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We find all 18 Landau energy extrema for the phase transition of He3 into the superfluid state. 

It is well known that the transition of He3 into the su- 
perfluid state is described satisfactorily in the framework of 
Landau's general second-order phase transition theory. The 
superfluidity of He3 is caused by the Bose-Einstein conden- 
sation of Cooper pairs with spin S = 1 and angular momen- 
tum L = 1 . The order parameter is therefore a $-function 
which has spin (Greek) and orbital (Roman) vector in- 
dexes $, . If one neglects the dipole-dipole interaction of the 
nuclear spins, the Landau energy is equal to 

(see Refs. 1,2). The equilibrium equations 

have solutions with a continuous degeneracy with respect to 
rotations of the spin and orbital spaces and to gauge trans- 
formations. As a consequence of this there are difficulties of 
analytically solving the equations. Three solutions, corre- 
sponding to the A-, and B-phases of He3 and to the planar 
phase have been known from the microscopic theory. 3-5 An- 
other three were found analytically in Refs.1, 2, 6. Barton 
and Moore7 analyzing the problem numerically found six 
new solutions. Finally, Jones8 discovered a thirteenth, very 
complicated solution. Although there can no longer be any 
doubts about the structure of the superfluid phases of He3 it 
would nonetheless be desirable to know all extrema of the 
energy ( 1 ) . 

1. We introduce new variables pv andxj: 

In those variables the energy is equal to 

where f =Ai, p = pi,. Multiplying Eq. (2) by $; and sum- 
ming over the spin index we get 

+ p l / i k f k j +  P S f k i f i r j = O .  ( 5  

Repeating this procedure with the function $ja we get 

$1x6F/b$tq'=-~qij+p~qfj,+P?fq,ii+P~~i,i~j,< 

+Plf<hq~<jf P s f r i ( ~ j r = O .  (6) 

Evaluating the trace of Eq. (5)  with respect of the orbital 
index $:SF /a$: = 0, we can check that for the solutions of 
Eqs. ( 5 ) ,  (6) the energy (4)  is equal to 

I:=-T f/2. ( 7 )  

Using the freedom of choice of the phase of the $-function, 
we put Bii = 0. The real partx, of the matrix& is symmetric 
and the imaginary part antisymmetric. Introducing an ap- 
propriate dual vector b, we have 

We separate in Eqs. (5 )  and (6)  the real and imaginary, and 
the symmetric and anti-symmetric parts:" 

I ( P z x - t )  ~(j+plAAij+Ps(A~kAkj+BikBkj). 

+ ( P A +  l j 5 ) ~ ~ k ~ i i ~ = ( P i - P 5 )  ( b i b j - b b Z ) ,  
I1 P,AB, j=Ps (~k~e , ,~+~k je , in )  bn, 

111 (P ix -~)AtJ+P,A~, j+y(~tkAkj+;~7kAki )  

bn, 
IV ( P z x - t )  Bzj+y (xikBkj+~jkBki) =p (einkAkj+ejahAki) bn, 

V ( P z x - T )  bn+PseijnBikAhj=PA(~niba-~bn) , 
VI veij.xikAkj+ qbjBjn=O, 

VII ~ , A b , + ~ e ~ ~ , ~ ~ B ~ ~ = q (  b,A-bjA,j). ( 10) 

He rex=x i , ,  A=Aii ,  b 2 = b i b ,  , y =  (8, +P4 +P5)/2, 
p = (P3 +P4 -P5 112, v =  (04 +P5 -P3)/2, 7 7 =  (P4 
- P5 - P3)/2. We choose Cartesian coordinates in the or- 

bital x,y,z-space such that the matrix xu is diagonal. Thus, 
changing to new variables A,, B,,, x u ,  b, we are completely 
rid of the continuous degeneracy. The price of this simplifi- 
cation are redundant solutions which may appear in connec- 
tion with the multiplication when we changed from (2) to 
(5)  and (6) .  In fact, one can easily identify the redundant 
solutions thanks to the following fact. One can perform a 
similar transformation to introduce a set of equations for the 
traces with respect to the orbital indexes $ia$40, $ia$iR. The 
corresponding set of equations then differs from (5)  and (6)  
only through the substitution 0, sP, .  It is thus clear that 
those solutions of the set ( 10) which do not have a partner 
with an energy differing through the substitution P3 s P 5  
must be dropped. 

