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The inverse scattering problem method is used to investigate Raman scattering in time intervals 
much shorter than the relaxation times of the medium. Cases are considered in which the energy 
transfer to the Stokes field is initiated by polarization fluctuations and by a Stokes-field pulse of 
small area. The fluctuations of the pump field are taken into account. It is shown that the joint 
action of the pump-intensity and polarization fluctuations produces a spike in the solution that 
describes the shape of the transmitted pump-field pulse. The compression of the Stokes-field 
fluctuations during the strongly nonlinear stage of Raman scattering is explained on the basis of 
the obtained quasi-self-similar solution. 

INTRODUCTION 

Nonresonant Raman scattering (RS) of light in inter- 
action with a two-level medium over times much shorter 
than the relaxation time is widely used in various branches of 
physics and chemistry. In experiments aimed at observing 
RS it is customary to apply to the end face of the sample a 
high-power pump pulse, and the transport of the energy into 
the Stokes field is initiated either by quantum fluctuations of 
the system or by a small priming Stokes pulse. In the former 
case, a collective effect can be observed. This effect, cooper- 
ative Raman scattering (CRS),14 was observed in RS ex- 
periments in h y d r ~ g e n . ~ . ~  CRS is the analog of a well known 
collective effect, viz., one-photon ~u~e r rad i ance .~ .~  CRS was 
described theoretically in a number of on the basis 
of the McGillivray-Feld equivalent superradiance model.6 It 
was shown that the form of a Stokes pulse in the constant- 
pump approximation is described by a self-similar solution 
of the sine-Gordon equation (nondegenerate  transition'^^) 
or its generalization (degenerate transition2). The second 
case-initiation of RS by a small Stokes pulse-corresponds 
to coherent Raman amplification (CRA). The theory of 
CRA generalizes the theory of the one-photon laser amplifi- 
er, the properties of which were investigated by Manakov7 
by the inverse scattering problem methods (ISPM) Mana- 
kov has shown that the waveform of a light pulse after pass- 
ing through a long enough active medium is described by a 
quasi-self-similar solution. The ISPM is used in the present 
paper to describe the evolution of the fields in coherent RS. 
This method was first used by Kaup9 and Steudello to inves- 
tigate the Maxwell-Bloch equations that describe RS. In the 
latter paper, and also in Ref. 11, N-soliton solutions were 
obtained. A non-soliton behavior of the solutions of these 
equations is investigated here for the first time. 

In many papers, quantum effects that determine the ini- 
tial stage of super rad ian~e~. '~~ '~  and of CRS1-3 are simulated 
quite adequately by a random distribution of the polariza- 
tion of the medium at the instant of time t = 0. The random 
nature of the onset of CRS causes the energy of the Stokes 
pulses to fluctuate greatly. The statistical properties of these 
fluctuations are diligently investigated at present (see the 
bibliographies in Refs. 14 and 15). For strong fluctuations of 
the initial polarization R + (z,0) the profile of the Stokes 
pulse is generally speaking not defined. Only a statistical 
description is possible in this case. We estimate the role of 

the statistical and dynamic effects in the following manner. 
Let r be the rate of dephasing due to the stochastic pro- 
cesses, and 7, the nondimensional halfwidth of the Stokes 
pulse. The condition 

qU>rl, (1) 

where I is the length of the sample, means then that the dy- 
namic character of the Stokes pulse prevails over the sto- 
chastic one. This is in fact the case considered in the present 
paper, although some of the results that follow remain in 
force also in the statistical domain. 

