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We consider the propagation of incoherent, arbitrarily polarized light in an optically dense 
polarized gaseous medium. We use Keldysh's diagram technique to derive the equations 
describing the transfer of radiation. We obtain and study, for the case when the polarization of the 
medium changes little in direction over distances of the order of the photon mean free path, 
expressions for the density matrix of the transmitted and the fluorescent light. We show that 
taking the finite optical depth into account leads both to significant quantitative differences from 
the thin-layer case and to the appearance of qualitatively new effects. We discover, for instance, 
that in a dense medium with atoms which are polarized in the ground state the Hanle effect can 
occur even when the excited state is not polarized. The effects analyzed in this paper may be used 
to set up experiments for studying atoms by optical alignment methods. 

1. INTRODUCTION 

The method of optical detection consisting of the analy- 
sis of the changes in the properties of light passing through a 
gaseous medium has recently been applied widely in connec- 
tion with problems of optical pumping, the physics of a 
weakly ionized plasma, astrophysics, and so on. The main 
source of information about the state of the system in this 
method are the magnitude of the reduction in the light inten- 
sity and the change of its polarization. For a quantitative 
interpretation of the experiments it is necessary to be able to 
describe the evolution of the density matrix of the light in a 
medium with an arbitrary polarization. Cohen-Tanoudji, 
Laloe, and co~orkers l -~  (see also Ref. 5)  have shown in the 
optically thin layer approximation that with respect to the 
absorption and dispersion of quasi-resonant light a gas po- 
larized in accord with the internal moment behaves like an 
optically anisotropic medium. They studied in this approxi- 
mation the quantitative connection between the polariza- 
tions of the light and the gas. In actual experiments with 
optically aligned atoms the conditions of a small optical 
thickness are often not fulfilled. Nonetheless, there is in the 
literature no generalization of the results of Refs. 1-5 to the 
case of an optically thick medium. 

D'yakonov and Perel' took the finite optical thickness 
into account when studying (in Ref. 6 and in later papers7s8) 
the capture of resonance radiation. However, they assumed 
that the gas in the ground state has an equilibrium distribu- 
tion over the Zeeman sublevels and a Maxwellian velocity 
distribution. In Ref. 9 a subsequent generalization of the 
results of Ref. 6 was made when the effects of a strong field 
were taken into account. The effect of the polarization of 
either the light or of the atoms was here neglected. Deviation 
from equilibrium of the absorbing gas was studied in Ref. 10 
where, however, the model case of a four-level system which 
is rarely realized in experiments was considered. 

The aim of the present paper is a study of the propaga- 
tion of incoherent, arbitrarily polarized radiation in an opti- 
cally thick gaseous medium with atoms which have arbitrary 
polarization moments (PM) . 

2. CORRELATION FUNCTION OFTHE ELECTROMAGNETIC 
FIELD 

The polarization and spectral characteristics of the 
electromagnetic field are determined from the first-order 
correlation function:" 

Here E ht ' (x, ) and E i- ' (x,) are the positive- and nega- 
tive-frequency parts of the electrical field operator in the 
Heisenberg representation, x,, x, are the space-time coordi- 
nates, andp and Y are polarization indexes. The angle brack- 
ets indicate averaging over the non-equilibrium density op- 
erator of the system. For a free electromagnetic field, such as 
it is when entering and leaving the cell, the correlation func- 
tion ( 1 ) is directly connected with the spectral density of the 
components I,, (w,rt) of the polarization tensor of the radi- 
ation propagating in thez-direction at the point rand time t: 

We have assumed in (2 )  that the geometric-optics approxi- 
mation h = l/k+O is satisfied, so that the correlator ( 1) 
varies rapidly in p and r and slowly in r and t. The quantity 
I,,(w,rt) determines the polarization density matrix: 

It is convenient to use for calculations the notation and defi- 
nitions of Keldysh's diagram technique,12 and to introduce 
the Green function D L  + (x , ,~ , )  : 
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where A, (x, ) and A, (x,) are Heisenberg operators of the 
vector potential. In the case of a quasi-monochromatic field 
of frequency w, the correlator ( 1 ) and the Green function 
(4)  are connected through the relation 

oo2 dot d o  
D, (x,x2) = i --g- !.l, e!! dt: 

To distinguish the function (4)  from other Green functions, 
we shall for simplicity call it in what follows the density 
matrix. 