Bearing this selection rule in mind we first find all possi- 
ble values of the quantity X .  This can be done even without a 
complete analysis of all equations of the set ( 10). After drop- 
ping the clearly redundant values ofx  there remain 18 solu- 
tions. Of them 13 correspond to earlier known extrema; we 
shall analyze the other 5 in more detail-we shall see that all 
of them are extrema of the energy ( 1 ). 

Let A #O; it then follows from (10.11) that B, =By, 
= B, = 0 and 

We separate the real and imaginary parts of the symmetric PA! 
Bz, = - ( ~ z z - ~ x z ) .  

matrix pv B iA 
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Substituting these values of the Bik components into ( 10.VI) 
we find 

Hence follow three cases: 

Using the free rotation in the orbital space b, = by = 0 we 
choose in case 1 ), and forb, #Owe obtain A, = 0 through a 
rotation around the z-axis. From the x,y components of Eq. 
( 1O.VII) we see also that A,, =Ayz = 0 . When b, = 0 we 
can diagonalize the A, matrix. In case 2) ,  using the free 
rotation around the z-axis, we put by = 0. Then, if b, #O, it 
follows from the y-component of Eq. ( 10) that A, = 0; if, 
however, b, = 0, we can achieve A, = 0 through rotation 
around the z-axis. Thus, we may assume that Eqs.(l3) are 
correct both in case 1 ) and in case 2)  and we can therefore 
consider them simultaneously with case 3).  Substituting 
Eqs. ( 11) and ( 13) into Eqs. ( 10.111) (for i#j) we find 

Hence we have two possibilities: either b, = by = 0, or b, 
= 0; b,, by #O and 

We show that in the latter case the set of Eqs. ( 10) is incom- 
patible. To do that it is sufficient to consider only the follow- 
ing 8 equations of the set ( 10) : I-xy-component; 111-xx, 
yy, zz; V-x, y; VII-x, y. Using Eqs. ( 1 1 ), ( 13 ) we have 
when b, = 0; b,, by #O 

(15) 
Adding Eqs. 11, 111, IV of the set ( 15) we get 

Using ( 1 S.V,VI) we eliminate b, ,by from ( 15.IV), and us- 
ing ( 16) we reduce ( 15.IV) to the form 

(17) 
We now use (15.VI1,VIII) to eliminate b,, by from 
Eq.(lS.IV). Using (16) and (15.1) weget 

We have thus three Eqs. ( 14), ( 17), ( 18) for three un- 
knowns X, x,, A, /A. One easily checks that this set has a 
unique solution. It turns out, however, that one can find the 
ratio A, /A independently. Indeed, we use ( 15.VI1,VIII) to 
eliminate b, , by from ( 1 5.V,VI) and we find the difference 
of the equations obtained 

whence, sincex,, #xyy (otherwise we could assume that by 
= 0 )  we find easily by using (15.I), 

which contradicts the set of Eqs. ( 14), ( 17), ( 18). 
Let now b, = by = 0 , b, #O. The zz-components of 

Eqs. ( 10.1,II) then have the form 

Adding and subtracting these equations we get 

whence we have three cases: 

1) y",,=A,,=O, 
2 )  P z x - ~ + ( P ~ + P ~ ) x ~ ~ = O ,  PlA+P3AZz=O, (20) 
3) A ~ z = x * ~  PZX-T+ ( ~ ~ + ~ ~ ) x , , + P ~ A + ~ ~ A , , = O  

(we note here that the case A, = - X, differs from 3 )  only 
through the substitution $-i$). When b, # O  the xy-com- 
ponent of Eq. (10.IV) and the z-component of Eqs. 
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( lO.V,VII) reduce to the following relations: The part of the energy ( 1 ) which depends on the angles w, a, 

PJ p,  f is equal to 
- {B*x-T+Y (x-x=)) (~n-xuu)= P (Aor-Auu) 
81-4 81 (cos2 o-sinz o cos 2a)' + 7 8 4  sin4 o sin2 2a+2y cos4 o 

v B ~  PA-11 (A-Azz) = - ( x ~ ~ - x ~ ~ ) ~ .  
P iA + - 'l sin4 o sin2 2a  sin 2p sin 25 

Eliminating from these A,, - A,  and x,, - xYy we find 2 

~ZX-Z+PL (x-~rr) +PrB. sin4 o sin2 2 a  cos 2p cos 25. 
2 (23) 

In case 1 of Eqs. (20) we get from Eq. (21 ) 

which corresponds to the solution found by Jones.' Follow- 
ing Ref. 7 we shall call this solution the 7-phase. 

