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Equations describing the dynamics ofS-singular vortices (vortex dipoles) and corresponding to 
the three-dimensional hydrodynamic equations of an ideal incompressible liquid are obtained. On 
the basis of an exact solution of the dynamical problem it is shown that explosive growth of 
localized vorticity is possible in a system consisting of two vortex dipoles. 

Progress in our understanding of the nature of the 
strong vortex interactions in advanced three-dimensional 
turbulent flows can be achieved, as in the two-dimensional 
case also, on the basis of distinguishing localized elementary 
vortex objects such that a finite set of them is fully able to 
give rise to (and adequately simulate) complex dynamical 
processes in such nonlinear infinite-dimensional systems. ' r 2  

In this connection, in the present paper we consider 
three-dimensional 6-singularities of the vortex field-point 
vortex dipoles. For these we have obtained dynamical equa- 
tions possessing (in contrast to the dynamical system of vor- 
tons of Ref. 2 )  the same invariants of motion as the original 
three-dimensional Euler hydrodynamic equations. It is 
shown that for two vortex dipoles irreversible catastrophic 
growth of the quadratic vorticity in a finite time is possible; 
this phenomenon is investigated, e.g., in Ref. 3 and 4, and is 
connected, in the final analysis, with the well-known phe- 
nomenon of the stretching of vortex tubes in three-dimen- 
sional turbulent flows.5 

1. An elementary example of a localized vortex object 
having point support is a vortex dipole, for which the vortex 
field w is solenoidal (div w = 0 )  and has the form 

where S is a delta function in three-dimensional space, E , ~ ,  is 
the completely antisymmetric unit pseudotensor of rank 
three, and y, is the intensity vector of the vortex dipole situ- 
ated at the coordinate origin (here and below, repeated in- 
dices imply summation from 1 to 3).  

In the more general case we can consider solenoidal 
vortex objects possessing like ( 1 ), point support, but having 
the form of,e.g., a superposition of vortex multipoles: 

In the present paper, however, we shall confine ourselves to - - 
studying only vortex dipoles ( 1 ) . 

In unbounded space a vortex dipole corresponds to a 
solenoidal velocity field v (div v = 0 ) ,  which is established 

which coincides with the potential of a doublet, of the 
source-sink type, of intensity y (Ref. 6 ) .  In  this case the flow 
of the liquid outside the vortex dipole occurs as if it were 
formed by motion of a solid sphere of radius a with velocity 
U in an unbounded liquid at  rest at infinity (if y = 2?ra3U). 
We note also that the potential ( 2 )  coincides with the poten- 
tial created by a closed vortex filament at large distances 
from it, if y = KS, where S is the total area vector of any open 
surface bounded by the vortex filament and ?c is the vortex 
i n t e n ~ i t y . ~  An electromagnetic analog of the vortex dipole 
( 1 ) was considered in Ref. 7 in connection with the problem 
of the generation of a magnetic field. Thus, the vortex object 
( 1 ) has a clear physical meaning, corresponding to taking 
the limit 

y = lini stS 
X - m  

1st-0 

for a vortex ring (or  to taking the analogous limit for a 
spherical Hill vortex6). 

2. For a system consisting of N vortex dipoles, the vor- 
tex field w has the form 

here x" and ya determine the position and intensity of the 
vortex dipole labeled a (a = 1, 2,. . . , N )  as functions of 
time, since in a system consisting of several vortex dipoles 
there is hydrodynamic interaction between them. 

The energy T, Lamb momentum P,, and angular mo- 
mentum M, are invariants of the initial Euler hydrodynamic 
equations and are expressed in terms of the vortex field (3 )  
as follows6: 

N N 

3 (xIP-xla) (X;-xIm) 
= -  [ +  - -  IXi;-X" I::  8n 0 - 1  , 3 - ~ ,  

I xI3-x= I " 1, 

from (1 )  in the standard manner on the basis of the well- where T '  determines the invariant, regular (finite) part of 
known relation between w and v, analogous to the Biot-Sa- the total kinetic energy Tof the  liquid (naturally, the quanti- 
vart law in the theory of ele~tromagnetism.~Outside the vor- ty Titself is infinite for vortex dipoles, as it is for the field of a 
tex dipole this velocity field is described by the potential flow induced by a vortex filament of arbitrary shape6) and 
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corresponds to the interaction of the vortex dipoles. We note 
that the helicity invariant 

%$ = 1 d3r (v . rot v) 

for the system of vortex dipoles (3 )  is identically equal to 
zero. 