3. EQUATION FOR THE DENSITY MATRIX 

We can use Keldysh's diagram t e ~ h n i ~ u e ' ~ , ' ~  to obtain 
an equation for the density matrix of radiation with a Hamil- 
tonian corresponding to dipole interaction with the gas 
atoms. In abbreviated notation the corresponding Dyson 
equation has the form 

In the first (second) Eq. (6)  the polarization operators IIyu' 
act upon the first (second) arguments and indexes of the 
Green functions; 0,, 0, are D'Alembert operators in x,  and 
x,, respectively. The kernels of the polarization operators 
n$' have the form 

X G:,': (x', x) G:, ( x ,  2'). 

(9) 
The * sign in (7)  and below in ( 1 1 ) and ( 13) indicates inte- 
gration and summation over the internal space-time and po- 
larization arguments and indexes. The presence of the 6, 
function is connected with the use of the Coulomb gauge of 
the vector potential A (div A = 0, q, = 0). In Eq. (9)  Gud is 
the Green function of the atoms; d,,  d,, are the operators of 
the components of the dipole moments; E,, = + 1, if m is 
an excited state, and n the ground state, and E,, = - 1 in 
the opposite case; q = 0 for bosons and q = 1 for fermions. 

We introduce, apart from the density matrix (4),  the 
retarded Green function of a photon in the medium: 

which satisfies the equation 

otDR=-4nA6,f IILRDn, IIIR=ITL--+111-+. ( 10) 

We perform in Eqs. (6) the substitution 

Here is the advanced Green function: 

Using ( 10) we then get the following equation for Z) - + : 

We restrict ourself to the stationary case, which is of practi- 
cal importance. It is then convenient to change to the Four- 
ier representation in the time argument. In all differential 
equations given above one must replace the D'Alembert op- 
erator by the Helmholtz operator: 

w i  are the frequencies corresponding to the variables t , .  
To solve Eq. (12) we specify the following boundary 

conditions. There is incident upon the cell from infinity a 
plane wave which is characterized by specifying the correla- 
tion function D, on some surfaces which is perpendicular to 
the direction of propagation. We shall assume that the boun- 
daries of the cell are transparent so that at infinity the inten- 
sity of the scattered light decreases in proportion to 1/R ,. In 
the geometric optics limit the solution of Eqs. (6)  and ( 12) 
has the form 

The first term in ( 13) determines the correlator of the trans- 
mitted light, the second that of the fluorescent light (for the 
regions inside the cell-the trapped radiation). For a practi- 
cal use of Eq. ( 13) one needs solve Eq. ( 10) for the retarded 
Green function DR. 

4. RETARDED GREEN FUNCTION 

Using the connection between the atomic Green func- 
tions and the components of the single-particle density ma- 
trix~,. ,  (p,r,t) in the Wigner representation (see Appendix 
I )  we can express the kernel of the polarization operators in 
terms ofp,,, (p,r,t). In particular, we have for the kernel of 
the operator I I R  (without the index 1 ) in the Fourier repre- 
sentation with respect to the time argument 

i R - P,,,,, (or, o'r') = 
4nh 

snn' rzn' 
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Formula (14) corresponds to the stationary case. The in- 
dexes m, m' indicate the quantum numbers of the excited 
state, n, n' the quantum numbers of the ground state, E m ,  
En,  En, are the energies of the states, w,, is the frequency of 
the transition, y,, y, are the reciprocals of the lifetimes of 
the states, and ~ ( p )  =p2/2M is the kinetic energy of the 
atom. 

We have taken into account in Eq. (14) the possibility 
of quantum oscillations in the ground state, i.e., the exis- 
tence of an oscillating coherence 

which can be excited in both Zeeman and hyperfine transi- 
tions with frequency a,., . A detailed study of quantum os- 
cillations in the case of Zeeman coherences was made in 
Refs. 1-4 for optically thin cells. The specific feature of the 
hyperfine coherences is that a situation is possible when a,,., 
is much larger than the Doppler ( y, ) and homogeneous (y )  
line widths. When the cell is illuminated by light with a spec- 
trum centered on one of the resonance frequencies w, of an 
atomic transition there appear in the spectral intensity, on 
leaving the cell, combination components at frequencies 
w2 = w, a,., and an interference component at the fre- 
quency (w, + w2)/2, oscillating with frequency R,., . We 
shall not analyze in the present paper the role of quantum 
beats. 

