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A quantum theory of fluctuations is constructed for dissipative systems that interact with the 
environment, and whose dynamics is therefore not described by a Hamiltonian only. The 
intensity and shape of the spectral line due to the scattering of light by the space-time fluctuations 
in the permittivity of the medium, fluctuations which arise as a result of the heating of the medium 
around the impurity molecules resonantly absorbing the incident light and transferring the 
absorbed energy to the medium, are computed. 

Belyaev et al.' investigated experimentally the scatter- 
ing of il = 503-nm light in water containing a small admix- 
ture of I, molecules, which absorbed this light. In the general 
case we can consider a medium containing a small admixture 
of resonance particles that absorb light passing through the 
medium; the medium itself does not absorb the light. In Ref. 
1 they observed nonlinear scattering of light by the space- 
time fluctuations of the medium's permittivity that arise as a 
result of the heating of the medium around the impurity 
particles that resonantly absorb the incident light and trans- 
fer the absorbed energy to the medium. The temporal fluctu- 
ations of the temperature of the medium in such a physical 
situation are theoretically considered in Ref. 2 on the basis of 
the photon concept. 

For the purpose of interpreting the experiment reported 
in Ref. 1, and determining the limits of applicability of the 
theory expounded in Ref. 2, we shall consider the following 
problem: We have a quantum system that is excited by an 
external field, and is also acted upon by the environment. 
The starting point in the investigation of such a systemjs the 
consideration of the set of Schrodinger operators i s ,  B,,. . . 
for the observable quantities A ( t ) ,  B( t )  , . . . and the equation 

-=- [a, ;,]+I (61 )  

d t  ih 

for the density matrix 6, ( t )  . The subscript 1 indicates that 
lj, ( t )  is the "usual" one-time density matrix (see Sec. 2 be- 
low). The matrix @, ( t )  is dimen!ionlesj and normalized to 
unity: Sp@, ( t )  = 1. In ( 1 ) H = He f Hint ,  where & is the 
proper Hamiltonian of the system, Hint is the Hamiltonian 
describing the interaction of the system with the external 
field, and the operator ?(lj,) describes the action of the medi- 
um on the systems. Equation ( 1)  is similar to the classical 
kinetic equation for the distribution function of a gas that is 
an impurity of low concentration in a denser environment. 

It is necessary for us to construct a quantum theory of 
the fluctuations of the observable quantities in systems de- 
scribed by Eq. ( 1 ) . 

If there is no dissipation, and we must set ?(@,) = 0 in 
( 1 ), then we can construct the quantum-fluctuation theory 
with the aid of Heisenberg operators of the type 

where to is the instant of transition from the Schrodinger to 
the Heisenberg representation. In this case the correlation 
for the two observable quantities A (1,) and B ( t , )  is given by 
the well-known formula 

2. THE DOUBLE-TIME DENSITY MATRIX 

Let us derive an expression generalizing ( 3 )  to the case 
when there is dissipation: here we shall assume that the colli- 
sion operator j is a linear function ofb,. In matrix form the 
collision operator can be written as I(mnkl)p,(tlk).  We 
write the matrix indices as arguments, and sum over the 
dummy indices. Since Eq. ( 1 ) is linear in@,, its solution can 
be expressed as a linear function of the initial value ofb, (to) : 

The evolution operator  satisfies Eq. ( 1 ) for the time t 
and the indices m and n; the time to and the indices mo and no 
are t~eated in this case as parameters. The initial condition 
for W has the form 

The observable quantity A ( t )  is equal to 

-4 ( t )  = S p ( ~ , ( t ) ~ ~ )  = ~ ( t m n l  tom~no)pl( tonom~)A~(nm) 

= ~ p ( &  (t0)AH ( t t 0 )  1. 