The dynamical system describing the evolution of y" 
and xa should leave the quantities (4)  and (5 )  invariant. I t  is 
not difficult to convince oneself that this system is deter- 
mined by the Hamiltonian H = T ' / p  (wherep is the density 
of the incompressible liquid), and has the form 

N 

3(x1"-xIz) (x,"'-x,~) 
1 x ' " - ~ =  ( ' 

cai,tir 

\ _ C dQ(x"'-xq) 
dx,"'  

(6 )  
n = I  

~ n ~ i i l i )  

dy," dlf - = -- 
d t  dx," 

= :"' C y ~ [ o , , ( x , i t L - x , ~ )  + a , ,  (X,~~-X;) + 6.. ( X , ~ ~ ~ - X , ~ )  
4rr a=,  

where the potential @ is defined in (2 )  and the superscripts 
correspond to the labeling of the vortex dipoles ( m  = 1, 
2 , .  . . , N ) .  

In Refs. 8-10 systems of the form (6 )  were introduced 
on the basis of a different approach that does not exclude the 
effects of self-action of the vortex dipoles. In our analysis 
these undesirable effects, which lead to uncertainties (see 
Ref. 10) in the magnitude of the self-induced velocity, are 
excluded automatically in the derivation of (6 )  as a result of 
the renormalization (regularization) of the total energy Tof 
the liquid. Then the system (6 )  can indeed serve as a basis 
for the extension of gridless algorithms for calculating the 
flows (see Ref. 1 1 ) to the three-dimensional case, since none 
of the restrictions on the mutual dynamics of point vortex 
dipoles that usually apply (see Ref. 10) in the analysis of the 
dynamics of small but finite vortex rings are present in this 
case. 

3. We shall consider the dynamics of the relative motion 
of two vortex dipoles in the case when the total momentum 
P = 0 and the angular momentum M is oriented along the z 
axis. 

Let the vector y = - y' = y2 and 1 = x '  - x', lie in the 
(x,y) plane at the initial time t = 0. Since the quantity 
M = p l X  y is an invariant of the motion [see ( 5 )  1,  for all 
values of the vectors 1 and y remain as before in the (x,yj  
plane and are entirely determined by the values of the moduli 
I = 111 and y = Jyl  and by the values of the corresponding 
polar angles p (for 1) and p, (for y ) . For I, y,p, and p, , from 
( 6 )  we obtain the following system of equations: 

From (7 )  and (8 )  it follows that 

where (y l )  ~ y . 1  = yl cos (p  - y,, ). Therefore, from ( 7 )  we 
obtain as a result of elementary integration the exact solu- 
tion 

where 

From (9)  and (10) it can be seen the the angle Yo 
between the vectors yo  and 1, is the fundamental parameter 
determining the qualitatively different types of dynamical 
regimes for the vortex dipoles. 

In fact, for /COSY,/ < 1 / f i  (i.e., for H > O ) ,  in a finite 
time t' + ' a t-irreversible collapse (coalescence to a point ) of 
two, initially isolated vortex dipoles occurs. Changing the 
sign oft  here does not cause the vortex dipoles to move apart. 
We note also that the system ( 6 )  is invariant to the replace- 
ment t- - t, y - - y. For 0 < COSY, < 1/f i  the distance I 
between the vortex dipoles at t > 0 decreases monotonically 
with increase of t, and 1-0 as t - t '+  '. In the case 
- l / f i<cosYo <O the vortex dipoles first move apart 
[I  = lmax = I(, sin2/'Yo( 1 - 3 cos'\VO) ' I 5  at 
t = t,, = - 4n-1: COSY, JSy,,( 1 - 3 cos' Yo) 1,  and then, for 
t > to, begin to collapse to a point. Here, for COSY,, > 0 the 
collapse time t' + ' is shorter than in the case when COSY, < 0. 
In the limit t-t '  + ' this mutual approach of the vortex di- 
poles occurs along trajectories corresponding to logarithmic 
spirals, since from (8)  and (10') it follows that the angular 
velocity w r d p  /dt- - c / l ~ ( t ' + '  - t ) ,  and the frequen- 
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cy ratio w/w , -- 1 in this limit (here w , -dp l  /dt). The col- 
lapse of the vortex dipoles occurs at the point of their "center 
of gravity" B = (x '  + x2)/2, which is immobile in the labo- 
ratory coordinate frame, since from (6)  it follows that d ( x l  
+ x2)/dt = 0, and so absolute motion is absent at the point 

B. In this dynamical regime (i.e., for H >  0 )  the solution 
(9) ,  ( 10) becomes indeterminate for t>t  It', since fort  > t I + '  

the quantity I becomes negative, which is inadmissible from 
a physical point of view. 

