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A proposed cluster model is used to determine analytically the effective magnetic permeability of 
a composite system when this permeability is due to generation of Foucault (eddy) currents in an 
alternating magnetic field. It is shown that an allowance for the inductive interaction of currents 
removes the divergence of the imaginary part of the effective magnetic permeability near the 
percolation threshold predicted in earlier investigations [P. G. De Gennes, C. R. Acad. Sci. 292, 
701 (1981); M. J. Stephen, Phys. Lett. A87,67 ( 1981); D. R. Bowman and D. Stroud, Phys. Lett. 
52,299 ( 1984) 1. This result is generalized to the behavior of the diamagnetic susceptibility of 
superconducting composites. 

Intensive theoretical and experimental investigations of 
disordered systems consisting of metal and insulator parti- 
cles are currently under way. A characteristic feature of such 
composites is the existence of a critical concentration p, of 
metal particles known as the percolation threshold. At this 
concentration the system first exhibits a nonzero conductiv- 
ity. Electrophysical properties of disordered systems are 
characterized by a number of anomalies near the percolation 
threshold. For example, the permittivity and the inductance 
of composite materials become infinite asp +p, (Refs. 1-5). 
It is pointed out in Refs. 6-13 that the diamagnetic suscepti- 
bility of composite superconductors diverges near the perco- 
lation threshold. The generalization of this result to the case 
of normal composite ~ ~ s t e m s ~ , ~ . "  gives rise to a divergence 
in the limitp-p, (p <p, ) for the imaginary part of the mag- 
netic permeability due to generation of eddy currents by an 
alternating magnetic field. 

These investigations of magnetic properties of compos- 
ite systems have ignored the effects of the inductive interac- 
tions of currents, but we shall show that these effects are of 
fundamental importance close top, . 

We shall investigate theoretically the effective magnetic 
permeability 

of composite materials consisting of nonmagnetic conduct- 
ing inclusions and we shall allow for the inductance effects. 
The influence of the inductive interaction of currents en- 
sures that &, remains finite in the limitp +p,. The diamag- 
netic susceptibility of superconducting composite materials 
is also finite near p,. We shall show that the frequency de- 
pendence of the effective magnetic permeability p, (p, o) 
exhibits a resonance. 

We shall explain the reason for the possible divergence 
of the magnetic susceptibility predicted in Refs. 6-13 when 
the inductive interaction is ignored. Composite systems are 
characterized by the appearance of large conducting clus- 
ters. Eddy (Foucault) currents are induced when an exter- 
nal alternating magnetic field 

H=H, exp (-id) 

is applied to systems containing such clusters. The Foucault 
currents are accompanied by dissipation of the energy of the 

electromagnetic field governed by the imaginary part of the 
magnetic polarizability a, (Ref. 14): 

where Vis the volume of the conducting material in a cluster. 
A cluster has a strongly branched structure formed by con- 
ducting particles. According to Refs. 6-8, the value of a" for 
such a cluster is given by 

a" (a) =Sstf/ (4376) ', 

where S = c / ( ~ T u w ) ' ~ ~  is the depth of penetration of an 
electromagnetic field (S)a, where a is the characteristic 
size of the conducting particles), u is the conductivity, and 
S,, is the effective area of a cluster which depends on its 
topology. Since the magnetic-dipole interaction is ignored, 
the polarizabilities of the clusters a" make an additive con- 
tribution to the total magnetic susceptibility of the compos- 
ite system. In this approximation the susceptibility x is 
found by summing the relevant series S,, of the individual 
clusters. The analytically values of S,, can be calculated 
only for simple two-dimensional structures (such as, for ex- 
ample, a periodic square or a Sierpibski carpet7). 
In the case of real two- and three-dimensional systems it is 
necessary to use numerical methods. The results of a numeri- 
cal calculation reported in Ref. 11 predict divergence of the 
value of X" near p, : 

~ " a r - ~ ,  a = ( ~ , - - ~ ) I p e  (1) 

with a critical exponent b = 1.29 if the dimensionality is 
d = 2 and b = 0.35 if d = 3. Since the diamagnetic suscepti- 
bility of superconducting composites is governed by the 
same geometric factor S,, (Refs. 6 and 7), it should diverge 
in the limit p -p, and the critical exponents should be the 
same. 

We can propose a fairly simple model which makes it 
possible to determine analytically the magnetic susceptibil- 
ity of a composite system. Each cluster represents a set of 
doubly connected regions. Then doubly connected clusters 
have a scale-invariant drop structure15 (see Fig. 1).  If we 
ignore the inductance effects, these doubly connected clus- 
ters interact with an alternating magnetic field H indepen- 
dently of one another. We shall assume that, relative to the 
field H, a doubly connected cluster is equivalent to a contour 
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of size identical with the characteristic size I of this cluster. 
This assumption is justified by the calculations of Ref. 7, 
where it is shown that the largest contour dominates the' 
magnetic polarizability of a cluster. 