A number of experiments have revealed a "compres- 
sioq" of the statistical distribution of the energy of the Stokes 
pulse with increase of the energy conversion coefficient x, 
(Ref. 15). Thus, when x, changes from 1 to 40% the width 
of this distribution is decreased by a factor 5-8 (Ref. 15). An 
attempt was made16 to explain this effect theoretically, but 
the model used to describe the nonlinear stage had no con- 
nection with RS. A numerical description of the compres- 
sion of the fluctuations was presented by Lewenstein.I7 We 
found in the literature no complete and consistent descrip- 
tion of the compression of the fluctuations during the non- 
linear stage of RS. Some results of the present paper are 
devoted to a partial filling of this gap. Together with the 
fluctuations of the initial polarization, account is taken of 
the stochastic changes of the amplitude and phase of the 
pump field. It is shown that the joint action of the amplitudes 
of the polarization and amplitude of the pump field leads to 
singularities in the solution that describes the profiles of the 
pulses at the exit from the system. These singularities can be 
used, in particular, to explain the experiments of Druhl et 
a1. la and also of Ref. 19. 

The formulation of the problem is described in the next 
section. In the second section is described the procedure of 
applying the ISPM to CRS and CRA. The modification of 
the scattering data to allow for the fluctuations is found in 
Sec. 3. The asymptotic quasi-self-similar solution used to 
explain the experimental data is obtained in the last section. 

1. THE MAXWELL-BLOCH EQUATION AND FORMULATION 
OF THE PROBLEM 

Two wave packets, propagating along the z axis: 
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interact with a two-level medium that has a transition fre- 
quency w = w2 - w,. The Ma%well-Bloch equation for the 
elements of the density matrix R and for the slow envelopes 
El (z,t) and E2(z,t) are of the form 

d1R,=2i( bllE, I2+b2\ E,(2)R++ixE2E,*Ro, 
dtRo=ixE1E2'R++rc. c., (2) 

Here R + is the polarization and R, is the difference between 
the level populations, R - = R % , R A'' = Ro(z,O), and the 
coupling constants b ,,, and x characterize the quadratic 
Stark effect (QSE) and the Raman interaction, respectively 
(for details see the review2' and Ref. 10). 

We change to a new notation9 

The following conditions correspond to the formula- 
tion of the Cauchy problem for the QCS: at the instant t = 0, 
with the medium polarization having a distribution r+ (x,O) 
(along the medium, a high power pump-field pulse E, (0, T) 
is fed into the end face of the sample. The polarization fluctu- 
ations are assumed to be quite slow, since fast fluctuations 
can hinder the energy transfer to the Stokes field. We shall 
return to this question in Sec. 3. 

The formulation of the Cauchy problem for the CRA is 
the following; a high-power pump-field pulse is applied to 
the end face of the sample simultaneously with a Stokes pulse 
E,(O,T) of small area, i.e., such that 

We assume, however, that the area under the pulse is large 
enough to be able to neglect quantum fluctuations. Note that 
the competition of the spontaneous RS primer can be de- 
creased by varying the frequency range, since the cross sec- 
tion for spontaneous RS is proportional to a':, whereas that 
of the spontaneous RS is proportional to w ,. 

The descriptions of the evolution of the fields in CRS 
and CRA by the ISPM do not differ greatly. We shall there- 
fore investigate hereafter mainly the CRS and indicate, 
where necessary, the differences that appear when CRA is 
studied. 

2. GENERAL STRUCTURE OF THE SOLUTION BY THE lSPM 

ISPM can be used because it is possible to represent the 
investigated system of equations (2)-(4) as a condition for 
compatability of two systems of linear equations: 

here f 2  - a ( l  -g2).  
The Lax representation (due to the formulation of the 

problem) is obtained for CRS from (5)  to (6)  after making 
the replacements T-x,rctS,r, -S, . 

