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We investigate the interference part of the radiation flux (of the Poynting vector) regarded as a 
thermal source responsible for the formation of periodic surface structures. Various instability 
mechanisms that lead to growth of the surface structures (similar to stimulated scattering) are 
,considered from a unified point of view by introducing as phenomenological parameters the phase 
difference between the thermal source and the surface perturbations, and the exponent of the 
power-law dependence of the growth rate on the spatial period of the periodic structure. The 
maxima of the growth rate and the corresponding flux extrema determine the parameters of the 
possible surface structures, viz., the period and the orientation. At least one of the combination 
spectra glances along the interface. Simple analytic results are obtained in the limit I E  I ) 1 for 
elliptically polarized light (at normal incidence), for non-polarized radiation, and for radiation 
with arbitrary linear polarization (at all incidence angles). The expression for the flux is 
factorable in these cases and contains a real factor that describes the orientation of the scattering 
plane. The position of this plane in the nondegenerate situation is determined by the tangential 
component of the incident-wave magnetic field. The general symmetry properties of the thermal 
source are also investigated. 

Laser radiation, in a definite range of intensities, pro- 
duces on the surfaces of metals, semiconductors, and dielec- 
trics periodic structures (lattices) (see Ref. 1 and e.g., Refs. 
2-7). The lattice period depends on the incidence angle 6' 
and is of the order of the wavelength il of the applied light. 
The orientation of the periodic structure is determined by 
the polarization direction and, in some cases, by the inci- 
dence angle. The prevailing opinion is that the periodic 
structures are due to scattering of the electromagnetic wave 
by the bare surface roughness of the material and by the 
subsequent interference of the incident and scattered radi- 
ation, and by the reaction of the interference part of the in- 
tensity on the slow motions of the medium (boundary), 
which cause the surface to be unstable. Feedback can be en- 
sured by various mechanisms: evaporation (sublimation), 
local melting and recrystallization, thermocapillarity and 
evaporative vapor pressure in the presence of a melt layer, 
and thermochemical effects. 

According to the scheme proposed, the formation of a 
periodic structure is analogous to stimulated scattering pro- 
cesses that are nonlinear in the field, and is particularly close 
to the previously considered stimulated scattering by surface 
waves (SSSW)8-12 for nondissipative media (transpar- 
ent'-" or ideally conducting12), where the buildup mecha- 
nism was due to the pressure of the light." The onset of a 
periodic structure is a manifestation of SSSW due to thermal 
mechanisms. It was shown in Ref. 10 that the minimum of 
the SSSW threshold, which corresponds to the maximum 
growth rate, is reached in a scattering geometry in which one 
or several scattered waves glide along the interfa~e.~'  A simi- 
lar situation obtains also in the formation of periodic struc- 
tures on the surfaces of dissipative media. 

The experimentally observable similarity of the periods 
and orientations of the lattices for various substances and 
mechanisms (see Refs. 1-7 and below) suggests that the pe- 
riodic-structure parameters are not governed by the details 
of the actual interaction mechanism, but are determined 

mainly by the scattering geometry, i.e., they can be deter- 
mined by considering the electrodynamic part of the prob- 
lem. It suffices here to consider fields of first order3' scat- 
tered by a periodic surface structure < exp [i(qr - a t )  ]. The 
reflected ( R )  and refracted ( T )  fields at the combination 
frequencies w + j n ,  a < o ,  kjr = kt + jq( j = f , kt is the 
tangential wave vector of the incident electromagnetic wave 
E, exp [i(kr - w t )  ] ) are bilinear in the incident field E, and 
in the surface roughness f:  

E R = ~ E o G ,  
h 

where R are generalized Fresnel  coefficient^.'^ This results 
in beats of the Poynting vector [E, + ER , H, + HR ] - Qkf 
having the same frequency and wavelength as the surface 
roughness that leads to the wave scattering. Here Q 
= Q(q,k) is a dimensionless and suitably normalized inter- 

ference flux. Energy absorption leads to modulation of the 
temperature-sensitive parameters of the medium, and as a 
consequence to a counteraction on the motion of its surface. 
The appearance of a resonant driving term - Q< in the equa- 
tion of motion for f leads to an instability with a growth rate 
r - Re [ f  QeiB 1 proportional to the heat-source p ~ w e r , ~ '  
but generally out of phase with the latter. The phase shift P 
and the exponent p depend on the specific mechanism; they 
are in general slow functions of q. The most effectively excit- 
ed from among the possible periodic structures are those 
corresponding to maxima of the growth rate, i.e., in the gen- 
eral case, to extrema of the flux Q(q,k) . The behavior of Q is 
determined in turn by the generalized Fresnel coefficients 