We solve Eq. ( 10) for the case when there are no quan- 
tum beats. The polarization operator, and as a consequence 
the Green function DR, will then be diagonal in the frequen- 
cy arguments. We look for the function DR in the form 

Thanks to the presence of the 6 ,  function in Eq. ( lo) ,  in a 
coordinate frame with thez-axis along r ,  - r,, the indexesp, 
Y in ( 15) take on two values corresponding to the two possi- 
ble polarization directions along thex- and y-axes. Consider- 
ing X,, to be a slowly varying function of r ,  as compared to 
exp(ik Ir, - r2 1 ), we get for it in the xyz system of coordi- 
nates 

with boundary conditions X,, -+a,, as z, -z,. The quantity 
a,, (w,r, ) has the form 

Here j,, j are the total angular momenta of the ground and 
excited states, m, rn', n,  n' are thez-components of the angu- 
lar momenta. 

We change in Eq. ( 16) to cyclic components which are 
covariant in the first polarization index and contravariant in 

the second.I4 We expand the two-dimensional co-contravar- 
iant matrix a:(w,r,) in terms of Pauli matrices 

= (a,,a,,a,): 

We express the expansion coefficients in terms of the PM of 
the atomic density matrix p i t ,  and the reduced complex 
cross section u , ~ , ~ ,  (w ) : 

(19) 
djCj -= G,(ld (li). The quantity a ( r ,  and the components of 
the real vector P ( r ,  ) have the form 

For the sake of simplicity we assume a Maxwellian momen- 
tum dependence of the density matrix, which is typical for 
optical alignment experiments. 

The PM are defined in the standard way: 

P q  = ( ( I )  ( j0 h)pjo,rjon (r) ,  (23) 
n ' n -nr -q n 

and similarly for the excited state. 
If we restrict ourselves in the solution of Eq. ( 16) to the 

first-order approximation in the matrix a: we arrive, after 
substituting ( 15) into ( 13) ,  at the case of an optically thin 
layer which was considered in detail in Refs. 1-5. The con- 
stant parametersp'O andp22 determine in that case the aniso- 
tropic optical properties of the medium: pI0 the optical 
activity and the magneto-circular dichroism, p2, the bire- 
fringence in the optical transparency region. It will be clear 
from what follows that taking the finite optical thickness 
into account leads both to significant quantitative changes, 
and to the appearance of qualitatively new effects. 

In the general case of arbitrary polarization and arbi- 
trary dependence of the matrix a: (w,r, ) on the coordinate 
r,, one cannot solve Eq. ( 16) analytically, since the matrices 
P ( r ) u  in different points r do not commute. As a conse- 
quence this leads to the impossibility of obtaining for the 
atomic density matrix a closed kinetic equation (such as the 
D'yakonov-Perel' equation6) which takes into account the 
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trapping of radiation for arbitrary spatially distributed 
atomic PM. Using the fact that 

we can neglect the non-commutativity if the vector 
changes little in direction over distances of the order of the 
photon mean free path at a given frequency I,, (w). Such a 
case is rather often realized in experiments and we shall 
therefore consider it first in what follows. We show that be- 
sides the trivial experimental situations when the PM are 
constant in the cell or the momenta jo and j do not exceed 4, 
this assumption is satisfied in the case of a magnetic field 
which is strong relative to the relaxation of the PM when 
there is no alignment. If we analyze radiation trapping in a 
dense layer the polarization of the medium with respect to 
the internal moment changes also here weakly over distances 
of the order of I,, ( a ) ,  since the atoms of the gas which are 
separated by distances of the order of I,, (w) from one an- 
other are approximately under identical optical pumping 
conditions. We consider in the limiting problem in section 7 
possible effects connected with the non-commutativity 
(24). 

If we neglect the non-commutativity (24) the solution 
of Eq. ( 16) rewritten for the co-contravariant cyclic compo- 
nents has the form 

The angle brackets in (25) indicate averaging along the ray: 
T. 

Using Eq. (25) we analyze the polarization of the transmit- 
ted light and of the fluorescent light. 