The imaginary part of the magnetic susceptibility of a 
system of noninteracting clusters is described by the expres- 
sion 

where F(1) is the size distribution of doubly connected clus- 
ters and E(l) is the total magnetic polarizability of a doubly 
connected cluster, which under the above approximations is 
proportional to 1 3. 

The form of the function F(1) can be deduced from scal- 
ing relationships. If p = p,, then the composite system has 
no specific scale and, consequently, we find that F(1) a I -" . 
We shall now divide the system into cells of size 1)a. We 
shall assume that a cell is conducting if a cluster of size 
greater than 1 passes through it. Then, the fraction of con- 
ducting cells is 

In view of the scaling invariance, the value ofp' should be 
independent of I. This condition is satisfied if x = d + 1. 
This value of x can be obtained also from the relationships 
between the critical exponents.16 If p-p, the distribution 
function is truncated at scaling lengths equal to the correla- 
tion length {({- UJ whenp -p, 1. In the subsequent analysis 
it will be convenient to consider the function F(1) represent- 
ed in the form 

F ( I )  = B I - ( d + ' )  l - ( d + l )  dl,  / J (3) 

where B is a certain normalization constant independent of 
6. 

Integrating Eq. (2),  we find the imaginary part of the 
magnetic susceptibility near p, : 

Since 6 a r-" (Ref. 16), the value ofx" diverges forp-p, in 
accordance with the power law which has the exponent 

FIG. 1. Fragment of a cluster with a scaling invariant drop struc- 
ture. 

b = Y = 1.33 when d = 2, and in accordance with the loga- 
rithmic law when d = 3. The critical exponent b for two- 
dimensional systems agrees with the numerical calculations 
reported in Ref. 1 1 [see Eq. ( 1 ) 1. In the d = 3 case the auth- 
ors of Ref. 11 state that the value of X" is still a power-law 
function of 7. In our opinion, this is not in agreement with 
the data reported there. Figure 2 is based on the graphs and 
analytic expressions of Ref. 11 and it gives the dependences 
X" (7) on logarithmic and semilogarithmic scales. We can 
see that the divergence of the magnetic susceptibility is de- 
scribed quite well by a logarithmic law in a wide range of 
concentrations. Therefore, Eq. (4) describes also the nu- 
merical results obtained for the d = 3 case. 

It therefore follows that the adopted approximation, 
i.e., the representation of doubly connected clusters by their 
contours, makes it possible to determine the behavior of the 
magnetic susceptibility near the percolation threshold and 
the results are not only in qualitative but also in quantitative 
agreement with those obtained in earlier investigations. The 
simplicity of the proposed model makes it possible to allow 
for the inductive interaction of the eddy currents, which has 
been ignored completely in earlier treatments. 

Clusters in a composite system are distributed random- 
ly in space. The inductive interaction between them will be 
allowed for using the effective-medium meth~d." . '~  In this 
approximation itis assumed that the influence of all the oth- 
er clusters on the selected one reduces to the replacement of 
the environment by some effective medium whose magnetic 
properties can be described by an effective magnetic perme- 
ability p,, . The example of a periodic model is used in the 
Appendix to show that the frequency dependence 
x:, ( 0 )  deduced by the effective medium method agrees 

I l l '  I I I  I I I J 
I z 3 4 1 2 3 v-tgr 

FIG. 2. Functionsxn(~) plotted in logarithmic (a) and semilo- 
garithmic (b)  scales using the numerical results of Ref. 1 1  for the 
d = 3 case. 
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quite well with the exact results. A self-consistent equation 
for the parameter p, is 

t 

The magnetic polarizability of a doubly connected cluster 
E(l,p,, ) in a medium characterized by p,, is described by 

where 

Z is the impedance of the cluster and L, is the external part 
of the self-induction of the cluster. The value of Z and the 
product of the constants (AB)  can be found from the condi- 
tion that in the rangep4pc(g-a) Eq. (5) describes the 
magnetic permeability of noninteracting conducting inclu- 
sions: 

where ( a )  is the polarizability of a conducting inclusion 
averaged over its various shapes. It is assumed that Eq. (6) is 
valid for clusters of any size. Therefore, we are ignoring a 
weak dependence of Z on {. 