We have introduced the Heisenberg operator 

When there is no dipipation (i.e., when ? = 0 in (!)), the 
evolution operator W can be expressed in terms of H only: 

)=  (-i(t-to)H) W(tmn 1 tomono exp 
R mnu 

In this case (6)  coincides with (2),  and the Heisenberg oper- 
?tors *p?ssess th_e following important property: if 
C, = A,B,, then CH =i,~,. In the general case, when 
allowance is made for the dissipation, the Heisenberg opera- 
tors ( 6 )  no longer possess this property. It is only this cir- 
cumstance that casts doubt on the possibility of their use in 
the formula (3).  
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We shall construct a quantum theory of fluctuations for 
systems with dissipation in a form that is as close as possible 
to that of the classical theory using the double-time distribu- 
tion f~nc t i on .~  Let there be an ensemble consisting of Nclas- 
sical systems, let Ti ( t )  be the set of dynamical variables of 
the system i at the moment t, and let A(Ti ) and B(Ti  ) be 
certain functions of Ti.  Let us introduce the correlator 

v 

There are, besides (7) ,  correlators of a different type with a 
physical meaning: 

1 +,y, 
K [ A  ( t z ) ~ ( t i )  I= N(N-l) A ( r ~ t ~ ) ) ~ ( r ~ ( t ~ ) ) ,  (8)  

r = i  k f i  

that arise in, for example, the computation of gas-density 
 fluctuation^.^ In this paper we shall consider only the corre- 
lators of the type (7)  (see Sec. 4 below). 

In the quantum theory the correlator corresponding to 
the classical correlator of the type (7) Fan be expressed lin- 
early in terms of the operators 2, and B, , and, consequent- 
ly, can be written in the form 

We shall call the set of quantitiesp,(t,m,n,~t,m,n,) a dou- 
ble-time density matrix. 

Our immediate problem is to show from the first princi- 
ples of quantum theory \hat @, can be expressed in terms of 
the evolution operator Wand the one-time density matrix 
operator@,. For this purpose let us consider the closed sys- 
tem consisting of the quantum system in question and the 
environment (the heat bath). We shall write all the opera- 
tors and density matrices with double indices of the type ma, 
where the Latin indices pertain to the system in question, 
while the Greek indices pertain to the heat bath. If the opera- 
tor 2, corresponds to a physical quantity characterizing 
only the system in question, then it has the form 

The one-time density matrix of the system under study is 
equal top, (tmn) = p ,  ( tmana) .  In the present investigation 
we limited ourselves from the very beginning to those condi- 
tions under which the system in question can be described 
not only with the aid of the exact equation for p ,  (tmanp), 
which is invariant under time reversal (i.e., under the re- 
placement t + - t) ,  but also with the aid of the approximate 
equation ( 1 ) , which contains only p ,  (tmn ) and is, generally 
speaking, not t invariant, since it describes the dissipation. A 
detailed derivation of Eq. ( 1 ) from the exact equation for 
p ,  (tmanp) has been given by, for example, B l ~ m , ~  who uses 
the approximate equality 

where p, (ap) is the heat bath's constant density matrix, 
which has the Gibbs form (the latter circumstance will be of 
no importance to us). Although ( 10) indicates that the sys- 
tem under study does not interact with the heat bath and, 
consequently, evolves without dissipation, the approxima- 
tion (10) can be used at some stages of computations per- 
formed with the object of taking account of the dissipation 
(see Ref. 5)  ." We shall not discuss the question of the phys- 
ical meaning and region of applicability of approximations 
of the type ( lo) ,  which are used explicitly or implicitly in the 
derivation of the approximate dissipative equations of the 
type of the Boltzmann equation or the Bloch equations ( 1 ) 
from the exact equations. To us the important thing is that 
the approximation ( 10) has been essentially used in the deri- 
vation of ( 1 ). Since there is necessarily a region of applica- 
bility for ( I ) ,  and we limited our analysis from the very 
begining to only this region, we can use ( 10) in our computa- 
tions, since we then do not go beyond the scope of those 
approximations which are always made as soon as we turn to 
Eq. ( 1 ) . We have the exact equality 

where SaB is the Kronecker symbol. Let us introduce the Hence 
notation 

pl(tmn) =U(tot, manno) U(tto, moona)oi (tonoomno). 

Using (10) and the last expression for p,(tmn), we obtain 

where &is the total Hamiltonian of the closed system. 
According to the first principles of quantum theory, the 

correlator for two quantities A and B is given ky the formula 
(3),  where the Heisenberg operaFrs A, and B, are formed 
with the aid of the Hamiltonian R. If the quantities A and B 
pertain only to the system under study, then (3) can, with- 
out loss of generality, be rewritten in the form (9)  with the 
double-time matrix 

p2(tzrnznz)tjrn~n~) = i l z p l ( t o m o ~ )  [U(tzto, nopn,y) 
XU(tot2, m2yl~)U(t,to, len,o)U(tnti, mlomoa)+U(tlto, nopn1cs) 

XU(tntl, miole) U(t2to, len2y) 17(t,tz, mzymoa) 1. 