At the same time, for Icos\V,,/ > 1 / 0  (i.e. for H < O )  
and COSY,, < 0 there is a monotonic increase of I fort  > 0, and 
in the limit t- cc the moving apart of the vortex dipoles is 
determined by the asymptotes I=O( t  "') and y2-O(t 'I5). 
However, for /COSY, > 1/J3 and COSY, > 0 the vortex di- 
poles come together in a finite time 

$xio'  (cos qrp-2-~  sin 'Y,, 1 ) t ' + '  = ~. 

.-JY,, (:j 1'0s' 'Ir,,- 1) 

Then, in the time interval 

the solution (10) is physically not determined, since for 
t' + ' < t < t ' ' the quantity I takes negative values (from 
physical considerations we can assume that fort  '+' < t < t '  - ) 
the vortex dipoles are together at the same point B ) .  Then, 
for 

the vortex dipoles move apart, so that again l ~ O ( t ~ ' ~ )  as 
t - W .  In particular, for Y,=O we have 
t ' + '  - I - 

- t - ill = 2.rrl~/5yll, and the regime of collapse at 
Ogt<t, is immediately replaced at t > i ,  by a process in 
which the vortex dipoles move apart. 

Also special is the case when /cos\V, / = 3 - (i.e., 
H = 0 ) .  For COSY, = - 3V1/' the vortex dipoles move 
apart, in such a way that 1-O(t ' I 5 )  and y'-O(tX15) in the 
limit t -m.  At the same time, in the case when 
cos\V,, = 3 " ' ,  in a finite time t ' + '  = 7 ~ . 3 ~ ~ ~ 1 ~ / 5 ~ ~ ~  the vor- 
tex dipoles collapse to the point B, where, evidently, they 
should remain for an unlimited time, since for t > t '  + ' the 
quantity I determined from the solution ( 10) becomes nega- 
tive. 

In addition, it follows from the solution ( 9 )  that in the 
dynamical regimes with H > 0 and H(O (in the case COSY, 
> O), the quantity y2 grows without limit as the vortex di- 
poles come together in the finite time t '  + '. For H >  0 this t-  
irreversible process (like the collapse of the vortex dipoles 
itself for such initial conditions) is qualitatively insensitive 
to a change of sign oft, in contrast to the case H<O, for which 
the operation t- - t leads to a qualitative change of the 
dynamical regime, since the collapse of the vortex dipoles in 
this case is replaced by their moving apart (and vice versa). 
In the case when H < 0 and COSY, > 0 the spontaneous singu- 
larity of y2ast-t '  + ' is replacedat t > t '  '>t '  + 'by amono- 
tonic increase ( y2 = O(t'I5) as t -- w ; see above). 

We note also that for coaxial vortex dipoles (i.e., for Yo 
= 0 and M = 0 )  their coming together at the time 

t = i = 2.rrl:/5y0 (see above) occurs along the straight line 

joining them, and not along a logarithmic spiral as in the case 
of noncoaxial vortex dipoles (i.e., for Y, # O  and M #O). In 
this special case, when the angular momentum M = 0, as 
t - i  we have y2-0 (since y 2 - - ~ [ ( i  - t)'I5) 1, while for 
t > i, while the vortex dipoles move apart, their intensity in- 
creases monotonically (y2=O( t  ' I 5 )  as t- ), just as in oth- 
er cases with H < 0. 

Thus, the dynamical regime of the mutual approach of 
coaxial vortex dipoles is in qualitative agreement with the 
well-known phenomenon of the attraction of coaxial vortex 
rings with opposite momenta.' At the same time, in classical 
hydrodynamics, solutions describing the dynamics of two 
noncoaxial vortex rings are not known.6 Thus, the exact so- 
lution obtained above for noncoaxial vortex dipoles with 
M # O  makes it possible, in particular, to analyzecharacteris- 
tic tendencies in the dynamics of two finite noncoaxial vor- 
tex rings, if at the initial time t = 0 they are separated by a 
distance much greater than their own sizes. 

