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The problem of the stability of the Kolmogorov spectra of weak turbulence is analytically solved 
for the first time. The spectrum of the isotropic perturbations of the steady-state distribution of 
the capillary waves on the surface ofshallow water is found. It is shown that the Kolmogorov 
solution is stable against excitations of packets localized in k space: the packets are carried into 
the runoff region without increasing in size. 

INTRODUCTION 

The Kolmogorov spectra of turbulence are universal 
steady-state distributions specified by one macroscopic pa- 
rameter: the flux of the corresponding integral of the motion. 
In the theory of weak turbulence the Kolmogorov spectra 
can be obtained as exact solutions to the corresponding ki- 
netic equations. There, however, still remains open the 
question of the spectrum of weak perturbations in the back- 
ground of the steady-state solutions, in particular, the ques- 
tion of the stability of the latter. Unfortunately, in contrast 
to the case of equilibrium distributions, which are also speci- 
fied by one macroscopic parameter, in the case of highly 
nonequilibrium systems we do not (perhaps for the present) 
have universal criteria for stability (i.e., criteria of the type 
of the Boltzmann H theorem in conjunction with the condi- 
tion that the entropy be an extremum at equilibrium). Thus, 
we must solve the problem of the stability of the Kolmo- 
gorov solutions separately in each specific case. 

As will be shown in the present paper, there is a particu- 
lar class of Kolmogorov spectra for which the solution to the 
stability problem is very simple. To describe this class, we 
must distinguish between the proper and improper Kolmo- 
gorov spectra. We shall, following Zakha~rov ,~  refer to the 
situation in which the major portion of the turbulence ener- 
gy is concentrated in a region of size of the order of that of the 
course as the proper Kolmogorov situation in energy terms. 
For example, for the cases in which the three-wave interac- 
tions are allowed, and the source of the waves occur in a 
region of small k, this means that the energy integral 

diverges as k-0, i.e, that S = a + d - so < 0. Here the wave 
frequency w k  a ka , the Kolmogorov spectrum n, a k - "'I ,  

and d is the dimensionality of the space. Correspondingly, 
we shall call the situation in which the opposite sign of S is 
observed, i.e., in which S > 0, the improper Kolmogorov sit- 
uation: in this situation the energy (the flux of which realizes 
the Kolmogorov spectrum) accumulates in the region of 
large k. The nature of the establishment of the Kolmogorov 
spectrum should depend essentially on the sign of S (see Ref. 
3). The kinetic equation admits of self-similar solutions 
n, ( t )  = f (t)p({) that depend on the variable3 6 = kt - "? 
For S > 0 this solution describes a Kolmogorov-spectrum es- 
tablishment wave propagating to the right (k,,,,, cc t "9. 
In the proper Kolmogov situation (S < 0)  the steady-state 
solution is established in the region of large k in a non-self- 

similar fashion (see, for example, the results of the numeri- 
cal experiment reported in Ref. 4). Apparently, the self-sim- 
ilar solutions in this case describe a wave propagating to the 
left from the source, or the evolution of the initial distribu- 
tion without energy pumping. 

In the present paper we consider the intermediate situa- 
tion S = 0 (the symmetric case), to which pertains, as will be 
shown in $1, the physically interesting case of capillary- 
wave turbulence on the surface of shallow water. The kinetic 
equation describing the evolution of the occupation numbers 
n, ( t )  for the waves can be written in two equivalent forms: 

where the energy flux P, in k space can be expressed in terms 
of the collision integral I, as follows: 

k 

P h  = - Jo,z, dk. 

The Kolmogorov spectrum n: is the steady-state solution 
that realizes a constant energy flux, i.e., the situation in 
which JP, /dk = 0; therefore, I, {n; . ) a k - a - (this 
means that I,, {n:,. > = A  - a -  {n; .)). AS to the opera- 
tor of the linearized-against the background of n:-kinetic 
equation 

es can easily be seen, it has a homogeneity index equal to 8: 
L a " - d .  In the S = 0 case the eignefuctions of the lin- 
earized kinetic equation are obvious: they are the power 
functions 

Thus, the stability problem reduces to the problem of 
finding the function T (s) [by direct evaluation of the inte- 
grals in ( 1 ) ] and the study of the evolution of localized per- 
turbations that are superpositions of the eigenfunctions (2)  : 

an, (1) = J a (s) k-'e"')' ds, 
'I 

where a ( s )  and the contour yare such that Sn, -0 as k-0, 
m. 