wherekfj = - ( k 2  - kj,2)1'2, k$ = (&k2 - kjl ) 'I2arethe 
normal components of the wave vectors of the scattered 
waves, and E = E' + i ~ "  is the effective dielectric constant 
that depends on the average temperature and on the aggre- 
gate state of the substance during the "epoch" of the period- 
ic-structure formation. It follows from Ref. 10 that the de- 
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termination of the extrema of Q is facilitated by the fact that 
it is made up of paired differences of generalized Fresnel 
coefficients corresponding to the Stokes and anti-Stokes5' 
scattering channels. These differences are as a rule small in a 
wide range of q; the cancellation of the terms, however, 
breaks down at the non-analyticity points (dQ /aq+ w ) at 
which the z-components of the wave vectors vanish 
(k;== 0) .  The maxima of the growth rate correspond 
therefore to excitation of glancing or nearly glancing scat- 
tered waves. It must be noted that for metals with E' < - 1, 
and in general at I E I  % 1, an important role is assumed by the 
resonant character of the Fresnel coefficients (Wood's reso- 
nance), which have a sharp extremum at k i  zO, likewise a 
factor favoring scattering along the interface. The singular- 
ity of Q at a point corresponding to the condition k $ z 0  at 

I E I  % 1 turns out to be weaker. For transparent media with 
moderate E, however, it can turn out to be substantial: it 
corresponds to lattices with period A = A  /n, where n is the 
refractive index; such lattices are observed, for example, on 
NaCl surfaces. l4 

Since the function Q depends on the two-dimensional 
vector q, the condition Ik, + ql = k or Ik, - ql = k (which 
follows from k; = 0)  does not by itself determine complete- 
ly the wave vector q. It turns out, however, that in the limit- 
ing case ) 1 the function Q(q,k) can be represented by a 
product of two functions, a slow one F that depends only on 
the lattice orientation, and a fast one f that depends on k i  
and has a sharp extremum at kf = 0. As a result, the orien- 
tation of the lattices can in many cases be determined inde- 
pendently, by testing the flow function F for an extremum. 
Allowance for the factor 8 of Q in the growth rate I' en- 
hances certain extrema of the function Wand weakens oth- 
ers. In particular, the extrema will be enhanced in the region 
of large q if p > 0 and in the region of small q if ,u < 0. 

Thus, information on the possible types of periodic 
structures is contained mainly in the expression for the inter- 
ference flux. We therefore investigate below in detail the 
function Q(q,k). Owing to the substantial simplification 
achieved at I E I  % 1 it was possible to consider analytically the 
experimentally realized general cases of elliptic polarization 
(for normal incidence) and of arbitrarily linear polarization 
(at any incidence angle), and also the case of unpolarized 
radiation. We shall show that the different instability mech- 
anisms discussed in the literature can be analyzed in a uni- 
fied manner by taking phenomenologically into account the 
slow dependence of the growth rate on the lattice period and 
the phase shift of the thermal source. 

The plan of the article is the following. In Sec. 1 we 
introduce the notation and cite equations for the scattered 
fields. In Sec. 2 we derive a general expression for the inter- 
ference energy flux, consider the limiting case lei ) 1, and 
investigate the fast function$ In Sec. 3 we investigate the 
slow function F for different cases of polarization and condi- 
tions of incidence of the acting radiation, and obtain the per- 
iods and orientations of the possible types of periodic struc- 
tures. The influence of specific mechanisms of 
periodic-structure formation on the instability growth rate 
and on the lattice parameters are considered briefly in Sec. 4. 

1. FIELD TRANSFORMATION ON A CORRUGATED SURFACE 

To calculate the interference radiation flux through an 
interface, we must know the scattered (reflected and trans- 

FIG. 1 .  Geometry of scattering of an electromagnetic wave by a corrugat- 
ed surface: a )  general view, b) view in the interface plane. 

mitted) fields. The amplitudes of the scattered spectra were 
calculated back in the classical papers of Mandel'shtam, An- 
drmov, and Leontovich on spontaneous scattering of light 
by oscillations of a boundary, and later in many papers by 
others. We introduce here the notation and cite the corre- 
sponding results, following Ref. 10. 

Let the surface-roughness height be given by the equa- 
tionz = c(r,t);  by virtue of the linearity in 5, we can confine 
ourselves to one Fourier component 

We put c, = cjqgjn, j = + ; since c is real, we have 
6- = c 7 . A plane electromagnetic wave is incident on the 
surface ( 1.1 ) (Fig. 1 ) 

We resolve the field amplitudes into components perpendic- 
ular (s) and parallel (p) to the incidence plane: 

E.=Eo sin $, £i,=E, cos $e-ib, 

where e, = e,, , ep = [e, x k]  /k, $ = E,ep is the polarization 
angle, Eo = I EoI, and 6 is the phase shift between the s- and 
p-components of the fields. The end of the vector E, traces in 
the (e, ,ep ) plane a polarization ellipse whose principal-axes 
orientation is given by the equation 

where y is the angle between the major axis of the ellipse and 
the vector ep . 

