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We propose a new method of rotating a superfluid while the vessel containing the liquid remains 
stationary. The rotation is induced by container-wall transverse vibrations in the form of a 
traveling wave propagating in the direction of rotation of the liquid. Effects connected with the 
existence, in the rotating superfluid, of a vortex structure-vortex pinning at the bottom of the 
vessel, flexure of the vortex lines, lag of the superfluid component behind the normal 
component-are investigated. The conditions are found under which these effects, which impair 
the rotation of the liquia .as a whole," are weak, and not stronger than the effect of viscous 
sticking of the normal colriponent to the bottom of the vessel. 

INTRODUCTION 

In numerous experimental investigations of the proper- 
ties of a rotating superfluid, the vessel containing the liquid 
was set in rotation. The aim of the present paper is to discuss 
another superfluid-spinning technique in which the vessel 
remains stationary. And precisely this can be achieved by 
generating a transverse wave running along the lateral sur- 
face of the vessel. In the process, as we shall see, in a definite 
range of values of the physical parameters of the problem, 
such as the vibration frequency, the viscosity of the liquid, 
the vessel dimensions, etc., the liquid will, on the average, 
execute "rigid-body" rotation. 

In the case of a normal liquid such a spinning technique 
has been investigated theoretically and experimentally. '.* 

In a superfluid the normal component is viscous and, 
like a normal liquid, experiences the twisting action of the 
walls. It is well known that, at normal-component angular 
velocities much higher than some critical velocity of the or- 
der of x / R  = ( X  is the vortex-circulation quantum and R is 
the vessel radius), there are formed in the interior of the 
liquid a large number N = 2 n n R  2 / ~  of quantized vortices 
simulating rigid-body rotation with angular velocity 0. Us- 
ing the proposed method, we can achieve angular velocities 
f i  2 0.1 rad/sec; the number of vortices is then high, and the 
vortex spacing b - ( x / f l )  ' I 2  is small compared to the vessel 
dimensions, a circumstance which allows us to use for the 
description of the liquid motion continuum hydrodynamics3 
in which averaging over scales greater than the vortex spac- 
ing b has been carried out. 

In our method of spinning a liquid the bottom of the 
vessel is stationary, and the vortices moving relative to it will 
interact with the irregularities of the solid surface, resulting 
in the appearance of a pinning force. This force, like the force 
responsible for the viscous sticking of vortices to the bottom 
of the vessel, will impede the rotation, impairing, generally 
speaking, its "rigid-body nature," i.e., the independence of 
the angular velocity of the distance from the axis of the ves- 
sel. 

But, as will be shown below, by choosing the ratio of the 
vessel height to vessel radius to be sufficiently large, we can 
make the impairment of the rigid-body nature of the rotation 
insignificant. 

Furthermore, we wish to emphasize that there exists an 
experimental setup in which it is generally possible to elimi- 
nate the influence of the bottom. For example, this can be 

achived by employing vessels in the form of a torus or the 
letter U. 

In the first section we consider the effect whereby the 
vibrating walls drag the normal component of a liquid in a 
cylindrical vessel. The results of this section bear a direct 
analogy to the results obtained for a normal liquid in cylin- 
drical geometry.' They also bear some analogy to the results 
obtained for a normal liquid in planar g e ~ m e t r y . ~  

In the second section we analyze the motion of the su- 
perfluid component. We shall estimate the characteristic 
vessel height below which the pinning leads to appreciable 
impairment of the rigid-body character of the liquid motion. 
It turns out that, for a broad range of temperatures, this 
height does not exceed the vessel radius, so that the interac- 
tion with the bottom on account of pinning is not stronger 
than the effect of viscous friction on the bottom of the vessel. 

1. NORMAL-COMPONENT ROTATION INDUCED BY WALL 
VIBRATIONS 

Let the walls of a cylindrical vessel undergo periodic 
radial displacements with velocity 

V(cp, t )  =Re {V ,  exp i(kcp-at)). (1  ) 

The operation Re will henceforth be implied in linear expres- 
sions. 

As we shall see, in the first approximation in the vibra- 
tion amplitude of the vessel walls, the wall motion produces 
a velocity field that automatically satisfies the incompress- 
ibility condition div v = 0. In the second approximation we 
shall be interested only in the averaged azimuthal motion of 
the liquid. Therefore, we can use the Navier-Stokes equation 
for an incompressible liquid: 

wherep, is the density, v,  is the kinematic viscosity, and Pis 
the pressure. Following Ref. 2, we assume that the vessel 
height L is much greater than R ,  and ignore the effect of the 
bottom. In this approximation the problem is homogeneous 
in the coordinate z, which is oriented parallel to the axis of 
rotation. 