5. POLARIZATION OF THE TRANSMITTED LIGHT 

Using the connection (2) between the correlation func- 
tion and the spectral density of the radiation polarization 
tensor, we get from the first term of ( 13) 

Here Is ,. ,. (w,rl) and I, ,, (w,r) are the covariant cyclic 
components of the polarization tensor in the incident and 
transmitted waves, and the coordinates r and r' in (27) refer 
to the same ray. It follows from Eqs. (25) and (26) that the 
coordinate dependence in (27) is in fact determined by the 
length of the path transversed by the ray in the medium. 

We introduce the PM for the polarization density ma- 
trix (3) of the radiation: 

Using (27) we find that the PM of the transmitted and inci- 
dent light are connected through the relation 

K ' Q '  
m I K 9  (w, r )  r )  = T : ? ~ ,  (w.  rrl) 8.  (m, r1)zs  ( w ,  r l )  

K'Q'  

(29) 

where Is (w,rl) and I ,  (o,r) are the spectral intensities of the 
incident and the transmitted light. The matrix T gQQ. has the 
form 

We have used in (30) the notation 

The matrix TgQQ, has the dimensions 5 X 5, since 
KQ(K 'Q ') = 00, lo, 2-2,20, and 22. 

- The use of a detecting ray in a medium which is optical- 
ly thick for resonance radiation is particularly effective in 
the region of optical transparency. We consider as an exam- 
ple the polarization of quasi-resonance light in the case when 
the medium is doubly refractive (i.e., when ~15) = 0, pfP0, 
#O).  Let there be linearly polarized light incident upon the 
cell: @gQ#O for KQ = 00, 20, 2 + 2. The real part, Re @i2, 
determines the degree of linear polarization along thex- or y- 
axes and the imaginary part, Im @i2, that along an axis mak- 
ing an angle of 7r/4 with the x-axis. We consider the compo- 
nent @jO which determines the circular polarization of the 
radiation when it leaves the cell: 

@ t l Y w ) = - { c l ~  ( R e  a p L ) - 2  sh (Re o p L )  [( jp . )  Re @ s 2 2 ( ~ )  
+ < p , )  Im @,22(w) ]/p)-' 

~ 2 ' "  sin ( l m  oPL) [ ( P J  Im @ s Z Z ( w ) + ( p y )  R e  @sZ2(o))] /P.  

(32) 
Here L is the length traversed by the ray in the cell, ~ r u , , ~ .  
We used in (32) the fact that QKV is independent of r when 
entering and leaving the cell. Necessary conditions for the 
occurrence of alignment are the following requirements: the 
frequency w must not be the same as the frequency of the 
atomic transition wo = wJ,,, so that Im Q+O; the angle 
between the vector B and the polarization vector of the inci- 
dent radiation must be different from 0 and r/2. 

The effect of the occurrence of circular polarization in 
initially linearly polarized light when it passes through a gas 
ofaligned atoms was predicted in Refs. 1-4. Also given there 
is an optical interpretation of that effect as the consequence 
of birefringence when the radiation propagates in a direction 
at right angles to the optical axis, a direction determined in 
our case by the vector S. The results of Refs. 1-4 referred to 
the case of an optically thin layer and the alignment @:O was 
a small quantity. Formula (32) shows that the effect is in the 
general case not small, since for large mismatches 
Re a- (o - wo)-' and tends to zero faster than 
Im a- ( W  - o0) - I .  When L -7r/2(Irnap) it is possible to 
have @:0~2-"2 ,  if @: = 1/2 which corresponds to light 
which is linearly polarized along thex axis. Also characteris- 
tic is the oscillating dependence of the degree of alignment 
on the length L with a half-period -7r(fl Imu) - I .  This de- 
pendence is, however, not strictly periodic. We bear in mind 
that in deriving (32) the vector B is assumed to be constant 
only in direction, but not in magnitude. 
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To give a clear quantitative illustration of the effect of 
circular polarization of the transmitted radiation we per- 
formed a numerical calculation for transitions between the 
hyperfine structure (hfs) components of the D,-line of C S ' ~ ~ .  
As the driver we chose the transition between the lower sub- 
levels of the hfs of the ground, 2S, /*, and of the excited, 2Pl12,  
states (i, = j = I - 1/2 = 3). We consider the following ex- 
perimental situation. Optical-pumping light, linearly polar- 
ized along the y-axis, aligns a layer of gas which is optically 
thin in the direction of thex-axis; see Fig. 1. A detector ray of 
frequency o, which is initially linearly polarized at an angle 
?r/4 to they-axis, propagates in thez-direction. If the intensi- 
ty of the detecting radiation is sufficiently weak, we must 
take into account only the pumping light in the optical- 
pumping equations. We have also used the assumption of 
strong collisional mixing on the excited sublevels. We give 
the form of the equation in Appendix 2. We show in Fig. 2 
the way @iO depends on the dimensionless optical length of 
the cell r = L n , a ,  (no  is the density of the driver atoms and 
a, the absorption cross section at the center of the line) and 
on the relative mismatch A/y, ,  A = o -a,, y, is the 
Doppler width, for a ratio W / T  = 0.5 of the rates of the 
optical pumping Wand of the collisional relaxation in the 
ground state T. In dimensional units, the length L,,, corre- 
sponding to maximum alignment is large in the present case, 
of the order of 10-lo2 cm when no-  10" ~ m - ~ ,  since the 
degree of alignment of the ground state in the example con- 
sidered is small: - 10%. 