Scattering of the incident field (1.2) by the surface 
( 1.1 ) produces, in first order in kc,q(< 1, fields ~? ,= ( r , t )  
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having combination frequencies o, = o + j Ren(q)  and where 
wave vectors k,, = k, + jq. The amplitudes of the scattered sin 2$ 
waves are bilinear in the amplitudes of the surface wave and Q-Q (q, k, $, 6) = sin2 $Q.+cos2 $QP + - 

2 
Q a p '  (2.3) 

of the incident field: 

i is the dimensionless interference flux. Explicit expressions 
R T 

El ' = - - ( 8 - 1 )  % , [ c , ~ ' ~ E , ~ + B , ~ ' ~  H p T l ,  j=*,  ( 1.5 for the partial fluxes Qs , Qp , and Qsp (corresponding respec- 
2 tively to the pure contributions of the s and p components 

where &=&(a) = E' + iEZ is the relative dielectric constant and to their joint influence; the particular case Qp [see Ref. 
of the medium, E ,T = T,E,, HF = TpHp; Ts and T, are the 151 ) is obtained after straightforward but rather cumber- 
Fresnel coefficients: some transformations; we present here only the final result: 

k T = ( ~ k  - k :) 'I2. The conversion coefficients CRST and -I- ( ~ - l ) k + : L k ~ " + ( l + l / ~ ) k + = ' I  ( + c . c .  )}, (2.4) 
k + z T - ~ k + . R  + - BR3T are given in Ref. 10 in a form convenient for us and will 

not be written out here explicitly. We note only that the pp - k2 

k t V 2  1 kzT 1 . - - kzT 
(k+zT+k+P) 

notation for the scattered waves is different here from that in k 2 1 ~ 1 2 ~  E 

Ref. 10, viz., the subscripts 2 and 3 in Ref. 10 correspond ( E - 4 )  T z + k+u2 
here to j = - and + , respectively. ( k + r T - ~ k + = ~ )  [&%( I E 1 I - ( l + l / ~ )  -) k2 

2. INTERFERENCE FLUX 

We consider the compo+nent, normal to the surface, of 
the radiation+ flux 9 = c [ $ X Z ]  /47~ on the boundary 
z = <, where $ and Z a r e  the resultant (total) fields. Accu- 
rate to terms of first order in <, we have 

where n = no + n' =: e, - V X 6 is the inward normal to the 
surface (1.1) of the medium, 16?rS0/c = [ E  
XH* ] + [ E *  x H ]  is the unperturbed flux, E = E,  + Et,  
H = H, + Ht ;  Et ,  H t  are the reflected waves at the funda- 
mental frequency, 

is the increment to So due to the excitation of the combina- 
tion spectra. With account taken of ( 1.5), (2. I ) ,  and the 
equations for the conversion of the main radiation into com- 
bination spectra,'' the flux increment proportional to 
exp(iq-r) - in t )  and responsible for the onset of feedback 
can be represent in the form ( S  = Son1 + Sfno) 

cEo2 kf + s,,' = - -- Q exp (iqr-iQt) + c.c., 
16n 2 

-k+,kzT (kZT* + ( I + l / e )  k,,') I }- ( c'c' ) }. (2.6) + + -  
Equations (2.2)-(2.6) hold for light incident from 

vacuum; for incidence from a transparent dielectric it is nec- 
essary to multiply (2.2) by the dielectric constant E, of the 
medium from which the light is incident, make the substitu- 
tion Tp + E , " ~ T ~ ,  and take E to mean the relative dielectric 
constant E~/E, ,  in which case k = E , w ~ / c ~ .  

The nondimensional flux Q as a function of its argu- 
ments has symmetry properties which are listed in Table I. 
We note, in particular, that the properties of the observed 
periodic structures formed by left- and right-circularly po- 
larized light16 agree fully with the symmetry of Q with re- 
spect to reflections a, or a,, with simultaneous reversal of 
the direction of rotation of E,. 

In view of the difference structure of the flux, the contri- 
butions of the Stokes and anti-Stokes components cancel 

TABLE I. Symmetry properties of interference flux. 