We formulate for (5)  the scattering problem, introduc- 
ing sets of Jost functions, which are solutions p* of ( 5 ) ,  
defined by the asymptotic relations 

with Eqs. (5)  considered in the class of coefficients that de- 
crease rapidly with x r, -0,lxl- UJ meaning that there is 
no polarization or a Stokes field at + co . We define the scat- 
tering matrix in the following manner: 

cp-=v'P, detF=I, T,,=TZ2=a, T,2=-F21=b. (8) 
h 

The elements of the matrix T and the set of constants corre- 
sponding to the discrete spectrum of the problem (5 ) consti- 
tute the scattering data. Analysis of (5)  shows that under the 
condition Qo = .f Ir , (x,O) ldx g 1 the problem (5)  has no 
discrete spectrum. This can be easily shown, in particular, at 
g # 1, for at small r + the problem (5) is equivalent [accu- 
rate to - O( lr + 1 2 )  l t o  the Zakharov-Shabat spectral prob- 
lem.8 In experiments on observation of superradiance (e.g., 
Refs. 4 and 21) and CRS (Refs. 2 and 3) the quantity Q, is 
always small ( - 10W8). Under these conditions the reflec- 
tion coefficient R = ba-' is simply the Fourier transform of 
the polarization: - 

R (h, 0) =i (fSih) J r- (x, 0) exp (2ihx) dx. (9 )  
- m 

The next step in the application of the ISPM is to solve singu- 
lar integral equations, which can be done directly for the 
spectral problem (5). For comparison with the results of 
other theories,'-3 however, it is more convenient, following 
K a ~ p , ~  to transform to the Zakharov-Shabat problem. This 
is effected by changing to a new function tC, = D -Ip, 

D= [ I cos ( 712) +io3 sin ( 712) I [I cos ( 812) 
+io, sin(P/2) 1 [Zcos (W2) +ios sin(012) 1, (10) 

where ai are Pauli matrices, 
X 

r,=ekie sin B, r = cos p, 7 = 5 0, cos p dx, 
-a 

0,=d,0; y-0, x+-w; p,eX-+O, ~ X ~ - + O O .  

The function tC, satisfies the Zakharov-Shabat equation: 

d,$i+ih$i=qi$2, d2$2-ih$2=q~$i, (11) 

where 

ql=[ (if-i/lO,) sin P+ipx/2]eiY, (12) 

q2= [(if+'/zOx)sin B+ipx/2]e-". 

The inverse-problem method for ( 11) has been well investi- 
gated.8 For the functions 

x (h, z, T) = (xi, ~~ )~=$e - ' " ,  X(h) =(-%, X d T  

we have the singular integral equations: 
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Equation (14) takes into account the singularities of the 
asymptotic forms of the problem (5) at g > 1 (for details see 
Studel's paper1'). The evolution of R with T is determined 
from Eqs. (6)  and ( 10). The potential q, is obtained from 
the equation 

3. ALLOWANCE FOR THE POLARIZATION FLUCTUATIONS 
AND FOR THE PUMP FIELD 

The effect of polarization fluctuations on the RS pro- 
cess in its linear stage has been the subject of many investiga- 
tions (see the bibliography in Ref. 14). Actually, as will be 
shown below, contributing to the evolution of the fields are 
only fluctuations localized in the vicinity of the origin, i.e., at 
the end face of the sample. We assume that the time of vari- 
ation typical of polarization fluctuations (in a coordinate 
frame connected with the pump pulse) is large enough. This 
condition is necessary for the evolution of the RS. In fact, we 
shall show with a simple model as an example that fast fluc- 
tuation lead to vanishing of the average scattering coeffi- 
cient, (R,,) = 0. Let r, = Ir, I.exp( f ip,), where Ir, I 
is a definite nonfluctuating amplitude, p, a rapidly fluctuat- 
ing one, and S the correlated phase: 