4. The above exact solution (9 ) ,  ( 10) of the three-di- 
mensional hydrodynamic equations of an ideal incompress- 
ible liquid can be used to construct a model turbulent regime 
on the basis of the method, developed in Refs. 12 and 13, of 
randomization of integrable problems of hydrodynamics. 
For this, in accordance with Refs. 12 and 13, it is necessary 
to introduce a probability measure on the ensemble of real- 
izations of the turbulent velocity field corresponding to the 
solution (9 ) ,  (10) with random initial data. We note that in 
such modeling the magnitude of the mean-square vorticity 
(the enstrophy) of the turbulent flow can be determined: 
fi = (f l) ,  where R = ( d ~ , / d x , ) ~ ,  v is the velocity field 
created by the pair of vortex dipoles (the dynamics of which 
is described by the exact solution ( 9 ) ,  (10) for random ini- 
tial data), and the angular brackets denote statistical averag- 
ing over the ensemble of realizations of the random (turbu- 
lent) velocity field v. 

From the solution (9 ) ,  ( 10) there follows then the pos- 
sibility of explosive growth of the quantity R in spatially 
localized regions, even for each realization (of this statistical 
ensemble) satisfying the conditions lcosY, / <_3 or 
1 > cos\V, >3  Therefore, explosive growth of R certain- 
ly also occurs irrespespective of the specific form of the prob- 
ability measure, for which it is sufficient to assume that it 
tends to zero for realizations with Yo = 0 and - 1 (COSY, 
( - 3-1'2 . In fact, from (2 ) ,  (6 ) ,  and (9 ) ,  (10) it follows 
that f l ~ O ( ~ ~ l ~ /  I X  - X ,  i.e., in the neighborhood 

I X  - B g l ( t )  of the point x = B = ( x ,  + x, )/2 ( to  which 
the vortex dipoles collapse) we have the estimate 
a-O($/I2)  or R z O [ l / ( t ( + '  - t )9 )  as t-t' + ', where 
the explosive-growth exponent q = 2. Here, at the other 
points for which Ix - x,l > l ( t ) ,  the quantity R no longer 
has a singularity as t - t' + '. In particular, as a result of aver- 
aging R over the probability measure introduced in Ref. 13 
(which is a finite discrete set of 6-functions), for a statistical 
ensemble consisting of a finite number of terms we obtain the 
estimate R z O [ l / ( t  6;) - t)'] as t-t I:], where t 6:' is 
the smallest value of the positive quantity t '  ' ' among all the 
possible discrete values {t' + ') corresponding to different 
realizations of the random initial data. Of course, the esti- 
mate fi obtained in this way corresponds to an extremely 
simplified model of turbulence. We note, however, that in 
Ref. 4, from considerations of scaling and dimensionality, 
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exactly the same exponent of the explosive growth of the 
enstrophy was obtained: 

as t-t * for the case when the spectrum E(k , t )  of the ener- 
gies of the turbulence is determined by the flow of energy 
through the spectrum and corresponds to the Kolmogorov- 
Obukhov "two-thirds law" in the inertial interval of scales 
k - '  for t-t *, i.e., 

(where g G O( 1 ) for t - t *, and E is the average specific rate 
of dissipation of turbulent energy). At the same time, for an 
energy spectrum determined by the flow of helicity (or gyro- 
tropy ) X through the spectrum, an exponent q # 2 for the 
explosive growth of the enstrophy was obtained in Ref. 4. 
Here, the fact that our result accords only with the first case 
considered in Ref. 4 is entirely natural, since it has already 
been noted above that for the system of vortex dipoles ( 3 )  
the helicity invariant 2'-0, and, therefore, for such a sys- 
tem flow of helicity through the spectrum cannot be realized 
at all. The comparison of our estimate of the explosive 
growth of the enstrophy 6 with the corresponding result of 
Ref. 4 can be used, e.g., to determine the arbitrary empirical 
constant t * introduced in Ref. 4, since it is obvious that 
t *= t k: '. In addition, from the qualitative agreement 
between the above extimate of 6 and the results of Refs. 3 
and 4 it follows that a system of two nonlinearly interacting 
vortex dipoles is already able to model reasonably well the 
elementary act of strong interaction in developed turbulent 
flow. In fact, analysis of this relatively simple dynamical 
system may turn out to be useful for modeling the phenome- 
non of a sink of turbulent energy of an ideal incompressible 
liquid at spatially localized (point) vortex singularities, al- 
though such modeling, of course, is not exhaustive or obliga- 
tory, inasmuch as it certainly does not ensure completeness 
of the description of the observable vortex interactions that 
lead to the energy sink in real three-dimensional turbulent 
flows. The possibility of the existence of such an energy-sink 
phenomenon was first pointed out in a paper of Onsager. l4 

