the scattering rates are found al- 
lowing solely for the statistical weight of the final states. 
Moreover, as shown above, we can solve the system (5)  by 
assuming that this coefficient is a function of c(E1)EF. 
Therefore, in the Berglung-Spicer approximation the singu- 
larities of the real dispersion law of carriers are reflected in 
the scattering probabilities given by Eqs. (9)-( 11 ) via the 
density of statesp(6). 

We can solve the system (5)  analytically by assuming 
that p (E) = const/EF i fp(E)  #O. It then follows from the 
law of conservation of energy that in the range Ep <2EF we 
have 

See(E,, Ez) =-Shh(Eir Ez)=E (EL) (Ei-E2)/ER2, 
S,h(E,, EZ) =-She(El, E2) =E(Et) ( E ~ + E Z - ~ E F ) / ~ E P ~ ,  ( 12) 

re (El) =I'h(Ei) =g (El) ( E I - E F ) ~ / ~ E R ~ .  

Before we solve the system (5)  in any one of these approxi- 
mations, we shall check whether these approximations are 
satisfactory by considering the jellium model in which the 
energy loss function S(E, ,E2 ) and the reciprocal of the elec- 

FIG. 1. Rate of electron-electron scattering or the reciprocal lifetime 
T(E) in the jellium model9 (continuous curve) and in the Berglund- 
Spicer approximation" for a quadratic dispersion law (dashed curve). 
The ratio of the two curves J(E) represents the average value of the square 
of the scattering matrix element (continuous curve). 

tron lifetime r (E,  ) can be calculated relatively rigorously9 
using the theory of an interacting electron gas.'' Figure 1 
compares T(E)  obtained using the jellium model and that 
found employing the Berglund-Spicer approximation in the 
case of the quadratic dispersion law E = p2/2m. The ratio of 
these quantities provides a definition of the unknown coeffi- 
cient g ( E )  (Fig. 1 ), by which we have to divide the solution 
of Eq. (5),  in accordance with the definition of Eq. (4),  in 
order to go over to N(E).  The loss functions for electrons 
and holes obtained using this factor for different initial ener- 
gies are compared in Fig. 2 with the results obtained on the 
basis of the jellium model. We can see that the Berglund- 
Spicer approximation, which is fully satisfactory at low 
transferred energies, becomes less acceptable in the case of 
high losses. Nevertheless, the curves representing the distri- 
butions of nonequilibrium electrons remains similar and 
very close for all three models when the excitation energy is 
increased up to Ep = 4E, (Fig. 3).  The N, (E)  curve ob- 
tained in the jellium model and in the Berglund-Spicer ap- 
proximation are the results of a numerical solution of the 
system (5)  obtained ignoring the influence of the hole distri- 
bution. The corresponding analytic form of Eq. ( 1 ) was ob- 
tained in Ref. 9 using the approximation of Eq. ( 12). The 
distributions plotted in Fig. 3 are examples of a successful 
application of the Berglund-Spicer approximation and of the 
approximation defined by Eq. ( 12), so that one would hope 
to obtain satisfactory results by analytic solution of the sys- 
tem ( 5 ) in the case of small values of Ep and using the Berg- 
lund-Spicer approximation in the case of crystals with a 
complex energy band structure, possibly semiconductors 
and insulators, in other words, using this approximation in 
those cases when the jellium model is unacceptable. 

4. SOLUTION OF THE SYSTEM OF TRANSPORT EQUATIONS 

We shall now give the results of numerical (in the Berg- 
lund8picer approximation) and analytic [in the model of 
Eq. ( 12) ] solutions of the system of equations (5). In both 
cases we have to deal separately with the ranges Ep <2EF and 
Ep > 2EF. 

If Ep <2EF, the distributions of nonequilibrium holes 
and electrons differ from zero in the intervals 
(2EF - Ep ,EF) and (EF2Ep ), respectively. For all values of 

FIG. 2. Rates of energy losses experienced by electrons and holes (in units 
of E, /*), calculated for different initial energies given alongside the 
curves: the continuous curves represent the jellium model and the dashed 
curves represent the Berglund-Spicer approximation. 

129 Sov. Phys. JETP 66 (I), July 1987 0. F. Panchenko and V. M. Shatalov 129 



E the equations in the system ( 5 )  are coupled. Using the 
scattering probability in the form of Eq. ( 12),  we can obtain 
an analytic solution by reducing a system of two integral 
equations to one fourth-order differential equation. Allow- 
ing for the initial conditions, we obtain 

Nh(E) = A p  ( E )  (3/5x'+1/3x3+'/s+3z/5),  -1<x<0, 

where 

FIG. 3. Steady-state distributions of nonequilibrium electrons 
obtained for different primary electron energies, given alongside 
the curves. The continuous curves represent the jellium model, 
the dashed curves correspond to Eq. ( 1 ), and the chain curves 
represent the Berglund-Spicer approximation. The dotted 
curves show the changes due to an allowance for the scattering 
of holes. 

boundary conditions for a, ( E )  and a, ( E ) .  
If Ep > 2EF, there is an interval (2EF,Ep)  in which 

N, ( E )  is defined without influence of the hole distribution. 
The model of Eq. ( 12) gives the distribution in the form of 
Eq. ( 1 ), which can be used to obtain the boundary condi- 
tions for the system ( 5 ) .  However, we cannot solve the sys- 
tem analytically using this model. An analytic solution can 
be obtained in the range E l  > 2EF by supplementing the 
model of Eq. ( 12) with a model similar to that suggested in 
Ref. 9: 