The paper is organized as follows. In $1 we find the 
Kolmogorov solution for weak capillary-wave turbulence on 
the surface of shallow water and its perturbation spectrum in 
the case when the perturbations are weak and isotropic (i.e., 
depend only on the modulus k) ,  and have the form (2);  $2 is 
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devoted to the physical interpretation of the solutions ob- 
tained, i.e., to the study of the evolution of perturbations 
localized in k space. 

$1. THE STEADY-STATE SOLUTION AND THE SPECTRUM OF 
WEAK PERTURBATIONS 

Let us consider the waves on the surface of a liquid of 
small depth. In the long wave (i.e., k+O) limit their disper- 
sion law is close to the dispersion law for sound: 

where h andp are the depth and density of the liquid, Pis the 
coefficient of surface tension, and g is the acceleration due to 
gravity. We shall limit ourselves to the case when 3P>pgh 
and Eq. (4)  represents a decay dispersion law, the three- 
wave processes are allowed, and the evolution of the occupa- 
tion numbers n, for the waves is governed by the kinetic 
equation 

Here the matrix element of the three-wave interaction in the 
long-wave limit has the squared modulus I VkkIk2 l 2  = bkk,k, 
(see Ref. 2), and is scale-invariant, with a homogeneity in- 
dex m = 3/2. As to the dispersion law (41, it is approximate- 
ly scale-invariant when ak < 1: in this limit (5) possesses a 
steady-state power-function Kolmogorov solution. Assum- 
ing that ak( 1, and that the turbulence is isotropic (i.e., that 
n, depends only on the modulus of k ) ,  we can perform in 
(5) three of the four integrations, after which we obtain 

anh b - = -{I k ,  ( k - k , )  [a ,n, -nh(nl+n,)  ] d k ,  
d t  a 

Here n, = n,, and n, = n, - kz. As noted in Ref. 2, the pres- 
ence of a in the denominator of the collision term makes 
impossible the passage in the kinetic equation from the 
weak-turbulence limit (where nk <a3/b) to the strong-tur- 
bulence limit (where a = 0).  

In (6) the kernel of the collision term is already scale- 
invariant. The exponent of the steady-state Kolmogorov so- 
lution is most easily obtained by writing (6)  in the form d ~ ,  / 
dt + dP, /dk = 0, where E, = kuk nk = ck 'nk is the den- 
sity, and 

h 

ph=-c J kl'Ih, dk' 

is the energy flux in k space. To the steady-state solution 
corresponds the constancy of the flux, i.e., the situation in 
which dP,/dk = 0, and since for n, = k-" we have 

P, o: k - 2 s ~ ~ ,  so = 3. The deviation of the Kolmogorov expo- 
nent from the exponent obtained from the standard formula 
s o - - m + d = T 3 + 2 = 3 is due to the presence in (6)  of the 
factor a, which has the dimension of l e ~ ~ g t h . ~ ' ~  

Since a = 1, d = 2, and so = 3, S = a + d - so = 0- 
capillary wave turbulence on the surface of shallow water- 
pertains to the situation of interest to us here, namely, a 
situation intermediate between the proper and improper 
Kolmogorov situations. 

Let us linearize (6)  against the background of the Kol- 
mogorov solution n: = Nk - 3  by setting 
n, = nO, + Sn, (Sn, gn: ): 

+ o J Sn.. [ (k , -k)- '+ ( k l + k )  - z -2k-z ]dk , .  (7 )  

Equation (7)  possesses proper solutions of the form 
(2) .  The eigenvalues r ( s )  are given by the integral 

which converges in the band 2 <Re s < 4. This means that, 
among the perturbations having the asymptotic forms 
Sn, a k-" ,  only those with 2 <Re s < 4 are localized: for 
them the interaction of the waves with wave vectors of the 
same order of magnitude is the main thing. But in the case of 
nonlocalized perturbations we should explicitly specify the 
scales ko and k, of the source and sink, respectively, and 
take account of the finiteness of the inertial interval (k,,k, ). 
We shall limit ourselves to the study of the evolution of local- 
ized perturbations. 