The results of the numerical experiments of Ref. and the 
conclusions of Ref. 4 are in accordance with the assumption 
made in Ref. 14. In fact, the unlimited growth of the en- 
strophy fi in a finite time, as obtained in Refs. 3 and 4 and in 
our work, implies the admissibility of the existence, for the 
average specific rate of dissipation of turbulent energy, of a 

finite limit E = lim v 6  as the kinematic viscosity v tends to 
,,-0 

zero.'-' This, in its turn, as noted in Ref. 2, makes it possible 
to extend the Kolmogorov-Obukhov "two-thirds law" to 
the region of arbitrarily small scales in the limit v--t0 (for 
finite v, the "two-thirds law" certainly does not hold for 
scales smaller than the internal scale 7 = (v3/&) of the 
turbulence5). 

The experimentally observed sharply expressed inter- 
mittency of turbulent flows confirms the possibility of the 
onset of spatiotemporal vortex-field singularities, modeled 
in the present paper on the basis of an analysis of the dynam- 
ics of vortex dipoles. 

In conclusion, we note that analysis of the dynamical 

system (6 ) ,  even for a small number of vortex dipoles, can 
also be of interest, e.g., in connection with the problem of 
predictability (integrability of the hydrodynamic equa- 
t i o n ~ ' ~ , ' ~  and for the solution of problems concerning the 
transport of impurities in the atmosphere and in a plasma on 
the basis of the use of the method of randomization of inte- 
grable problems.'*." In addition, three-dimensional S-sin- 
gular vortex dipoles are the most adequate objects for model- 
ing turbulent flows in three-dimensional problems of applied 
aerodynamics. In fact, for the modeling of two-dimensional 
turbulent flows around obstacles wide use is currently made 
of the method of point vortices-rectilinear vortex fila- 
ments.' However, for the calculation of, e.g., turbulent flow 
around moving elastic profiles such two-dimensional model- 
ing is no longer appropriate because of the presence of im- 
portant three-dimensional effects." In three-dimensional 
turbulent flow the vortex filaments are deformed in the in- 
teraction, and, accordingly, strong self-interaction effects, 
hindering the use of these objects, arise. At the same time, in 
principle, point vortex dipoles do not change their structure 
upon interaction, and therefore their application for the 
modeling of three-dimensional turbulence has obvious ad- 
vantages. 

We must also stress the fundamental importance of the 
fact that in three-dimensional hydrodynamics the correct 
introduction of point vortex dipoles of the form ( 3 )  is, in 
general, possible. For example, in a recent paper," Saffman 
and Meiron make the opposite statement, based on the fact 
that for the system ( 3 )  the quantity A = ( - l /  
2)  J dx(x)'w does not remain invariant. However, in the 
three-dimensional case A is only a part of the total invariant 
angular momentum of the liquid: 

M = ~ J  d ' x [ x [ x m ] ] / 1  

(see Ref. 6 ) ,  although in the two-dimensional case M = p A  
(Ref. 6 ) .  The invariance of M for the system of vortex di- 
poles ( 3 )  has already been noted above (see also Ref. 9) .  In 
addition,the self-interaction effect for an isolated point vor- 
tex dipole (describable by the term y ,S (x )  in the expression 
for the liquid velocity b, = y,S(x)  + d@/dx, induced by a 
vortex dipole situated at the point x = 0 )  is excluded auto- 
matically when the term d@/dxi is subjected to the usual 
regularization (see Ref. 19) needed by virtue of the fact that 
the function d@/dx, for @ from ( 2 )  has a locally nonintegra- 
ble singularity at the point x = 0. In fact, since this regular- 
ization for d@/dx, for @ from ( 2 )  is always defined only to 
within a term c ,S(x)  (c, is arbitrary),' ' for c, = - y, the 
self-interaction effect for a point vortex dipole is actually 
eliminated. This circumstance was also not taken into ac- 
count in Ref. 18. 

Thus, point vortex objects can have meaning not only in 
two-dimensional but also in three-dimensional hydrodyna- 
mics. 

I am grateful to V. E. Zakharov, V. I. Tatarskii, and A. 
M. Yaglom for their interest in the work and valuable ad- 
vice, and also to V. P. Goncharov, V. M. Gryankin, and Yu. 
B. Sedov for useful discussions on the results of the paper. 
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