Using Eqs. (5),  we obtain by iteration the scattering data 
(r(x,O) = - 1 ) : 

m x 

a ( A )  = 1 - J exp [ l ih  (x-x,)  ] 
-m -m 

. b (A) = i 1 eexp (2ihx) ( f i - ih )  r- ( x )  dx + . . . . 
- m 

In the phase-diffusion model (see, e.g., Ref. 22), it can be 
easily shown by using the results of Ref. 14 that (b(A) ) = 0 
(the angle brackets denote here and elsewhere averaging 
over the fluctuations). A similar result was obtained earlier 
for an attenuator by Elgin and Kaup.22 In our case there is 
one more time scale-the characteristic time of instability 
evolution during the linear RS stage: T ,  ' -7c IE,(0,0) I. At 
T~, ,  G - ' the perturbation has time to dissipate by diffusion, 
and no RS developes. At T ,  - G -' the phase-diffusion mod- 
el is not valid and (b(A ) ) f 0. The threshold value E,(O,O) 
can be roughly estimated from the condition T ,  z G - l. 

Let us determine the time dependence of R (A,x, T). Un- 
der initial conditions Ir * I < 1, r z  - 1 and E l  (0,T) = 0 the 
matrix D in (10) can be set equal to unity accurate to 
-0( lr, 12). We assume that the pump field is strong 
enough, in the case of CRS we get 

(18) 
It can be seen from ( 18) that the evolution of the fields in 
CRS is determined only by the pump-field amplitude. The 
situation is different in the case of CRA. The spectral prob- 
lem should be chosen to be the system (6)  and the spectral 
parameter must be suitably redistributed. For a very weak 
Stokes pulse and for f #O the problem (6) is equivalent to the 
Zakharov-Shabat problem. The arguments given above and 
in the present section can be repeated, but with the substitu- 
tion r + -E TE,. Just as above, we are using the phase-diffu-' 
sion model. Given the Stokes and pump field amplitudes, the 
fast fluctuations of the pump-field lead to vanishing of the 
coefficient (b (A ) ) . 

The characteristics of the pump field, especially its fluc- 
tuations, are determined by the laser-radiation source.23 The 
dynamics of the field near and above the lasing threshold is 
described by the van der Pol  equation^.'^ With increasing 
distance from the threshold, the amplitude of the intensity 
fluctuations becomes small compared with the mean value. 
Linearization of the van der Pol equations leads to a Brow- 
nian-motion The radiation transformed in RS is 
frequently used as a new radiation source, therefore the 
study of the influence of the pump fluctuations on the Stokes 
field is of particular interest. On the other hand, since the 
initial stage of the RS is characterized by development of 
instability, even relatively weak fluctuations of the pump 
field can influence substantially the form of the Stokes-field 
pulse. Indeed, such an effect was observed in experiments 
carried out by Safonov.19 The same experiments have re- 
vealed for the first time an abrupt decrease of the Stokes- 
pulse shape fluctuations due to fluctuation of the pump field 
during the strongly nonlinear stage of the RS. This effect can 
also be explained within the framework of our approach. 
Note that the Brownian-motion model, which will be used 
from now on, corresponds to the case of high-frequency fluc- 
tuations. This model was used to investigate the linear stage 
of the RS in Ref. 27. Since the phase of the pump field plays 
no role for CRS, the Brownian-motion model, which de- 
scribes the statistical properties of the intensity 
AI, = IE2 (0, T) 1 of the pump field, takes the form 

Z,=lo+I', &I' ( T )  =-vl' ( T )  +F,  ( T ) ,  

where I, is the nonfluctuating part of the intensity, I ' is a 
small fluctuating increment, v-'  is the correlation time of 
fluctuations with mean value 7' = DY-'. The fluctuating 
force is 8-correlated, i.e., it is assumed that the fluctuation 
time interval is smaller than the other characteristic times of 
the process. We average over the realizations of the random 
process in the following manner. We break up the time inter- 
val from 0 to T into M intervals, the mean value (R ) can be 
represented as a path integral: 

T 

t ~ ) =  ~ ( h ,  x ,  0 )  exp [ iP  J I, ( T I )  d ~ ' ]  C, 
0 
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Here U(IO1) is the initial Gaussian distribution of the fluctu- 
ating intensity increment I ', { = g - 1/( W + g), 
U(I ;, I ; + , ) is the probability of the I ; -*I; + , transition 
within a time interval T/M. In the Brownian-motion model 