In the cylindrical system of coordinates the compo- 
nents of the velocity can be given in terms of the stream 
function Y (r ,p)  as follows: 
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Discarding the nonlinear term (u, V)v, in (2) ,  we obtain 

where 

is the Laplace operator. That solution to this equation which 
satisfies the linear boundary conditions 

for the velocities has the form 

Y,= . 
VkR 

112 (1-1, ( a R )  kll,' ( a R )  a R )  

x cxp i (krp-ot) , (6)  

where Jk ( x )  is a Bessel function of order k (k  is assumed to 
be positive), 

The stationary rotation of the liquid is an effect of sec- 
ond order in the vibration amplitude Vk. To determine it, we 
must consider the Navier-Stokes equation averaged over the 
vibration period. The averaging leads to the vanishing of the 
radial velocity (this follows from the equation of contin- 
uity), and to the following equation for the azimuthal veloc- 
ity (6 ),: 

Here U ( r )  is determined by averaging the nonlinear term 
[ (u, V)v, ] ,, where we use for u, the first approximation to 
the velocity (Eq. (6) 1 : 

To determine the boundary condition for Eq. (a) ,  we must 
take account of the fact that the condition for the sticking of 
the viscous liquid is set at a vibrating wall, i.e., 

where 

v, 6R = - - exp i (krp-at) . 
2 0  

Expanding ( 10) in a series, we find that, in second order, 

The solution to Eq. (8)  with the boundary condition ( 11) 

has the form 

where 

vo ( r )  = LJ r' drr J drr' U (r") 
v,r 

(13) 
0 

(here and below the averaging sign is omitted). 
These expressions are simpler in the case la lR > 1, 

which is the case of greatest interest to us. Then 

vo ( r )  = - 
v,2 

exp [2-'" 1 a 1 ( r - R )  ] 
2 ( 2 ~ ~ 0 )  '" 

lal  x [ - 1 ,  4 (14) 

We see that the particular solution v , ( r )  decreases ex- 
ponentially in the viscous interior, so that in the main vol- 
ume the liquid rotates as a whole with angular velocity 

For the iterative scheme used by us to solve the Navier- 
Stokes equation to be applicable, it is necessary that the wall 
vibration amplitude r ,  = Vk/w, which guarantees an angu- 
lar velocity of 52 according to the formula ( 16) : 

be much smaller than the viscous length lal-I. This means 
that, for an angular velocity of R = 0.1 rad/sec to be 
achieved in a vessel of radius R = 1 cm, the vibration fre- 
quency w should be higher than lo2 rad/sec in the case of 
He4 (v, - cm2/sec) and 0.1 rad/sec in the case of He3 
(v, -0.1 cm2/sec). 

To discuss the applicability of the present rotation tech- 
nique at extremely low temperatures - 1 mK, i.e., in the case 
of He3, we must estimate the effect of the warmup of the 
liquid as a result of the viscous friction. The heat release 
occurs in a boundary layer of thickness la 1 - '. Using ( 16), 
we obtain for its magnitude per unit vessel height the expres- 
sion 

For p,v, -0.04 P (which corresponds to 2.4 mK for 
He3), w = 1 rad/sec, fl = 0.1 rad/sec, and Q = 4X lo-' 
W/cm. It is known that the transfer of heat from the super- 
fluid to the walls of the vessel is hindered (because of the 
Kapitza discontinuity). For the above-estimated heat out- 
put to be removable in the case of a temperature jump 6T- 1 
mK, the thermal resistance of the He3-solid state transition 
should not exceed 

This value is, apparently, attainable for the wall materials 
used at present. 

The applicability of our hydrodynamic theory is re- 
stricted also by the inequality la ll< 1, where I is the mean 
free path of the normal excitations. As the temperature is 
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lowered, the viscous depth la 1 - ' becomes comparable to I, 
and the above-expounded quantitative theory becomes inap- 
plicable, although, of course, qualitatively, the phenomenon 
can survive as long as the quantity I remains small compared 
to the radius of the vessel. 