In case 2)  of (20) we find by using 2)  of (20) to elimi- 
nate x,, and A, /A  from ( 2  1 ) 

Here and in what follows we indicate values of x which do 
not satisfy the above selection criteria by an ( * )  sign. 

Case 3) of (20) can most simply be considered as fol- 
lows. We introduce real spin vectors li and m, such that 

Then 

and from the condition X ,  = A ,  we have m, = 0 . The re- 
maining conditions lead to the following relations 

whence follows that 1,11,1lY and m, Ill,, my Ill,. As a result 
we can write the $, matrix in the form 

s i n o s i n a s i n p  - i s i n w c o s a s i n ~  0 
a cos 5 sin o sin a cos p 

0 COS 61 

The extrema of expression (23) with respect to the anglesp, 
f correspond either to sin 2p = sin 25 = 0 and then we get 
for b, # O  the axially symmetric phase of Ref.7 or to cos 2p 
= cos 2f = 0 and then we get the [-phase of Ref.7;'' or, 

finally, 

'l sin2f Bs-B5 cos 2f -ctgZa-+-ctg2a-= 1, 
Y sin 2p y cos 2p 
q sin2p fit-P5 cos 2p 

-tg2a-+- tg2 a-= 1, 
'I sin 2b y cos 2b 

whence we find 

( 
Ctg"a--x2 '" 1 ( 

lg" "" 
cos 2p=* , cos2g=*y 

yZ-2' y2-x2 1 
x= (2p) -I {l+p2-s" [ (l+p2-sZ) 2-4p2]'h), y=s-I (px- I), 

p=qIy, s=(P5-P3)/y. 

For such values ofp , 5  expression (23) is equal to 

P 4  . jjl (cos2 o-sin2 o cos 2u) + -sin% sinZ 2 a  
2 

l+cos2 2a  
+2y cos4 o+sin& w (-- C k ----- cos2a D) .  (24) 

4 2 

where 

c=2fi1+4P3P5/y, D = ~ { ~ ~ ~ ~ [ P ~ Z - ( P J - ~ ~ ) ~ ] ) ' ~ ' ~ Y .  

The extremum of expression (24) with respect to the angle a 
corresponds to 

cos 2a=(4PI ctg2 of D)/(2pi-4P1-C). (25) 

Finally varying with respect tow we have three solutions: 1 ) 
cos w = 0- 7-phase (Ref. 8 )  and 2),  3) 

cos 2o=-2 (2jjlyf {Pi (C+4y*Il)+GP3P5)-'. (26) 

The quantity x is then given by the expression 

The solutions (27) which we have found differ one from the other only quantitatively; we call them the O +- and O -phases. 
When b, = 0 it follows from the condition xik = Alk = 0 ( i # k  ),Bik = 0, bi = 0 that all spin vectors li and mi are 

mutually perpendicular so that there cannot be more than three of them. As a result three forms of the $, matrix are possible 

( s i n i i n q  0 0 sinesincp 0 cos 9 0 
s i n ~ c o s q  o , ( o s inecosq  1, ( 0 s i n e s i n v  ~ S ~ I ~ ~ C O S ~  (28) 

0 cos 0 0 0 icos0 0 0 0 
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In the first case we find the polar, the planar, and the B- 
phase; in the second a new L-phase 

Finally, in the last case we find the 6-phase of Ref. 6. 
Let now A = 0 . We get from Eq. ( 10.11) 

so that either b, #O, 6, = by = 0 and (x,, = (x,; or else 
b = 0 . In the first case it follows from the z-component of 
Eqs. ( lO.VI,VII) that B, = A, = 0 so that (as B =A = 0) 
B,, = - B, and A,, = -A,. Using the free rotation 
around the z-axis (x,, = xyY) we put Bxy = 0 and it then 
follows from the xy-component of Eq. ( 10.IV) that A,, 
= A,, and since A, = -A,, we have A,, =Ayy = 0. 