In concluding this section we indicate the possibility of 
a practical use of the effect discussed as a means of register- 
ing radio-optical double resonance in alkali-atom vapors. In- 
deed, when switching on a radio-field on a 0-0 transition of 
the ground-state hfs of an optically aligned alkali atom, there 
occurs in the hyperfine sublevels an alignment in the direc- 
tion of the static magnetic field H,. This alignment is re- 

FIG. 2. The degree of circular polarization of the detecting radiation @:' 
as function of the optical thickness T in Cs"%apors for a pumping param- 
eter A = W / T  = 0.5 and a relative mismatch A/y, = 1, 2, 3. 
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FIG. 1. Experimental scheme for the circular polarization of light 
by vapors of aligned atoms ( a ) ,  system of driver levels and pumping 
scheme for Cs1j3 ( b ) ;  P,, P, are the polarization vectors of the 
pumping and of the detecting radiation, j,,, j;, ,j,j' are the hfs sublev- 
els of the ground, St/ , ,  and of the excited, P , / , ,  states of Csi3'. 

vealed by the appearance of circular polarization in an ini- 
tially linearly polarized detector ray propagating at right 
angles to H,. 

6. POLARIZATION OFTHE FLUORESCENCE LIGHT 

Substituting the equation for the retarded (advanced) 
photon Green function ( IS), (25) into the second term in 
(13) and performing the transformations (2 )  and (S), we 
get the spectral density of the fluorescence polarization ten- 
sor: 

Here @FQ(a,nr) and If(w,nr) are the PM and the spectral 
intensity of the fluorescent radiation in the direction n at the 
point r. The PM of the photon and atomic density matrices 
are defined in (33) in a system of coordinates with the z-axis 
along the direction of n. The transition to the laboratory 
frame is accomplished through the standard transformation: 

'4 
where pjKQ is the PM of the atomic density matrix in the 
laboratory frame of reference, and 8, are the polar and 
azimuthal angles of the direction of n. The matrix @Ye is 
transformed similarly. 

In contrast to the traditionally used expressions for the 
fluoresence polarization density matrices, 15.16 we have taken 
consistently into account in Eq. (33) the effect of the non- 
equilibrium state of the radiating gas with respect to its inter- 
nal state. The PM of the fluorescent light @FQdepend on the 
PM of the atomic density matrix of not only the excited but 
also of the ground state through the matrix TgQQ. (w,rrl) 
given by Eq. (30). In particular, in an optically thick layer a 
situation is possible when the fluorescent polarization is 
completely determined by the PM of the ground state, i.e., 
when pfQ = 0, but p t Q +  0." 