N I Symmetry properties* I Operation I Note 

i 
I I 

1 Q ( - q v ,  6*n) = Q ( q y ,  6) I Ox 1 Reflection in xz plane with change 
of E, rotation direction 

o, 1 Reflection inyz plane with change 

*Only the arguments subject to transformations are given for Q. 

c2= o, 
R 

Ro, 
Rot, 
RC2 
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of E, rotation direction 
Rotation through n- in the xy plane 
Real character of flux 

Superposition of 1 and 4 
Superposition of 2 and 4 
Superposition of 3 and 4 
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each other in the general case. If q<k,, in particular, by 
virtue ofthe cancellation of the terms in (2.4)-(2.6) the flux 
is small: Q- q-k, . For large wave numbers q % k, , k :the flux 
is a sufficiently smooth function (Q-q, and the surface tem- 
perature depends little on the wave number). However, in 
the vicinity of the lines (kt + jq(  = k, nk(n = ~ e & )  on the 
plane q, which correspond to conversion of any one of the 
scattered waves (reflected or refracted) into one glancing 
along the interface, the flux increases and becomes alto- 
gether nonmonotonic. This singular behavior of Q in trans- 
parent media is due to the different complex character of the 
contributions, and hence to the absence of cancellation of the 
Stokes and anti-Stokes components. In metals, furthermore, 
come into play the proximity of the wave scattered in the 
glancing direction to the natural surface electromagnetic 
wave (SEW) of the medium (Wood's resonance). 

Investigation of the function Q(q,k) for arbitrary E 

calls generally speaking for numerical computations. We 
consider hereafter the limiting case I E I  ) 1, which is of inter- 
est for most applications and is at the same time still simple 
enough, and includes both semiconductors and metals. In 
this case the expression for the flux is factorable (accurate to 
small terms E-', k 5 =/k &): 

where the factor 

describes the slow angular dependence that determines the 
orientation of the periodic structure, and the factor 

describes the fast ("resonant") function that determines the 
period of the structure; 6 = n + im, - Aj =k;/ 
k = (k - Ik, + jqI2) 'I2/k, Re, I d ,  >0, and since A; 
= (A ' + iA " 1 2  is real, we have either A '20 and A " = 0 or 
elseA ' = 0 and2 "20. 

The function f; stems from the principal (resonant) 
part of the Fresnel coefficients at combination frequencies, 
and is therefore itself resonant: when (4 / 4 l / W ,  the func- 
tion& increases by W> 1 times compared with the values 
outside this region. Note that although exact Wood's reso- 
nance takes place only for metals at E' < - 1, E" <E', the 
"memory" of the pole corresponding to it should remain in 
the general case of arbitrary E for I E I  ) 1, as is indeed mani- 

FIG. 2. Modulus I f / and phase arg f of the resonant function fas functions 
of A = - k);R'/k. 

fest in the behavior off; . Figure 2 shows plots of the modulus 
I f I and of the phase argf. It can be seen that the maximum of 
I f  IisreachedatA " =m/leI(41at  (&I$l),andthewidthof 
the maximum is of the order of n/(&I < 1. Actually, in differ- 
ent feedback mechanism contributions to the growth rate 
can be made by Ref or Im f or by a linear combination of the 
two (depending on the phase difference between the "driv- 
ing" force -Q and the surface roughnesses c) .  Plots of Ref 
and Im f are given in Ref. 1. Accurate to - 1 / m ,  the loca- 
tion of the extrema of Ref and Im f accord with the glanc- 
ing-scattering condition; the difference in the positions of 
the extrema of Im f influence little the period of the periodic 
structure, although it can be recorded" and, in principle, 
used to identify the probable mechanism whereby the peri- 
odic structure is formed. 

Within the framework of perturbation theory, a growth 
rate that is small compared with the frequency is proportion- 
al to the flux. The maxima of the growth rate correspond to 
the fastest growing periodic structure, which can become 
predominant as a result. The resonance condition in (2.9) is 
close to the glancing-propagation condition k; + 0 or 

and singles out a one-parameter set of wave vectors q corre- 
sponding to the possible periodic structure. The condition 
(2.10) does not determine completely the lattice periods, 
since the orientation of the wave vector q remains unknown. 
This orientation can be determined by testing the slow func- 
tion (2.8) for an extremum. It is seen from the form of (2.8) 
that the extrema of I;;. are reached either at qlHot or at 
kit lHo, , where H,, is the tangential component of the mag- 
netic field in the z = 0 plane. We note, however, that the 
vector products contained as factors in (2.8) are not on a 
par, since the length of the vector k,, is fixed [ = k, see 
(2.10) 1,  and the modulus of q changes when kj, is rotated. It 
follows also from (2.8) that it is more natural to define the 
orientation of the lattices (of the vector q relative to the 
magnetic rather than the electric field; this is of importance 
of arbitrary linear polarization (see below). 