Adding and subtracting Eqs.111, and IV,, 111, and IVY,, 
III,, and IV,, , VI, and VII,, VI, and VII, of the set ( 10) we 

get 
(P*x-T+ 2y~xz*2pb,) (Azu*Ba) =07 (30) 

Hence we have (b, #O)  4 cases: 

In the last case the set (30) reduces to three equations which 
are incompatible with the condition 6, # O  

P2x-t+2y~,+2ybZ=O, 
P.x-T+Y (X..+X~~) -lsbz=O, v (xzz-xu.) f qbz=O. 

Subtracting the second equation from the first we get 

which together with the third equation gives 6, = 0. 
In the case 1) A, = Bik = 0 we find easily from Eqs. 

(10.1, and V,) (0iy-r +P4 + P 5 ) .  Xzz =0,  P* - T  

+ p4 ((x - xzz ) = 0 two solutions: the y-phase (when (x, 
= 0) and 

In the case 2) A ,  = B,, = 0, A,, = By, = 0, A, = - B, . 
Using the freedom of rotation around the z-axis we put A, 
= 0. We write down Eqs. I,,, IV,, V,, VII, of (10) 

Adding Eqs. I and I1 of the set ( 3  1 ) we get 

after which we easily find two solutions of the set (31) 

In the case 3 )  A, = B, =A, =By, = 0, A, = B,, # O  
and 

[see (3011 and the unused equations of the set ( l o ) ,  (I,,, 
I, ,V, ), reduce to the following: 

Subtracting the last from the first equation we get 

In agreement with this equation and the second equation of 
the set (34b) we easily get four solutions of the set (34): 

1) A-phase, 
2) &-phase of Ref. 7, 

3) TIX=p2+ (pIZ+p'P3-p5Z) /(2P4+P3-2P5) r (35) 

We note that Eq. (35) and the previously found Eq. (33) 
change into each other under the substitution P, so,. Ac- 
cording to the selection rule formulated above these solu- 
tions can be solutions of the set (2 ) . Using the restrictions on 
the contractions with respect to the spin indexes we can es- 
tablish in these cases the form of the $, matrix. Thus, we 
have for the solution (33) 

s i n 8  - i s i n 0  O 
i s i n  0  sin 0  
cos0 i cos0 0 

This matrix is, indeed, a solution of the set (2)  when 

We call it the x-phase, while the solution obtained from it 
through the substitution 0, %P5 and the interchanging of 
the spin and orbital indexes is called the A-phase. 

We consider finally the last case A = 0, b = 0 . We can 
then write Eqs. ( 10.III,IV,VI,VII) in the form of the follow- 
ing relations: 

(JPr~-~+y(~..+xve) I+IXa-xueI) ( IAwIf IBwI) =o, (37) 

and the others are obtained from these through cyclic per- 
mutation, x-y+z. When A = 0 there are three cases 

FIG. 1. 
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- this is the a-phase of Ref. 7. 

In case 1) we find from Eqs. ( 10.1) 

x={P~x-T+ (BI+Ps)x~T) 
'xuu{Pzx-~+ (p1+P5) XUU) =~zz{pzx-~+ (P~+p5) X Z I ) = ~  

the P-phase of Ref. 7 and two redundant solutions: 

In case 2) from Eq. (38) and the zz-component of ( 10.1) 

we find the bipolar phase of Ref. 6 and 

One verifies easily that amongst the solutions indicated 
by ( *  ) there are no partners changing into one another un- 
der the substitution p, s p , .  

There are thus 18 extrema of the energy ( 1). We note 
that one of the five new solutions (O +, O- ,  L ,  x, A )  the x- 
phase [see (36a,b) and (33) 1 has the lowest energy at the 
valuesp, = 0.373;P3 = 0.02;P4 = 0.433 and& = 0.677in- 
dicated by Barton and Moore at the end of Ref. 7. The quan- 
tity T / X  in (33 ) is then equal top, + 0.3 195; for the c-phase 
which is closest in energy T/X  = P2 + 0.3201. 