We consider this effect in more detail using the Hanle 
effect as an example. We assume an experimental situation 
similar to the one shown in Fig. 1, with the difference that 
the fluorescent light is registered in the direction of thez-axis 
(there is no test ray) and there is a static magnetic field H ,  
applied. The degree of linear polarization and its direction 
are determined by the moment @f2(o,n, ): 
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L - t The quantities (a)., (P),, and/3(z) are given by Eqs. (26), 
a,"=- [ 2  1 d z  crp ( - R e  O < ~ ) ~ Z )  eh ( R e  a! ( z )  r) ] in which we take zero as the lower integration limit and z as 

0 
L the upper one. If the pumping is uniform, the parameters 

(PX)l+i(Py)z ( a )  and (p )  in (35) are independent of z and one can per- 
x J d z  exp ( - R e  s(a),z) sh ( R e  a1 (;) ;) 

0 P ( z )  
- (35) form the integration: 

Equation (36) shows that maximum polarization in a zero 
magnetic field is possible in a cell of infinite optical thickness 
when fl- (a ) .  In the case of the optical pumping of Cs 133  

atoms using the scheme shown in Fig. 1, maximum fluores- 
cent polarization is reached when the parameter 
A = W /T - w . We show in Fig. 3 the degree of linear polar- 
izat ion~ and the angle $ of the rotation of the direction of the 
polarization relative to the y-axis as functions of uj,,/r (aj,, 
is the Zeeman splitting frequency) for different values of the 
parameter A and as L + w for fluorescent radiation at the 
transition j = 3 -.j, = 3. The parameters p and $ are con- 
nected with @? through the relations 

In concluding this section we note that a direct quanti- 
tative account of the effect of a finite optical thickness on the 
Hanle effect is, for example, important for problems of mag- 
netometry of solar protuberances (see Ref. 18 and the litera- 
ture given there). This problem has not been widely studied 
at the present time. 

7. EFFECT OF SPATIAL DIRECTIONAL INHOMOGENEITY OF 
THE POLARIZATION OFTHE MEDIUM 

We take the spatial inhomogeneity in direction of the 
vectors P ( r )  into account in a model problem. We consider a 
cell consisting of two regions, in each of which the direction 
of P ( r )  is constant. We assume that a detecting ray passes 
through the cell and has a spectrum which lies in the optical 
transparency region where one can neglect fluorescence. 
The polarization density matrix of the radiation incident on 
the photodetector is given by the expression 

FIG. 3. The degree of fluorescent polarizationp and the angle of rotation 
of the polarization direction $ as functions of the ratio of the Zeeman 
splittingw,,, to the rate of relaxation r for the PI,,( j = 3 )  -S,,,( j, = 3 )  
transition in CslA3; A = W / r  is the pumping parameter. 

K"Q" 
= 7, y, T::,,, (6,). 2) T K * ~ ,  ( u ,  1 )  ( ( 0 )  18 ( a ) ,  

K"Q" K ' Q '  
(38) 

which is an obvious generalization of Eq. (29). The matrices 
T;$"(w,~) and TgQQ. (w,2) determine the change in the 
PM of the light in the first and the second parts of the cell, 
respectively. One shows easily that the matrix 

will be given by Eq. (30) in which we must perform the 
substitution 

where the indexes 1 and 2 indicate, respectively, the param- 
eters for the first and second parts of the cell. 

One can distinguish explicitly in experiments the effects 
connected with the inhomogeneity of the directions of the 
P ( r )  if we reverse the direction of propagation of the test 
ray. The polarization density matrices of the transmitted 
light for different directions of propagation will differ in the 
model considered by the quantity 

(41) 
K ' Q '  

where the transformation matrix has the form 

We have neglected for the sake of simplicity absorption in 
Eqs. (41 ) and (42) putting Im ajCi 3 Re u,<~. The quantity 
inside the braces in (42) is, after summation over the indexes 
p, q,p1, and q', purely imaginary so that the whole expression 
(42) is real. 

Equations (38)-(40) show that the effects of the trans- 
formation of the PM of the density matrix of the transmitted 
ray in the case of inhomogeneity in the directions of the P ( r )  
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are qualitatively the same as in the homogeneous case. In- 
deed, Eqs. (38)-(40) which lead to the transformation ma- 
trix in the form (30) can be generalized to the case of an 
arbitrary number of spatially homogeneous layers in which a 
real cell can be split up. In order to reveal experimentally the 
inhomogeneity ofthe P(r )  one can compare the polarization 
of the radiation passing in opposite directions through the 
cell. 