Assuming, for the sake of simplicity, that the conduct- 
ing inclusion is spherical and that 6% a, we obtain the follow- 
ing equation for p, : 

where a, is given by the expression14 

Equation (7) makes it possible to find the asymptote ofp,, 
for a,{+ oo : 

1-exp (1/12np) 
pet, (a,E+w) = 

a, ln (Ela) ' 

It follows from Eq. (8) that at any fixed frequency the mag- 
netic susceptibility tends to zero on approach to the percola- 
tion threshold. The frequency dependencep,, (w ) exhibits a 
resonance (Fig. 3). The frequency at the maximum of the 
imaginary part of the magnetic permeability wr decreases on 

approach to the percolation threshold: the dependences 
p& ( a)  and p:, ( w  ) shift toward lower frequencies. A nu- 
merical solution of Eq. (7) shows that ifp +p, ({+ oo ), then 
the resonance value pri (p) = p:, ((w ,p) tends to a certain 
constant limit, the value of which depends weakly on the 
threshold concentration p, and for spherical inclusions it 
does not exceed 0.5. Therefore, an allowance for the induc- 
tive interaction of doubly connected clusters removes the 
divergence of the imaginary part of the effective magnetic 
permeability. The behavior of this permeability differs fun- 
damentally from that of the permittivity, because the value 
of the latter diverges on approach to the percolation thresh- 
old. This difference is due to the fact that the physical analog 
of the permittivity is the quantity 1/p. Therefore, an 
allowance for the interaction between clusters (in contrast 
to the magnetic permeability) increases the total permittivi- 
ty of the system E and is responsible for its divergence in the 
limit p -p, . 

Near the percolation threshold the value of pg of a 
percolation system with conducting inclusions of spherical 
shape (p, = 1/3) is several times greater thanpr' of a system 
of particles which are not in contact (curve 3 in Fig. 3). In 
the case of percolation systems containing conducting parti- 
cles of ellipsoidal shape the value of the threshold concentra- 
tionp, decreases on increase in the eccentricity of the parti- 
cles19 and can generally be as small as we please. However, at 
the percolation threshold the values of the effective magnetic 
permeability depend weakly on p,. Clearly, when the con- 
centration is appropriate in a system of nonconducting parti- 
cles, the effective magnetic properties may vanish practical- 
ly completely. Therefore, the effective magnetic properties 
of composite systems with low values ofp, can only be due to 
the formation of anomalously large percolation clusters. 

We shall conclude by noting that the analogy between 
the behavior of normal and superconducting composites in 
alternating and static magnetic fields mentioned above al- 
lows us to conclude that inclusion of the mutual induction 
effects ensures that the diamagnetic susceptibility of super- 
conducting composite systems remains finite near the perco- 
lation threshold. 

The authors are grateful to B.I. Shklovskii for valuable 
discussions. 

APPENDIX 

We shall consider a simple periodic model consisting of 
conducting rings of radius r with a transverse cross-section 
area ?ra2 on the assumption that their centers are located 

FIG. 3. Frequency dependences of the effective magnetic perme- 
ability of composite materials plotted for different values of the 
correlation size 6.  The continuous curves are the dependences pLR 
(o) and the dashed curves are the dependences p; (o): 1 )  
g/a = lo3; 2)  l / o  = 10; 3 )  6-0  (inclusions whicharenot in con- 
tact). 

FIG. 4. Frequency dependences of the imaginary part of the mag- 
netic susceptibility of a periodic system of conducting rings de- 
duced from the exact solution ( 1 )  and by the effective medium 
method (2)  on the assumption that r/o = 100 and nr3 = 1. 
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along one line (z axis) and they are separated by a distance h 
from one another with their planes perpendicular to this 
line. The magnetic susceptibility of such a system subjected 
to an alternating magnetic field HIJz can be written in the 
form 

where N is the number of rings and J is the current induced 
by the field H in one ring. In the approximation that S 2 a the 
value of the current J is given by 

where 

Here Lo and Lo, are the self-inductance and mutual induc- 
tance coefficients. Using Eq. (A t ) ,  we can represent the 
magnetic susceptibility in the form 

If we ignore the inductive interaction, we find that ,y = x,. 
The value ofx, is purely imaginary and it diverges on reduc- 
tion in the distance h between the rings. The limit h -+O cor- 
responds qualitatively to the behavior of a composite system 
near the percolation threshold. 

An allowance for the inductive interaction of the cur- 
rents has the effect, as demonstrated by Eq. (A2), that for 
any finite value ofw we havex" -0 when h -0. Ifh = 2a and 
S =a, then Eq. (A21 is numerically the same as the familiar 
formula for the polarizability of a conducting cylinder with 
its axis parallel to an alternating magnetic field.14 

We shall now calculate the magnetic susceptibility of 
this system by the effect medium method. The equation de- 
scribing the relative value ofp,, is simple: 

where n = l/?zhr2 is the number of rings per unit volume and 
E is the polarizability of a ring: 

Equation (A3) readily yields the magnetic susceptibility: 

Figure 4 shows the dependencesx" (6.1)  and^:^ (a). We can 
see that the results obtained by the effective medium method 
are in satisfactory agreement with the exact results described 
by Eq. (A2). 
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