[I;,-I,' e x p ( - v T / M )  l 2  u (I, ' IA,)  = exp - { iJ2 r 1 -  e x p ( - 2 v ~ / ~ )  ] 

The Gaussian integrals in (20) can be evaluated exactly (see 
Ref. 28) : 

Note that on going from the regime Y T ) ~  to 
Y T ~  1 < TzxAr,  see Eq. (4), but it is known that 7-0 with 
increase of time, see Ref. 7 for details, so that such a transi- 
tion is possible), the fluctuation spectrum, i.e., the Fourier 
transform of (22), broadens greatly, roughly by a Tt2/v 
times. This effect is known in molecular optics as the Dicke 
effect.29 A consequence of this effect is the compression of 
the temporal fluctuations. We confine ourselves hereafter to 
the limit YT) 1, i.e., to a short fluctuation-damping time; 
then Eq. (22) reduces to 

Note that within the framework of perturbation theory all 
the results reported in the next section can be generalized to 
the case of an arbitrary ratio I/YT, but to avoid unwieldy 
equations we confine ourselves to the limit YT, 1. 

It remains for us to substitute the expression obtained 
for R in the right-hand sides of ( 13) and ( 14) and find the 
solution of this set of equations. 

4. QUASI-SELF-SIMILAR SOLUTION 

It is impossible to obtain an exact solution of the set of 
integral equations ( 13) and ( 14). We seek an approximate 
asymptotic solution. It is easy to show within the framework 
of the linear theory that for a very small initial polarization, 
such that 1nQ; ' ) 1 (recall that Qo- lo-' in the experi- 
ments of Refs. 2, 3, and 2 1 ), the solution that describes the 
Stokes field is centered in the region of large values of the 
self-similar variable 

T 

2 X W ~ ,  W= ~ I , ( T . )  d ~ / .  
0 

This fact permits the use of the stationary phase method to 
calculate the integrals in the right-hand sides of (13) and 
(14). This approximation was used earlier by Manakov,' 
who investigated a similar system of equations. Let us esti- 
mate the integral in the right-hand side of ( 13) : 

m 

x x ( ~ ) P ( Y )  0 ( x - Y ) ~ Y  da. (24) 

We have put here 

p ( y )  = (f+ih)r- ( y ,  O) ,  o=f f2 /2v .  

We change to a new integration variable 
A = (W + g ) [ ( x  - y ) / ~ ] " ~ :  

x X ( ~ ) P ( Y ) ~ ( X - Y )  [ W l ' 4 ( x - y )  1'" d y  d.1, (25) 
where 7' = 2 [ W(x - y)  ] 'I2. 

The integrand in (25) has a saddle point A : 

Integration with respect to A at 7,) 1 reduces to an estimate 
of the integral in the vicinity of the points A$, and expres- 
sion (25) takes the form 

It is easily noted that owing to the exponential growth of the 
integrand the main contribution to the integral is made by 
the region of small y. Using the expansion 

we represent (26) in the form 

= ( 5 ,  x ,  T )  

= -  
'" e s p  {q+ i g ( x -  W )  - o T [ g " x / W + 2 i g ( x / W )  ' A ] )  

(8zx ) S-ho+ 

x X(ho+) @ ( P ,  X )  ( f + i k e + ) ,  (27) 

o T  'I? 
m ( p , x ) = j  r - ( y 7 ~ ) e V u d y ,  p=- - - ($ )  -ig. 