8. CONCLUSION 

In the present paper we have analyzed examples of ex- 
periments in which the interaction of quasi-resonance radi- 
ation with gas atoms that are polarized by external pumping 
sources leads to a significant change of its polarization char- 
acteristics. The arrangement of such experiments expands 
the possibilities of studying atoms and molecules by optical 
alignment methods. In this connection we note that the ex- 
ample of hyperfine transitions in the D, line of C S " ~  consid- 
ered in the paper was chosen because of methodological con- 
siderations. The C ~ ' ~ % t o m  is a convenient study object 
because of the high saturated-vapor pressure and the well- 
resolved hfs of the ground and excited states. The experi- 
ments proposed are suitable also for atoms which have not 
often been studied by optical alignment methods. Most ef- 
fective are such experiments for elements which have a rath- 
er large ground state angular momentum j,>l. The rare 
earth atoms may serve as an example. In particular, the pro- 
posed realization of the Hanle effect for ground state PM 
enables one to determine the cross section for the collisional 
depolarization of the ground state of these atoms. The ap- 
pearance of circular polarization for initially linearly polar- 
ized light when it passes through a gas of aligned atoms may 
be used to determine the magnitude and direction of the 
alignment in the cell. We note also that the expressions for 
the spectral density of the polarization tensor of the trans- 
mitted light, (29), (30), and of the fluorescent light, (33), 
may be used to derive self-consistent equations for optical 
pumping in an optically dense gaseous medium. To do this it 
is necessary to substitute the spectral density of the polariza- 
tion tensor of the transmitted and the fluorescent light in the 
usual optical pumping equations for a thin layer (see, e.g., 
Refs. 18, 19) and regard in them the atomic density matrix 
as a function of the coordinates. The equations obtained in 
that way are a generalization of the D'yakonov-Perel' equa- 
tions6 to the case of non-vanishing ground-state PM when 
the direction of the polarization of the medium changes little 
over distances of the order of the photon mean free path. 

APPENDIX 1 

The atomic Green functions which occur in the expres- 
sions for the kernels of the polarization operators (9 )  are 
connected with the single-particle density matrix through 
the relations 

i 
- E ( p )  ( t- t ' j  

h 

f+ iG,., (tr, t'r') = [ i G 2  (t'r', t r )  1 *, (A1.2) 

d3p i i i~:; ( t r ,  t'r') = j 7  ex^{^ p ( r - f ' )  - - c ( p )  ( t - t f )  
(2nfi)  A 
i E,+E,r --- 
h 2 

( t - t f )  - ( ~ n + l n r )  I t - t ' l i  

i~;: ( t r ,  t ' r f )  

The upper sign in these formulae corresponds to bosons and 
the lower one to fermions. 

APPENDIX 2 

The set of optical pumping equations of an alkali atom 
the solution of which was used in sections 5 and 6 has the 
form 

( i w j j  + r;) pyy = ws,,sq0 2jfl + . 3nX 
,.,. (2s + 1) ( 2 1  + 1) 

K x x' - w ~ ,  ~ ~ 6 . -  jo3u ngn,,,,(-i)n-q(q - q  q , )  
x'q' t i y  

x(- 1) 
l+ i - j o+xp  ( j o  10 J ( ; x' K j p t q , R I : ~  + r:, p~l. 

1 l i  , J O I O  
o l o  30 

(A2.1) 

Here jo and j; are two sublevels of the ground state hfs of an 
alkali atom, S = 3 is the electron spin, I the nuclear spin,;, 
the sublevel involved in the pumping, w,<, the Zeeman split- 
ting frequency, n,, = [(ZY + 1) (2Y + 1)...]'12, Wand 
@,Kg the rate and the polarization density matrix of the opti- 
cal pumping light. If we assume that the nuclear spin is con- 
served in depolarizing collisions, the relaxation matrix has 
the form 

The quantity r is proportional to the probability of electron 
spin flipping in the alkali atom per collision. One must add to 
the homogeneous set of Eqs. (A2.2) the normalization con- 
dition 

pj,Oo+pjOJo0= 1. (A2.3) 

"In the case of the D, line of Cs'" considered below the effective loss of 
alignment of the excited state always occurs for sufficiently high buffer 
gas pressures, p > 10 Torr, because of the high values of the depolariza- 
tion cross sections in the excited 2 P , , ,  states." 
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