2. ROTATION OF A SUPERFLUID 

We shall use the equations of the two-velocity hydro- 
dynamics of a rotating incompressible superfluid 

3 v* - = [v,, rot v,] - V 
a t  

Here the force of the friction between the normal and super- 
fluid components is determined by the parameters 
P = p n B / 2 p  andb '  =p,B1/2p, s = curl v,/lcurl v,I is the 
unit vector tangential to the vortices, 

v,,=vs+vI rot, s (21) 

is the local superfluid velocity in the neighborhood of a sin- 
gular vortex line and differs from the mean superfluid veloc- 
ity because of the bending of the vortices, and the parameter 

determines the tension in a vortex. 
The above equations of the hydrodynamics ofa rotating 

superfluid are suitable also for the description of the super- 
fluid phases of 3He if the symmetry of the vortex structures 
arising in them is sufficiently high.5,6 In the case of a lower 
symmetry of the vortex structure Eqs. (19) and (20) are 
somewhat more complicated, but these complications are 
not a basic feature of the effect in question, and therefore the 
results obtained below can qualitatively apply also to super- 
fluid 3He. But in the case of the nonsingular vortex structure 
in 3He-A the expression (22) relating v, to the circulation 
quantum no longer contains a logarithm, and v,, cannot be 
interpreted as a local velocity. 

Let us consider the motion of the superfluid compo- 
nent, assuming the normal-component velocity field to be 
given. We are interested in the fields v, and v, averaged over 
the period of the wall vibrations. We solve the problem for 
the case of small vortex flexures (i.e., the case in which s,, 
s, 4 1 ) . Let us linearize Eqs. (20) and (2  1 ) with respect to s, 
and s,, and average over z. Then taking account of the fact 
that (U, ), = (U, ), = (i7, ), = 0 (a  bar denotes averaging 
over z and t ) ,  we obtain for the velocity components the 
equations 

O= (us , )  (1-p') -P (Gn- (Ga1)0) (23 1 
v,= (I-P') (Val),+p'Gn-P (Gsdr, (24) 

- 
- dsg V I  (v ) =-y,---=- 

81 r 
dz L s,(O) , (25) 

In deriving the right-hand sides of (25) and (26), we used 
the boundary conditions,, (L)  = 0 (where L is the height of 
the vessel) at the free surface of the liquid. Hence 

(we drop the averaging sign-the superior bar). 
Heres, (0) ands, (0) are the components of the vectors 

at the bottom of the vessel (z = 0).  They are phenomeno- 
logically connected with the velocity v, by the Bekarevich- 
Khalatnikov condition: 

s (0) =avL+ar [ i ,  vL] , (29) 

where 2 is the unit vector along the z axis. 
With the aid of (29), we can eliminate s, (0)  and s, (0) 

from (27) and (28), and write the final expressions for v, 
and v, in terms of u, : 

Let us determine the shape of the bent vortices in terms 
of the radial and azimuthal displacements u, (z) and u, (z). 
Integrating the Euler equation ( 18) with respect to the time, 
we obtain for the azimuthal component of the velocity the 
equation 

where 2R, = I curl v, I .  It follows from Eq. (20) that v,, does 
not depend on z, since v, and u, do not depend on z. Hence, 
differentiating the linearized equation (21) with respect toz, 
we obtain 

d 'u, -- d3u, du, 
- 0, -v. - + - 2Cls=U. 

dz3 dz3 

Integrating (33), and using the boundary conditions for s, 
= du,/dz and s, = du,/Jz, we obtain 

We see that the radial displacement of the vortices decreases 
exponentially as we move away from the bottom of the vessel 
over a distance of (vs/2R) ' I 2 ,  which is sometimes called the 
thickness of the Ekman superfluid layer.6 But the azimuthal 
displacements penetrate far along the vessel, causing the 
vortex lines to twist along the helical lines whose axis coin- 
cides with that of the vessel. 

This is due to the fact that the vortex lattice is "incom- 
pressible:" its density is strictly prescribed by the angular 
velocity, and it admits of only shear deformations, permit- 
ting the "twisting" of the structure when the vortex lines, as 
they move along the axis of rotation, twist along helical lines. 