0 W 

We find similarly the integral in the right-hand side of 
(14): - 
s (C, 2, T )  
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Using ( 131, ( 141, (271, and (28) we obtain a simple system 
of algebraic equations: 

Putting 6 = A  ; in (29) and 6 = A  ,f in (30) we get, using 
(151, 

29 HPe* ( L + H I P 1 2 e 2 ' ) - '  
4 2  = -- x (2nq)'" 2nq 

, (31) 

where 

H=[iW'"+ x'" (2f+g) ] [iW1"-x'"(2f-g) I-', g>l,  

Equations ( 12) and (3 1 ) describe the form of the first peak 
of an infinite sequence of peaks whose amplitude decreases 
at infinity (as 7-CO). At Q ,=u=O,  g = O  and 
r- (y,O) = S(y) the solution is simplest. In this case 9, re- 
duces to a Painleve transcendental of type 111. The same 
conclusion can be reached by comparing the solution of Eqs. 
( 13) and ( 14) with a self-similar solution of the sine-Gor- 
don equation.' It is obviously impossible to obtain the func- 
tion E ,,, (x, T) in explicit form. Figure 1 shows the results of 
a numerical calculation. We change in ( 12) to the self-simi- 
lar variable 

x X 
id,,/Z+d,O sin P+2if - sin P=2q2 - eiT. 

9 9 
(32) 

It is seen from the figure and from an analysis of (32) that 
the pulses have different shapes at 6 ( 1 and 6 z 1, where 
9 = 2f 1 /7,,. In fact, if 64 1,8, = 0 and g = 0, the solution 
reduces to that of the sine-Gordon equation; this is just the 
case considered in Refs. 1 and 2. Experimental observation 
of CRS in hydrogen2s3 yielded 6- To reach the most 
nonlinear regime (9- 1) in a sample 10 cm long the re- 
quired active-atom density is 1019-1020 cmP3. The 9- 1 re- 
gime is easier to reach for cesium atoms (x  - 10- 14, Ref. 
20); an atom density - 1014 cm-3 suffices at the same atom 
density. 

It was observed in experiment3 that the first peak of a 
Stokes field is not always the largest, whereas the theory 
based on the sine-Gordon equation leads to a Stokes-field 
pulse shape similar to that shown in Fig. 1 for 9.4 1. The 
cause of the discrepancy may be that the CRS theory used in 
Refs. 1-3 does not take the quadratic Stark effect into ac- 
count. For two-photon interactions, neglect of this effect is 
generally speaking wrong, since the reduced coupling con- 
stant g that represents it can be of the order of unity (see, 
e.g., Ref. 10). For hydrogen, g = 0.18. A numerical analysis 
of Eq. (32) with a right-hand side a sequence of 271. pulses of 
alternating sign and decreasing amplitude, shows that the 
quadratic Stark effect gives rise to modulation of the spike 
amplitudes, with a periodic approximately five times the 
half-width of these peaks. This result agrees qualitatively 
with e~periment .~.~ 

The solution obtained can explain the fluctuation com- 

FIG. 1 .  Dependence of G = I E,E I 2  on the self-similar variable 7. Solid 
l i n d  = 0.03, d a s h e d 4  = 1.2. 

pression observed in a number of experiments (see the Intro- 
duction). This is easiest to do in an approximation in which 
the levels have constant populations. The Maxwell-Bloch 
equations reduce then (g = 0)  to the equations used to in- 
vestigated a one-photon laser amplifier.' The respective in- 
tensities, I, = I E2 1 ', and ?, = I El 1 ', of the pump and Stokes 
fields are of the form (it suffices to consider the form of the 
first spike) 

where S denotes the contribution of the fluctuations. The 
condition ( 1 ), with 6 = rl, permits the use of the expansion 

where i j  = 7 - 4 In 7 - 7'. It is easily noted from (33) and 
(34) that the contribution of the fluctuations in the shape of 
th,e Stokes pulse is of the order of S at x, ( 1 and of the order 
of d at x, z 1. In the case of strong fluctuations one cannot 
speak of a definite shape of the Stokes pulse and a statistical 
description of the RS is needed. The Dicke effect described 
above, however, should take place even in this case, too. 