Using relations of the type 

we obtain by means of identity transformations the relation 

the formula (4),  with 

Taking account of ( 10) and ( 1 1 ) , we finally find 

Expressing@, (t ,)  in terms of @, (t,), and using (9), we can 
write the correlator in the form 

Ir'[A(tz)H(ll) I -'l,As(nzmz)Bs(nlml)pl (ton0mn) 
X[ W(tzm,n,Itlqnl) W(t lm,q~tnmon~) 
+W(tzmzn, Itlmlq) W(tlqnl (tomono) I .  (12) 

If the system under study does not interact at all with the 
heat bathPAi.e., if there is no dissipation, then the evolution 
operator W can be expressed in terms of the Hamiltonian H 
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of the system in question. In this case the expression ( 12) 
can be rewritten in several equivalent forms, and the relation 
connecting the times t,, t,, and to can be arbitrary. In the 
presence of dissipation Eq. ( 1 ) does not possess time-rever- 
sal symmetry. The evolution operator W(tmn 1 tomono) de- 
scribes the actual evolution of the physical system in time 
only when t>to. But if we consider the region t < to to be 
admissible, then we can obtain clearly incorrect results, e.g., 
the result that the occupancy of some level will turn out to be 
greater than unity (see the formula ( 16), in which the occu- 
pancy p(t, 1 1 t, ) > 1 if t, < t, ). Therefore, if, in making 
allowance for the dissipation, we write the expression for the 
correlator in the form (12), then we should assume that 
t,>t,>t,. On the other hand, if, in formulating the p rob l e~ ,  
we assume that t,>t,>t,, and require that the operators W 
describe the evolution from the smaller to the greater t, then 
we obtain precisely the expression ( 12) within the frame- 
work of the conclusion drawn above. We assume that the 
formula (12) solves the problem of the computation of a 
correlator of the type ( 7 )  for a quantum system that inter- 
acts with the surrounding medium, and is described by Eq. 
(1).  

It is important that, in deriving (12), we used only the 
approximation ( lo),  which has already been used by Blum5 
to derive ( 1 ), and does not infringe upon the first principles 
of quantum theory. Therefore, it should be assumed that the 
formula ( 12) is in accord with these principles, and that its 
region of applicability coincides with that of Eq. ( 1 ) . Any 
derivation of the equations taking account of the dissipation 
from the exact equations, which are invariant under time 
reversal, contains assumptions, the meaning and region of 
applicability of which are not quite clear. Consequently, all 
the equations that take account of the dissipation, in particu- 
lar, Eqs. ( 1 ) and ( 12), should, strictly speaking, be regarded 
as a hypothesis, the validity of which can, in the final analy- 
sis, be verified only through comparison with experiment. 
Below, in Sec. 4, we indicate the observable consequences of 
(12). 

The procedure proposed by us here for the computation 
of the correlatorscan also be used in the case when the opera- 
tors H and (or) Z in Eq. ( 1 ) are time dependent. In this case 
only certain formulas, e.g., (2)  and (3) ,  which,for simpli- 
city, are given here for the case when Z = 0 and H does not 
depend on the time, change. 

3. HEAT-INDUCED FLUCTUATIONS 

Let us introduce the operator describing the heating of 
the medium. For this purpose let us compute the time deriv- 
ative of the energy E of the system. We have 

where the operator ?s = ( l/ifi) [& ,H,, 1 describes the 
variation of the energy of the system under the action of the 
external field, and the operator 

describes the variation of the energy of the system under the 
action of the medium. We assume that the energy lost by the 
system as a result of the interaction with the medium is ac- 
quired by the medium. Since the energy lost per unit time is 

equal to Q(t)  = Sp(b, ( t ) ~ ~  ), the Schriidinger operator Q~ 
should be called the medium-heating operator. 