The twisted structure can arise not only on account of 
the pinning, but also as a result of the creation of the appro- 
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FIG. 1 .  Twisting of vortices along helical lines on a torus. The depicted 
cylinder is a torus that has been cut and straightened up. Depicted on the 
left and straight vortices corresponding to the normal structure; on the 
right, twisted vortices. When the ends of the cylinder are joined to form a 
torus, the end of each vortex at the top cross section joins onto the initial 
point ofthe neighboring vortex at the bottom cross section, as indicated by 
the dashed lines. 

priate conditions for the onset of rotation of a liquid in a 
vessel with the shape of a torus. The vortices are then helical 
lines on toroidal surfaces. It is more convenient to depict 
these lines on a cylinder, which must then be mentally coiled 
into a torus (see Fig. 1). The figure depicts the case when, on 
going around the torus (in the figure, a cylinder), a vortex 
shifts sideways and gets to a point where the neighboring 
vortex begins. As a result all the vortices lying on the appro- 
priate toroidal surface form a single closed vortex line. There 
exist a number of other possibilities. For example, the vorti- 
ces, on going around the torus, can undergo a displacement 
of two intervortex distances, and, if the number of vortices is 
even, then the vortex system forms two closed lines that go 
around the torus several times, etc. No matter what topo- 
logical structure arises, it will be stable. Here we have some 
analogy with a long solid rod twisted about is axis and then 
coiled into a ring. The resulting torsional deformation will 
exist indefinitely as long as the rod remains ideally elastic. 

We have considered the problem in the linear approxi- 
mation in the vortex flexures. If we use the pinning constant 
value a - 10 sec/cm obtained experimentally by Gamtsem- 
lidze et a].,' then it turns out that, for a vortex velocity v, 
-0.1 cm/sec (which corresponds to R - 0.1 rad/sec, R - 1 
cm), the flexure is considerable, and we are at the limit of 
applicability of the theory. But it should be noted that the 
pinning force in superfluid 3He, especially in the case of the 
nonsingular structures of the A phase, which do not have a 
small core scale, should, apparently, be much weaker than 
the corresponding force in 4He. Therefore, there we can ex- 
pect a regime with a small vortex slope right up to fairly high 
angular velocities. But to estimate the role of pinning in 4He, 
it is expedient to turn directly to the formulas (27) and (28), 
which contain the flexures s, (0) and s, (0), which should be 
considered to be quantities of the order of unity. It follows 
from these formulas that the lagging of the vortices and su- 
perfluid component behind the normal component is insig- 
nificant in the case when L - 1 cm, v, - 10W3 cm2/sec, and 
8 ,P ' -  1. 

In the preceding discussions we assumed that the 
torque exerted by the normal component on the superfluid 
component and setting the latter in rotation in no way affects 
the motion of the normal component, which executes rigid- 
body rotation: v, = R x r .  Let us now estimate the super- 

fluid component's reaction to the normal component, a reac- 
tion which should lead to the slowing down of the normal 
component and the destruction of the rigid-body nature of 
the rotation. 

The Navier-Stokes equation for the mean azimuthal 
motion has, after the elimination of (v,,), with the aid of 
( 2 5 ) ,  the form [cf. Eq. ( 8 ) ]  

dZ 1 d V n  -c +--v P'vs rot, v, - "(O) (36) 
dr2 " r dr r2 v, p,,~,, L .  

As in (8 ) ,  the first term on the right-hand side of (36) is a 
force acting in the vicinity of the vessel walls, and setting the 
normal component in rotation. 

To find the upper bound for the force slowing down the 
normal component, and represented in Eq. (36) by the sec- 
ond term on the right hand side, we set curl v, = curl v, 
= 2R and s, (0)  = 1. Then from (36) we can estimate the 

value of the ratio L /R at which the effect of the pinning force 
is certainly negligible: 

It is especially easy to satisfy this inequality in 3He be- 
cause of its high viscosity. 

In 4He, in a broad range of temperatures, e.g., at T> 1 
K, 

and the effect of the pinning is not stronger than the effect of 
the viscous friction between the normal component and the 
bottom of the vessel. In this case the superfluid rotates as a 
whole. 

CONCLUSION 

It follows from the foregoing that both superfluid 4He 
and superfluid 3He can be rotated in a stationary vessel 
through the generation of a sufficiently strong transverse 
wave running along the lateral walls of the vessel. This meth- 
od opens up new possibilities in the investigation of the 
structures that arise in a rotating superfluid, including the 
diverse structures of the superfluid phases of 3He. On the 
other hand, small deviations from the equilibrium rotation 
of the liquid can provide useful information about the inter- 
action of the vortices with the surface, i.e., about the pinning 
effect. 
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