Note that owing to the resonant character of the func- 
tionsf;, the main contribution to Q is made in general only 
by one term in (2.7); in degenerate cases, however, when the 
resonance condition is met for both the Stokes ( j = - ) and 
anti-Stokes ( j = + ) components, both terms must be tak- 
en into account.'.' Degeneracy sets in, first at normal inci- 
dence (kt = 0 )  and, second, for a geometry in which the 
Stokes and anti-Stokes waves are specularly scattered sym- 
metrically about the incidence plane, i.e., at qlk, ; both cases 
are covered by the condition q-k, = 0. 

3. INVESTIGATION OF SLOW DEPENDENCE 

We analyze below those cases in which the function Fis  
real; this enables us to locate the extrema of Q under condi- 
tion (2.10) independently of the complex character of the 
fast function f. The restriction I E I  ) 1 leads in this case to 
simple analytic equations. 

I. Normal incidence of elliptically polarized beam. This 
case is degenerate, since the resonance condition (2.10) is 
simultaneously met for the Stokes and anti-Stokes waves. 
Recognizing that k, = 0, kj, = jq, we get from (2.7) and 
(2.8) 
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TABLE 11. Values of F, (or Q) at extremal points. 
I I 

Extremum points 1 Extremal values I Note 

Non-polarized radiation 

Arbitrary linear polarization 

xj=3n12 I F j = A  ( l+a) Maximum 
r;=n12 F;=All-a) I Maximum 

Maximum 
Maximum 
Minimum at 0)30" 
Degenerate case qlk, 

kb=-k  
k*= k  

k jx= k / 2  sin 0 
kf i=  k ,  

--,- 
sin ~ , = a / 2  I F ; = - A ~ z / ~  I Minimum 

sin ~ , i * c o s ( 0 ~ $ ~ )  Q=-8 sin2 II, cos4 0 Im f Degenerate case qlk, 
+i4 sin 21) cosZ 0 sin 0 Re f 

(F)= (t+sin 0)/2 
(F) = (1-sin 0)/2 
(F)= (4 cosZ 0-1)/8 
(Q)=-4 cos4 0 Im f 

It is obvious from symmetry considerations that the singled- 
out orientations of the periodic structures should accord 
with the principal axes of the polarization ellipse. It follows 
directly from (3.1) that the maximum of Q corresponds to 
the direction ( 1.4) of the major axis. This conclusion agrees 
with experimental data.6 In the limiting case of linear polar- 
ization (6  = 0)  this leads to the well known fact1 that the 
lattice wave vector is directed along E,: qllEo; the lattice 
period is A = R + O( 1 / m ) ,  where R is the wavelength of 
the light. Note that the lattice orientation does not depend at 
all on the mechanism, in contrast to the period A, which 
changes by the relative value 5 1 / m ,  depending on which 
extremum of Imf, the positive or negative, the positive feed- 
back is realized. 

2. Unpolarized light. At kt = 0, after averaging ( 3.1 ) 
over all directions of Ho, we obtain an obvious result-the 
increment does not depend on the orientation of q (Ref. 3). 
At k, f 0, we transform (2.8) into 

Averaging over the orientations of Hot and recognizing that 
(HoaH& ) = ( IH, I2)6aB, we get 

It follows from (3.3) that the principal maximum (4 ) cor- 
responds to backscattering kjx = - k (see Table 11, where 
all the singular points of (F ,  ) are listed). Comparing the 
maximum value of (<) with (Q) / (  - 4 Imfl 
= 2k f (lHox I2)/k 'E; in the degenerate case, we find that 

the absolute maximum of the slow flux component is 
reached at 

The periods of the induced lattice are respectively A = R / 
( 1 + sin 8) and A = R /cos 8 i.e., the same as in the case of 
purep- and s-polarizations (cf. Ref. 1 ) . 

Since (Q ) is real in the degenerate6'case, the degenerate 
and nondegenerate cases were compared for Re(Q ), i.e., for 
a phase shiftp = 0. If, however, the mechanism is such that 
f l =  ~ / 2 , 3 ~ / 2 ,  we have l? = 0 for degenerate geometry, and 
the increment has the extremum at the point kjX = - k. 

In an experiment with unpolarized radiation,' lattices 
A = 2 /COS 8 were recorded (degenerate configuration, fun- 
damental type), and lattices A = R / (  1 - sin 8) are report- 
ed. The latter correspond to a local maximum kjx = k. The 
mechanism in this case apparently such that the local maxi- 
mum kjX = k of the function ( I : )  turns out to be singled out 
in the instability growth rate, owing to the additional slow 
dependence on the wave number (see Sec. 4).  