As can be seen from (8a), r ( 3 )  = 0, which corre- 
sponds to neutral stability of the Kolmogorov solution 
against changes in the magnitude of the energy flux. Notice 
that r ( s )  in the interval 2 < Re s < 4 is, generally speaking, a 
complex quantity. This is due to the fact that, in contrast to 
the weakly nonequilibrium situation, the operator of the lin- 
ear part of the kinetic equation, linearized against the back- 
ground of the Kolmogorov spectrum is in general non-Her- 
mitian (see, for example, Ref. 6).This is the cause of the 
difference in the behavior of small deviations: the perturba- 
tions of the equilibrium spectrum attenuate monotonically, 
while in the Kolmogorov case the occupation numbers can 
oscillate about the steady-state values (see $2). 

Among the proper solutions (2)  are those for which 
Re r ( s )  >O [see (8a)I.  Naturally, this does not yet imply 
the instability of the Kolmogorov solution, since the eigen- 
functions k-"  do not satisfy the boundary conditions. It is 
more convenient to formulate the physical conditions on the 
perturbations in terms of Y (x)  = Sn, /n: , where x = In (k  / 
k,) (when expressed in terms of the variablex, (3)  goes over 
into the Fourier transform). The requirement that the per- 
turbation energy be finite, i.e., that 

m 
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leads to the requirement that Y (x)  -. 0 as x -. co , with 
Y a e c E I X  for x-. + m and Y meEZX for x-. - m, where 

> 0. It is also convenient to shift the region of analytic- 
ity of T(s) by going over from s to z = (s  - 3)/2: 

a - r (z) -2  (1l-z) tg nz. 
2bN 

$2. EVOLUTION OF LOCALIZED PERTURBATIONS IN THE 
BACKGROUND OF THE KOLMOGOROV SPECTRUM . 

As we shall now show, the function T(z),  (8b), has 
been constructed in such a way that any localized perturba- 
tion is carried into the region of large x. Let us first consider 
smooth perturbations in the form of a "hump" locally given 
by the formula Y(x,t) = A  exp[ - 2zx + r ( z ) t ] ,  [where 
z(x) is a slowly varying real function ofx ( ldz/dxI -4 Iz/xI ) 1, 
which is such that, to the right of the peak of the function 
Y (x) ,  O<z < 4, while to the left - f <z<0. Since we are con- 
sidering localized perturbations (Izi < J ) ,  the evolution of 
each section is determined only by wave vectors of the same 
order of magnitude, i.e., by the quantity r ( z ( x )  ). It can 
easily be seen from (8b) that r ( z )  is real on the real axis, 
with sign T(z)  =sign z and r ( 0 )  = 0 in the region 
- J < z < 4. This means that a perturbation of the above-de- 
scribed shape evolves in the following fashion: the right 
slope increases, while the left slope decreases, the height of 
the peak remaining unchanged. As is easy to understand, 
this corresponds to the motion of the packet to the right. The 
apex moves according to the law 

The exponential character of the motion is easy to under- 
stand if account is taken of the fact that the condition S = 0 
implies independence of the characteristic nonlinear-inter- 
action time of k. Therefore, during the motion along the 
spectrum any wave, for example, doubles its wave vector 
over a time period that is independent of k. 

An arbitrary localized solution to Eq. ( 7 )  can be writ- 
ten in the form 

ur (x, I )  = 1 'Y ( z )  e x p [ - 2 z i + r  ( z )  t l d z .  (9)  
7 

where the contour y traverses across the analyticity band of 
T(z) ( / R e z / < J ) f r o m  - i ~  to + ~ a n d Y ( z ) i s t h e F o u r -  
ier transform of the initial perturbation Y (x,O). Making the 
contour y coincident with the axis Re z = 0, z = iu, we see 
that, since a Re T(iu)  = - 2bNu th u < 0, any localized 
perturbation attenuates. Let us discuss this in a somewhat 
greater detail. Let initially Y (2) = exp[ (z - Z , ) ~ / A ~ ]  be a 
narrow Guassian packet (A 4 lzol = Ixo + iuo/ 
= (?ti + 02,) ' I 2  Let us evaluate the integral (9)  by the 

method of steepest descent. The saddle point z* is given by 
the equation 

i.e., depends on x and t. Let us elucidate the behavior of the 
maximum of the envelope Y (x,t). Let us denote the coordi- 
nate of the peak by x,(t). As is easy to obtain from (9)  and 
( 101, xo(0) = - %,/A2, the saddle point for x = x,, occurs 
on the imaginary axis 