As we know now all the solutions of the equilibrium 
Eqs. (2) we can construct the phase diagram in the P1,,B2, 
p3,P4fi5 parameter space. It is convenient to show the phase 
diagram in the (P,,y) plane for different values of the pa- 
rameterso,,f14fi3 - p, . As an example we give the diagram 
for the case of a possible coexistence of the A- and B-phases 
(see the figure). In the region below and to the left, the terms 
of fourth order in $ in the energy are not positive-definite. 
The phase I is the polar phase; the fourth phase in the dia- 
gram is the f-phase of Ref. 7. 

We note that in the analogous problem of the phases, 
when there isp-pairing in the two-dimensional case, and the 
orbital index takes on only two values ( x ,y )  for the $-func- 
tions $, while the energy has the same form ( 11, the solu- 
tions are clearly the same as the three-dimensional ones in 
which there are no non-zero components in one "orbital" 
row. Altogether there are nine such solutions: the planar, 
polar, bipolar, A, 8 ,  y, S,v, and A-phases. 

2. To study the stability ofthe solutions we need find the 
region where the energy increment F2 ,  which is quadratic in 
arbitrary small deviations cia of the $-functions from the 
solutions, is positive definite 

Here +,, is a solution of Eqs. (2) .  For instance, for the B- 
phase 

$,a= ( ~ 1 3 )  '"s,,, x=~(P,+P~+27/3)  - ' "  

we write the deviation c,  in the form 

where w ,  and E ~ ,  are symmetric real tensors whilepj and vj 
are real vectors. The quadratic form (39) then equals 

where w = wii and& = E , ~ .  The energy ( 14) is independent of 
the trace of the tensor E, and of the vector pi since these 
quantities, clearly, call in the B-phase for a change in the $- 
function under a small gauge transformation ( a ~ )  and 
small rotations ( api )  of the spin or the orbital spaces. The 
stability conditions that follow from (40) for the B-phase 
are the same as the necessary stability conditions found by 
 ones,' In the A-phase we find p3 < 0,113, + p4 - fi, 0, 0, 
+p, >o,andB, +P3 +P4 >O. 

There is an incorrect statement in Ref. 8, that the solu- 
tion corresponding to the a-phase of Ref. 7 is unstable. The 
exact stability conditions reduce to the following inequal- 
ities: 

We note that the stability study is appreciably simplified if 
we eliminate from the arbitrary deviations 6 ,  the motions 

which reduce to small gauge transformations and rotations 
of the orbital and spin spaces. 

We finally draw attention to one interesting fact. In the 
complete phase diagram there are two kinds of neighbor- 
hoods between phases. Firstly, there are lines (such as the 
boundary between the A- and B-phases) which are normal 
first-order phase transitions and correspond to a normal bi- 
critical point in the ( P , T )  diagram. Secondly, there are unu- 
sual lines such as the boundary between the B- and the polar 
phase. It is clear from ( 14) that the B-phase loses its stability 
on that line (y  = 0).  On the other hand, one verifies easily 
that the stability conditions for the polar phase are 0, + 0, 
+ y>o,  PI +Ps <o, PI +P3 <0, w1 + Y<O, and Y<O, 

i.e., it is also unstable when y = 0. As the matrices that speci- 
fy both solutions have the form 
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it is clear that the transition considered cannot be of second 
order. When y = 0 the energies of these phases are equal to 
the energies of the planar phase and the c-phase of Ref. 7 and 
the solution found by Jones.' All the solutions reduce for 
y = 0 to real diagonal matrices. One checks easily that for 
y = 0 there is a degenerate solution of the form 

0 cos 0 

with arbitrary 0 and p. The situation is thus completely anal- 
ogous to the orientation transitions in magnetics. 

The author is grateful to G. E. Volovik for useful criti- 
cism of the initial variant of this paper. 

"Equation ( 5 )  has no antisymmetric real part. 
2'We note that in Eq. (57) of Ref. 7 we must replace cos2p, by cos 2p. 
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