3. Arbitrary linearpolarization. For linear polarization 
the magnetic-field amplitude can be chosen real, and the 
complex conjugate term in (2.8) can be omitted. We intro- 
duce the notation 

[kjrHotl ,lkHot=sin xj, 

a= [ktHot] ,/kHol=sin 0 sin $,, 

where X, is the angle between k,, and H,, (we took into 
account that k,, = k),  $, is the angle between k, and Hot ,  
and sin $, = cos $/(sin2 $ cos2 8 + cos2 $)'I2. Since Q is 
periodic in $, it suffices to consider only the interval 
0<$, < P. We obtain them for F(x, ) a parabolic quadratic 
form in sin X, : 

Fj=A sin xJ (sin xj-a) ,  (3.8) 

where A = H;,/Eo2 = cos2 8 /( 1 - a2)  ( 1. The principal 
maximum 1;;. (3.8) is reached at X, = 3 ~ / 2 ;  other extremal 
points together with the values off, in them are listed in 
Table I1 (see also Fig. 3). It remains to compare the value F, 
at the principal maximum with the value of the slow function 
Fa t  the point corresponding to the degenerate case qlk, . To 
be specific, we assume that the formation of the periodic 
structure is determined by the real part of Q (i.e., that the 
phase shiftp = 0; this applies, e.g., to the evaporative mech- 
anism). From Table I1 we have 

It follows then from a comparison of the extrema that: 
a )  if - 1 (COS 2$1 < 0 (the radiation is close top-polar- 

ized), the absolute maximum of the slow function F, is 
reached, independently of the incidence angle, at X, = 3 ~ / 2  
(Fig. 3a), in which case the lattice period is equal to A = /Z / 
( 1 + sin2 8 + 2 sin 8 sin $, ) 'I2; 

b) if 0 < cos 2$, < 1 (the radiation is close to s-polar- 
ized, then at z,  <sin 8 < 1, where 

zi= [-sin $,+(sinz $1+8 cos2 I$, cos 2$,) '"1 /4 cos2 I#,, 

the maximum of is again reached at X, = 3 ~ / 2  (Fig. 3b). 
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, I-.< 
I n r cs~n  a nrcs ina x-orcs in  a 

X. 

At small incidence angles 8 < sin 8 < z, the maximum of the 
slow function is reached at sinx,,, = f cos(8 f $,) = 
a + cos 8 cos $,, corresponding to formation of a pair of de- 
generate qlk, lattices with period A = A /cos 8 (Fig. 3c). 

Note that the fact that the wave vector k,, of the scat- 
tered-wave is perpendicular to the projection Hot of the 
magnetic field does not mean at the same time that k,, (and 
all the more the lattice wave vector q )  is parallel to the pro- 
jection E,, of the electric field on the interface, since the 
right angle between the vectors E, and Ho is not projected 
into a right angle between their tangential components (ex- 
cept in the particular cases of pure s- and p-polarizations) . 

It can be shown that the slow dependence of the growth 
rate on the wave vector, of the type q, withp < - 1, singles 
out a maximumxj = ?r/2 that can become the principal one. 
We know of no published reports of experiments with arbi- 
trary linear polarization. 

The equations presented lead also to known results for 
s- andp-polarized beams,' which shall recall to facilitate the 
comparison. 

s-polarization (J I ,  = 0).  The absolute maximum of the 
slow function F, is reached at 

xJ=n/2, 3 d 2 ,  if 2 cos2 8< 1, 
(3.10) 

cos xJ=sin 0, if 2 cos2 0>1. 

Oblique lattices k,, lHo, with periods A = /Z /( 1 + sin2 8 )  ' I 2  

are formed in the first case, and a degenerate pair qlk, with 
period A = A /cos 8 in the second.'32 

p-polarization ( @, = 71/2 ) : 

Fj=sin xj(sin xj-sin 0). (3.11) 

The maximum o f 6  is reached at X, = 3r/2 and the periods 
of the corresponding lattices are A = A /( 1 + sin 8). The lo- 
cal maximum x, = 7~/2 will be treated in detail in Sec. 4. 

FIG. 3. Formation of periodic structure by arbitrary lin- 
early polarized radiation: topscattering pattern in the 
interface (the sectors in which the vector H,, lies are 
shaded); bottom-plot of Re Q v s x , ;  a )  beam close top- 
polarized; b,c) beam close to s-polarized at large (b) and 
small (c )  incidence angles; a degenerate pair of lattices 
qlk, is formed in case ( c ) .  

wherep is the density, L the specific heat of the evaporation, 
S :, = IokfQ,Io = cE $/321~. Obviously, for f to increase ex- 
ponentially it is necessary to have Re Q > 0. It follows hence 
t ha tp=Oandp  =O.  