For t e a ,  cosh2 uo (see below) 

the saddle point of z,*(t), moves along the imaginary axis to 
the zero point. Since the velocity Re(dr(iu!/dz) = 4bN/ 
a cosh2 a >  0 on the imaginary axis, the narrow Gaussian 
packet moves in the direction of large x, the height of the 
envelope peak decreasing in the process (Re T(iu) < 0).  
Since Im r(ia) $0, the attenuation of the packet is accom- 
panied by oscillations. For a,& 1 the period of the oscilla- 
tions is much shorter than the damping time. 

But any perturbation is ultimately carried into the re- 
gion of large x, leaving behind a damped trail. Indeed, let us 
consider t -. co and x/t = V = const. For x -. + co , a (z) is 
analytic in the region Re z>O. Shifting the contour of inte- 
gration to the saddle point, which, for V>Tf(0), lies on the 
real axis, and is given by the equation r' ( x  ) = V, we obtain 

Y (x, t )  mexp t [ r  ( x )  -xI"(?c) 1. 

For the function I? = ( 1 + H ) tan x, it is easy to show that, in 
the region x > 0, T ( x )  - xT1(x)  < 0 (which corresponds to 
the absence of convective instability). As to the trail left 
behind, for t-. m and finitex (ax 42bNt) the saddle point is 
given by the condition r ' (z*)  = 0 or 
s i n 2 ~ z * =  - 2 a ( l  +z*).  

This equation posseses the approximate solution 
z* z - a 2i/5, and since Re r (z* ) < 0, for ax -4 2bNt, 

Y ( x ,  t )  mexp[x/2+r ( z * )  t ] .  (11) 

Equation (1 1 ) demonstrates the stability of the Kolmo- 
gorov spectrum against isotropic perturbations: any local- 
ized perturbation is carried into the region of attenuation 
(i.e., of large k ) ,  leaving behind in the inertial region a 
damped trail. 

Apparently, this character of the evolution of localized 
perturbations (the drift into the region of attenuation) is 
fairly general. Let us consider the model four-wave problem 

od,.-l an, 
at 

Here the Kolmogorov solution, which is determined by the 
constant particle number flux, is equal to 
n: = w  - ( p +  3)'3 = w - ,  which corresponds to a source in 
the region of high w  and to damping in the low w  region. Let 
us consider the situation intermediate between the proper 
and improper Kolmogorov particle-number spectra: 
p - 2v + d /a + 3 = 0. Under this condition the eigenfunc- 
tions of the linearized kinetic equation have the form 
s,, = - ~ e ( ~ ) r  

a, , and the eigenvalues of T(s)  can also be 
computed directly. Let us, without giving the unwieldy 
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expression for the function T(s) ,  indicate the following 
properties of the function: 

1 ) r ( s )  is defined in the interval 

Note that the Kolmogorov exponent always lies in the mid- 
dle of the "band of localizability" of isotropic perturbations 
[see also (8a) 1. 

2)  On the real axis ( Ims  = 0)  we have sign T(s)  
= - sign(s --so). 

3) On the imaginary axis we have Re (aT/as) < 0. 
Thus, in the case of the described spectrum with a parti- 

cle flux the localized perturbations are carried to the left. 
Here it is pertinent to note that the motion of a narrow 

Gaussian packet (z, = O,A 4 1 ) is, as we have seen, deter- 
mined by the group velocity ar(s,)/as. But according to 
Ref. 7, this same quantity r' (so) specifies the direction of the 
corresponding flux of the integral of the motion. 

Summarizing, we can assert that, in the symmetric case, 
isotropic perturbations in the background of the Kolmo- 
gorov spectrum should be carried into the runoff region 
without increasing in magnitude. If the perturbations have 
an oscillating structure in k space [i.e., if (uo#O, \V 

- exp ( iuo  In k)  1,  then the drift will undergo damping and 
oscillation in time. 
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