AP ( E )  =NPE (Ep)  I (Ep-E*) E ( E )  , 
See(Ei, Ez) = E  ( E i ) / 2  ( E ~ - E F )  I' Seh(Eir E I )  = E  ( E i )  I ~ E F I '  

Np = I p / r ( E p  ) is the concentration of primary electrons, 
andx = ( E  - E F ) / ( E ,  - E F )  is a dimensionless energy pa- re(&) = E ( E l ) / 4 .  ( 1 4 )  

rameter. The solution ;epresented by the system ( 13) dies 
not exhibit a definite parity in respect of x ,  which-as men- When the system ( 5  is supplemented in this way, it can be 
tioned above-is associated with the asymmetry of the solved analytically and we then obtain 

where Bp ( E )  = Npg(Ep ) / E F g ( E ) ,  andz = E / E ,  - 1 is an in Fig. 3. The contribution made by the scattering of holes to 
energy parameter. N, (El  tends to zero as E increases to 2EF. Figure 4 shows 

A numerical solution of the system (9)  using the scat- also the energy distribution curve for the SEE current j ( E )  
tering probabilities in the Berglund-Spicer approximation which is obtained if N,E) is multiplied by the electron veloc- 
presents no difficulties because it is possible to derive an al- ity = (2E /m 1 "' and by the coefficient representing the 
gorithm such that when the energy Eis scanned from E to E,  transmission of the crystal-vacuum barrier: 
+ E each successive value of N, ( E )  and N ,  (2E, - E )  is 
defined in a recurrent manner in terms of the values already ( E )  = I - [  (EF+ecp)lE]'", E>EF+ecp, 

found. The results of such a calculation carried out on the where eq, is the work function assumed to be 0.3EF. The 
assumption of the quadratic dispersion law are plotted in spectrum of the SEE current has a characteristic cascade 
Fig. 4 for Ep = 4EF. The shaded region demonstrates the maximum. We can determine the influence of the excitation 
changes in N, ( E )  introduced by including the scattering of conditions on the position and profile of this maximum by 
holes; the same differences are represented by dashed curves calculating similarly the value o f j ( E )  for different primary 
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damentally different from the power-law distributions ob- 
tained in Refs. 3 and 5, where the region of degeneracy of the 

5 electron gas was ignored and the particles were regarded as 
20 classical. Our results are fully justified physically because an 

infinite number of changes of the energy of an excited elec- 
tron should create an infinite number of electron-hole pairs 

3 near the Fermi level. In fact, when this number is compared 
1 with the concentration of equilibrium electrons, the Pauli 

principle hold and our analysis is no longer correct. This is 

7 the reason for the limitation I E  - EF I > E. introduced above. 
In the intermediate range E F ( E ( E p  our distribution is 

0 close to a power law (Fig. 3) and the power exponent is the 
0 1 2 3 

E l f ,  
slope and increases on reduction in the energy, in qualitative 
agreement with the experimental  result^.^ Our aim was not - 

FIG. 4. Steady-state distributions of nonequilibrium electrons and holes to carry out a detailed comparison with the experimental 
obtained by solving the system (5)  in the Berglund-Spicer approximation 
when E, = 4EF (left-hand scale). The shaded region is the contribution results because this would require the knowledge of the actu- 
made by the scattering of holes. The right-hand scale represents the cas- al conditions of excitation of primary electrons. The differ- 
cade distribution of the secondary electron emission current. ence between the excitation conditions may be responsible 

for the difference between the SEE spectra obtained on irra- 

electron energies Ep (Fig. 5). We can see that at least at low 
values of Ep the form of the j ( E )  curves varies considerably 
on increase in Ep and the position of the cascade maximum 
then shifts somewhat toward higher energies. Therefore, the 
specific excitation conditions should be allowed for in the 
interpretation of the experimental curves. 

5. DISCUSSION OF RESULTS 

We thus have an algorithm for the calculation of steady- 
state distributions of nonequilibrium electrons and holes in 
crystals with a complex dispersion law and we know the 
analytic forms of the dependences N ,  ( E )  and N ,  ( E )  for 
simple metals in the range of energies where the electron- 
plasmon scattering is unimportant. A partial analysis of the 
assumed approximations can be found in Refs. 3, 5, and 11. 
Here, we shall simply mention our result which is a slow 
change in the average value of the square of the scattering 
matrix element { ( E )  in the most interesting range 
E  > EF + E (Fig. 1 ) and the fact that the final result depends 
only multiplicatively on l ( E ) .  

All the models discussed by us predict an unbounded 
rise of N, (E) and N ,  ( E )  in the limit Ep -EF,  which is fun- 

diation of a crystal with a particles and with fission frag- 
ments.* 

The proposed procedure gives the absolute values of 
SEE yield without any fitting parameters and this makes it 
possible to calculate simultaneously the primary spectra. 
The analytic results obtained above can be used directly in 
calculations of the spectra of bremsstrahlung isochromats 
and of photoelectron spectra allowing for the scattering pro- 
cesses at photon energies right up to vacuum ultraviolet. 

Extension of the algorithm to higher values of Ep re- 
quires an allowance for the electron-plasmon scattering, as 
suggested in Ref. 9, or introduction of fitting parameters in 
Eq. ( 14) to make these distributions useful, for example, in 
calculations of the electron-photon emission spectra. Since 
the distribution obtained above is universal, these param- 
eters can be used in various experiments. 

The authors are deeply grateful to K.B. Tolpygo for 
valuable discussions and comments. 
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