If a molten layer appears on the surface, the possible 
feedback mechanisms are assumed to be the evaporative va- 
por pressure and the thermocapillary effe~t. '~. '  The equa- 
tions for the growth rates of these mechanisms are obtained 
from the hydrodynamics and heat-conduction equations 
(for a surface heat source) in analogy with Ref. 18. The 
dispersion equation for small surface perturbations is 

where b = (q2 - iQ/v) 'I2, d = (q2 - ifl/,y) ' I 2 ,  Re b, d>O, 
Y is the viscosity, x the thermal diffusivity, c, the specific 
heat, no = (aq3/p)'12 the capillary-wave dispersion law, 
and p' = dpe, /dT, a' = da/dT the evaporative-pressure 
and surface-tension temperature coefficients. Assuming the 
perturbation to be small, we solve the dispersion equation by 
successive approximations: in the limiting case of low viscos- 
ity vq2 <no we have 

(4.3) 

usually a' < 0 andp' > 0, so thatp' - qa' > 0. The phenome- 
nological parametersp andp which characterize the mecha- 
nism are obtained from (4.3 ) or from analogous equations in 
other limiting cases, and are gathered in Table 111. 

We consider now the influence of the factor (q/k)p for 
the case of p-polarization. Noting that x2= (q/k)2 
= 1 + sin2 8 - 2 sin 8 sin x,, we find that xpF, reaches ab- 

solute maximum at 

4. PHENOMENOLOGICAL ACCOUNTOFTHE PERIODIC- k,=k (I*<-I), k,,=*k ( p= t l ) ,  k jx=-k  (p>-1). 
STRUCTURE FORMATION MECHANSIM (4.4 

We consider some instability mechanisms. The simplest The mechanisms suggested in the literature provide a 
is the caused by local evaporation of the rather diverse spectrum (see Table 111); in most cases 
material in places where the field intensity is a maximum. p(O, and frequentlyp does not greatly from - 1.  hi^ 
The dynamics of the surface is described in this case by the that the lattices kjx = k, A /( 1 sin ,g) 
equation should be approximately effectively excited (especially at 

a~ not too large incidence angles), as is indeed observed in ex- 
pL - = CS,', C=const > 0, 

at  
(4.1 ) periments.2 It is also reported in Ref. 2 that with increase of 
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TABLE 111. Phase shiftsfland exponentsp for different instability mechanisms. 

I I I I 
N I Mechanism I 1 * I IL I Validity region 

I t I 

*Two signs corresponds to two branches of the unperturbed dispersion law R = + 0,. 

1 
2 

3 

incidence angle (at 0>  30 . . . 45") lattices with qlEo, 
A = A /COS 0  rather than qllEo begin to be excited. The pres- 
ence of such lattices does not follow from the foregoing: at 
qlEo we have sin X, = sin 0  and E; = 0 according to (3.11 ) 
(a  similar result is obtained also for actual mechanisms1). It 
is possible, however, that the observed lattice correspond to 
a local maximum of x p c .  : 

where z = sin 0, which takes place for mechanisms with ex- 
ponent p > 0 at sufficiently large incidence angles with 
sin 0 > &  + 3 - [ ( p  + 312 - 8I1l2)/2. 

Let us discuss the consequences of the differences 
between the phase shifts in different mechanisms. If the slow 
function E; is real, the phase shift influences only the fast 
function. For the evaporative mechanism (0 = 0)  the role 
of the latter is played by - Imf, which has a maximum at 
A " = (m + n )/Is 1. This maximum corresponds to lattices 
with wave numbers (at qllk, ) 

Evaporation 
Thermocapillarity 

Evaporative pressure 

(m+n) 
q=k ( 4  + -) * k, .  

21&12 

For the thermocapillary mechanism at 0 = - 7r/2 the cor- 
responding rapid dependence of the growth rate is given by 
the function Ref, which reaches a maximum at A " = m/le 1, 
corresponding to lattices 

0 
5x12 
53n/4 

x 
*n/2 
*3n/4 

0 

m2 
q = k(  l + -) * k,. 

21&12 

Thus, depending on the mechanism (on the phase shift), the 
locations of the maxima of the fast function are shifted in the 
considered examples by AA " = n / l ~  1; as a result, the relative 
differences between the wave numbers and periods of the 
corresponding lattices are given by 

0 
-ll2 
-114 
- 2 
-312 
-514 
-2 

In the general case of complex values of<, the shift AA 
of the period depends also on the lattice orientation. 

vq2<Oo<<xq2 
vq2, xq2<Q0 
vq2, x ~ ~ B Q o ~  
vq2KQ~<xq 
vq2, xq2<<9o 
vq2, xqZ>>&o 

CONCLUSION 

A sufficiently definite connection exists thus between 
the singularities of the interference flux and the parameters 
of the generated periodic states. This enables us to find the 
lattice parameters without resorting to an analysis of the 
specific mechanisms whereby-the specific periodic states are 

formed in the general case of arbitrary polarization of the 
applied radiation. The results of such a procedure agree with 
the experimental data and with numerical calculations.2315 

We dwell in conclusion on the limitations of the em- 
ployed model. It is assumed here that the energy is absorbed 
locally on the z = 0 boundary, i.e., a surface interference 
thermal source is postulated [see (4.1 ) 1. Since actually the 
field penetrates into the medium to the skin-layer depth, this 
means that this depth must be small compared with the lat- 
tice period A -A. 