The behavior of the solution (3 1 ) is determined by the 
form of the dependence of r- on x at t = 0. In particular, a 
singularity occurs at the point p = 0 if g = 0 and 
r-(x,0) -x2. The Stokes field reverses sign on passing 
through this point. Druhl et a1.18 observed in their experi- 
ments a sharp spike in shape of the transmitted pump field. 
To analyze this phenomenon, they introduced in the numeri- 
cal cal~ulation'~ a jump in the phase of the field at a speci- 
fied instant of time. This spike was identified in Refs. 18 and 
30 with a soliton (in the sense used in Ref. 8) of the Maxwell- 
Bloch equations, which are formally equivalent to the equa- 
tions of the one-photon self-induced transparency. It is 
known, on the other hand, that at small initial polarization 
and at El ( 0 , ~ )  =0  (or I:, E2E ?(O,T)~T( 1 these equa- 
tions have no soliton solution. Kaup obtained recently3' an 
unexpected result; he has shown that a soliton solution (a  
pole in the upper half-plane, in the language of the spectral 
problem8) can appear as a result of dissipation. This result 
was obtained by a perturbation theory based on the ISPM 
equations for the linear stage of RS. It is important to note 
that in the experiments in which the "soliton" was observed 
the dissipation is not small. Thus, the relaxation time is 
T, = 3 ns whereas the length of the Stokes pulse is - lo2 nm. 
It is known also that a soliton was observed also in Ref. 18 
randomly, approximately once every 20 "shots" (Ref. 3 1 ) . 
Yet according to Kaup's theory3' it is natural to expect this 
soliton to appear practically in each shot, since the relaxa- 
tion is always large. Note also that a soliton was always ob- 
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served upon total depletion of the pump and on the trailing 
edge of the Stokes pulse, i.e., in the strongly nonlinear stage 
of the RS. The solution ( 3  1) of the present paper also con- 
tains a dip in the Stokes-pulse profile (or a spike in the shape 
of the passing pump field), for example at r -  (x,O) -x2. The 
appearance of this dip (spike) is possible on the trailing edge 
of a Stokes pulse. Since the distribution r- (x,O) can vary 
randomly from shot to shot, one should appear a singularity 
to appear in (3  1 ) at some instant of time. The initial condi- 
tion for the soliton is complete depletion of the pump, i.e., 
E, zO. No explanation is given in Refs. 18 and 30 for the fact 
that the soliton covers a larger distance at a high initial field 
intensity. Moreover, the time of the spike is chosen in Ref. 18 
phenomenologically. Using the solution obtained in the 
present paper, one can estimate the position of the spike. 
Assume for simplicity '7 = - a T /  W + ( W/x) 'I2 - ig for 
the trailing edge of a Stokes pulse) that 

g=O, 0,=0, W - - A I o ~ ,  1'2=a102. 

The condition ,u = 0 yields 

Comparing with the experimental  result^,'^ we find that Eq. 
(35) describes qualitatively correctly the location of the 
spike. It is also easy to show that the spike is narrower for 
larger Io. It appears that the second peak in the shape of the 
passing pump field, observed in experiments19 with para- 
and ortho-hydrogen, is of similar nature. 

We note in conclusion that results similar to those given 
above can be obtained by studying other physical systems, 
e.g., when it comes to describing the characteristics of a two- 
photon laser amplifier or of two-photon superradiance (the 
sum of the carrier frequencies, which are not equal to each 
other, is equal to the frequency of the atomic transition). 
The formulation of the problem should include, as a required 
element specified at the point x = 0, a high-power pulse of 
one of the fields. The generation of the second pulse is initiat- 
ed either by a priming pulse (amplifier) or by quantum fluc- 
tuations (superradiance). 

The author is grateful to S. G.  Rautian and B. M. Cher- 
noborod for a discussion of the results and to V. P. Safonov 
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and for their discussion. 
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