Below in specific computations we shall consider a_two- 
level system that is excited by a periodic electric field g .  In 
this ease in the matrix representation in the basis of station- 
ary states 

where Eo and El are the energies of the ground and excited 
states, respectively, and do, = (1 ld10) is the dipole moment 
of the transition between these states. Let us assume that 
z(oo11) = - z(1111) = 1/7, z(0101) = z(1010) = - 1/ 
T, and that the remaining components of i a r e  equal to zero. 
It is easy to see that 7 is the system's energy dissipation time 
and T is the phase relaxation time. In this case, for a two- 
level system, the heating operator has the form 

i o  0 1 

Let the electric field be linearly polarized, i.e., let g ( t )  
= e l  gl (t)coswlt, with Jw, - w e  / 4we,  where 

we = (El - E,)/fi is the eigenfrequency of the system, el is 
the polarization vector, and the amplitude iY, ( t )  is, general- 
ly speaking, time dependent. Let the phase relaxation occur 
so rapidly that Tt?ldol/fig 1. Then, as is well known, the 
excitation of the system occurs in an incoherent manner, and 
Eq. ( 1 ) reduces to the form 

(14) 

We have introduced the notation Y - 7 - I  for the rate of dissi- 
pation andp-p,, for the occupancy of the top level; the rate 
w of excitation is equal to w = Fo, where 

can be interpreted as the cross section for photon absorption 
and F =  ciY:/(8n%ol) as the photon flux. Notice that 
w a g:(t) ; in a field with a variable amplitude gl  ( t )  the 
excitation rate w ( t )  is time dependent. 

Let p ( t  It$,) be the occupancy of the top level at the 
moment t under the condition that this occupancy was equal 
top, at the moment to. If the rate excitation is time indepen- 
dent, then from ( 14) we immediately obtain ( t  > to) 

When the difference t - to is much greater than the charac- 
teristic transient period (2w + Y) -', the occupancy p does 
not depend on the initial valuep,, and is equal to the steady- 
state value p, = w/(2w + Y). The corresponding steady- 
state value Q, of the heating rate is equal to 

Let us find the evolution operator from the Eq. (14) 
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and the initial condition (5).  Then let us find the heating 
correlator from the formula ( 12). Let the time to-+ - a,. 
Then the correlator does not depend on the initial value 

(to) of the density matrix, and it equal to 

wherep, ( t , )  = w(tl)/(2w(tl) + Y )  is the steady-state oc- 
cupancy of the top level at the moment t, and w(t,) is the 
rate of excitation at the moment t,. 

Let the medium be irradiated by incident light pulses of 
duration t, (in Ref. 1 t, = 2X lop8 sec). We shall assume 
that the characteristic variation time for w ( t )  is also of the 
order oft, ; this time is much longer than the characteristic 
transient period (2w + Y)-I. In this case we can, with an 
accuracy sufficient for our purposes, replace ( 16) by 

~ [ t . t % ] =  (%)'{ w ( t 2 )  w ( t d  
7 ( 2 w  ( tz)  +v)  ( 2 w  ( t l )  +v)  

+ w ( t )  
2 w ( t )  +v (1 - 2w;;f)+v) exp[ - ( 2 w  ( t )  +v) (fz-ti) I}, 

(17) 
where t is some time close to t, and t,. The exact definition of 
t is not necessary, since, as the difference t, - t, increases, 
the term containing the exponential function in (17) de- 
creases rapidly. 

Let us discuss the result obtained, assuming, for simpli- 
city, that w does not depend on the time. In this case 
K[t2tl] = K[t,,], where t,, = t, - t,. When t,, = 0, we 
have K [0] = sp(,3,gf), as it should be. Notice that 
K [0] = Qa/p,. For t,,+ CO, we have K[cc ]  = Q:, as it 
should be. Thus, K[ cc ] = K[O]p,. For low incident-light 
intensities, when the excitation rate w is much lower than the 
dissipation rate Y, the steady-state occupancy of the top level 
p, g 1. In this case K [  oo ] gK[O], which indicates strong 
fluctuations in the heating rate Q(t).  The realization plot for 
the stochastic process Q(t)  consists of peaks of temporal 
width of the order or r ,  which are randomly disposed along 
the time axis, with temporal separations of the order of w- '. 
The maximum value of Q(t)  in a peak is, in order of magni- 
tude, equal to 50, /r; between the peaks the quantity Q(t)  is 
negligibly small. Each peak can be interpreted as the result 
of the absorption of one photon and the subsequent dissipa- 
tion of its energy. But such an interpretation is not quite 
correct, since in our model the electric field of the incident 
light was described classically. The strong heating fluctu- 
ations in the case of low incident-light intensity are a conse- 
quence of the quantum nature of the two-level system, which 
has an essentially discrete energy spectrum and for which a 
classical description is, in principle, impossible. 