The medium was assumed homogeneous; the possibil- 
ity of the onset of a surface layer with other properties as a 
result of the heating (oxide film etc.) and of the trapping of 
the radiation in a surface waveguide5 was not considered. If 
the heating causes stratification of the optical properties of 
the medium, this imposes a limit (XT) ' I 2  &A or (XT) ' I2 

on the heating depth (T  is the duration of the action). Final- 
ly, we have neglected the frequency dispersion; this is legiti- 
mate if the width Aw of the resonance of s is much larger 
than the frequency shift by scattering: Aw & R, or if the oper- 
ating frequency is far from the resonances of E .  

Modulation of the dielectric constant on account of 
temperature modulation or as a result of nonlinearity in the 
field can be treated similarly, although this involves a some- 
what different electrodynamic problem.I5 Since our analysis 
can be based to a considerable degree on general consider- 
ations of the mutual cancellation of the Stokes and anti- 
Stokes scattering channels (with Is1 & 1 as the example), the 
conclusions drawn concerning the periodic structures can 
apparently be extended to include also the case of scattering 
by a periodic profile of s. 

APPENDIX 

We present for reference explicit expressions for the co- 
efficients of conversion of an incident wave into first-order 
Raman spectra on scattering by a corrugated surface. In ac- 
cordance with ( 1.3), we expand the amplitudes of the scat- 
tered fields into components perpendicular (s) and parallel 
(p) of the scattering plane, and express them respectively in 
terms of the normal components E;,T=E$3T, H 11 PsT=H - JP RvT 
of the electric and magnetic fields 

R where ejS = ejL = [e, k,, ] /kjl, e$ - e$ = [e, k, ] /k, e$ 
=e$ = [e, k;] /k (the subscripts s and p in this notation 
correspond to the usual definition of s- and p-polarizations 
relative to the scattering plane). Introducing the two-com- 
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ponent vectors 

we represent the scattered fields in the form 

the equations for the refracted fields XF are obtained from 
(A.3 ) by the substitution R -. T. The coefficients R ~"P,T? 
are equal to 

TJPS=~' i 'gC,Te jpT=~ ( E -  I) kjykjzR/d, (A.9 

TiPP=~"2gBjTe,pT= (E-I) (kjrkZTkjzR-k,kjt2)/kd, (A. 10) 

whereg= - ( E -  l ) / k , d=k j , (k$ -~k i ) , and thecoe f -  
ficients C f , T  and B f S T  are defined in (1.5) and are given in 
Ref. 10. Note the resonant character of the scattering into 
the p-component after the onset of glancing spectra 
(kfl -0) for Re E < - 1 and for % 1.  Substitution of 
(A.3)-(A. 10) in (2.10) leads after suitable transformations 
to (2.2)-(2.6). 

"The SSSW threshold, however, is significant, and the competition of the 
thermal effects is so substantial that no SSSW in pure form have been 
reliably recorded in pure form in nondissipative media. 

"In the case of metals, waves diffracted by periodic structures can be close 
to the natural surface electromagnetic waves (SEW) of the media 
(Wood's resonance). 

''This approximation is, at any rate, sufficient to describe the initial stage 
of the instability, and by the same token to determine the surface states 
that grow at the fastest rate; the surface structure interaction13 is not 
taken into account here. In exceptional cases, for example for an ideally 
conducting medium, an essentially nonlinear problem must be consid- 
ered, with diffraction spectra of order higher than the first invoked.'* 

4'This is valid if the growth rate is small compared with the characteristic 
reciprocal times of the natural motions of the medium. In the general 
case, however, the extrema of Q should be substantial. 

"This terminology is convenient, and we shall use it hereafter, although in 

a number of cases it loses its initial meaning (e.g., in the case of static 
structures). 

"In the degenerate case (k, = k, , k ,  = jk,, f+ = f- ) for non-polarized 
radiation we have (F+)  = (F-),  so that the contribution of (F,) to 
Re(Q ) is doubled, and Im(Q ) = 0. ( A  similar result holds also for s- 
polarization, see Ref. 1 and below.) In general, however, this is not the 
case: in particular, for arbitrary linear polarization we have 

i.e., the part ofFj that is even in jenters in Re Qand is doubled, while the 
odd part enters in Im Q. 
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