At high incident-light intensities we have W & Y  and 
p, = 4. In this case K[ cc ] = iK[O]. From this it follows that 
the heating fluctuations are moderate. The plot of Q(t) is 
modulated to a depth of the order of the mean value of Q(t).  
But the characteristic modulation time 
(2w + Y )  z (2w) -' is much shorter than the characteris- 
tic temporal width r of the peaks that make up the plot of 
Q(t) in the opposite limiting case. Thus, as the incident-light 
intensity increases, the fluctuations in the heating of the me- 
dium by the two-level impurity particle become less deep, 
but more rapid. 

In conclusion of this section, let us note that, according 

to the present investigation, at low intensities, when W < Y  

and the occupancy of the upper level is low, the heating fluc- 
tuations occur as described in Ref. 2. 

4. INTENSITY AND FREQUENCY SPECTRUM OF THE NTlS 

Let us compute the total intensity of the nonlinear ther- 
mal-impurity scattering ,(NTIS) observed by Belyaev et al.' 
let us also compute this intensity's frequency distribution, 
which will be fixed by the photographic plate or the photon 
counter after the passage of the incident light pulse. The 
starting point is the Maxwell equation 

&o a2Zi + -- c z A 8 ,  = - 
dZ&, ( t r )  gl 

dtZ 8 t2 
I 

+ 
where &', and fZ, are the electric field intensities of the inci- 
dent and scattered light and E, and E, (zr) are respectively 
the constant and fluctuating p2rts of the permittivity. Equa- 
tion (18) is linear in E, and g,. Let us, assuming that the 
fluctuations occur at constant pressure p of the medium, 
write E, = (d~/dT) ,  T, (tr), where the fluctuating part 
T, (tr) of the temperature is equal to 

t 

1 
T, ( t r )  = --5 #ri J dtlGT(r-rl ,  t - t l )  

ncp 0 

Here n is the concentration of the particles ofthe medium, c, 
is the dimensionless constant-pressure specific heat per par- 
ticle, Q(Ti ( t ) )  is the energy transferred in unit time to the 
medium from the point particle located at the point ri ( t )  
(for convenience of notation, we measure the temperature in 
energy units, and for the present use the classical theory), 

is the Green function for the thermal-conductivity equation, 
andx  is the coefficient of thermal conductivity of the medi- 
um. The illumination of the impurity-containing medium 
began at the moment t = 0, and ended at the moment t,; for 
each particle i the heating rate Q ( r i  ( t )  ) is nonzero only in 
this time interval. 

Next, we shall solve the standard problem of light scat- 
tering by the permittivity fluctu+ations. According to (18), 
the soyrce of the scattered field $7, is the field of the incident 
light $7, and the fluctuating part E, of the permittivity on the 
right-hand side of (18). Using (18) and (19), we find 
through standard computations carried out in the spirit of 
the Hamiltonian method6 the field g , (t,r ) , which can be 
linearly expressed in terms of the right-hand side of ( 18). 
The intensity I of the scattered light is proportional to 69:. 
From this it is clear that the expression for I contains the 
sum 

t k 

which splits up into two sums of the type (7)  and (8).  We 
can, by carrying out all the computations, verify that the 
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term containing the sum of the type (8)  vanishes if the posi- 
tions of the impurity particles in space are not correlated. 
The remaining term gives the expression 

Here dE = I(o,n,u)dwd 'n is the scattered-light energy that 
was emitted over the entire pulse duration t, into the solid 
angle d 'n in the frequency range d o  in the form of electro- 
magnetic waves with polarization vector e,,, where u = 1, 
2; k is the wave vector of the scattered light; n = k/k is the 
unit vector in the scattering direction; N is the number of 
impurity particles in the illuminated volume; 

XG, (x, ti-&) G, (y, tz-t,) cos [ x .  (tz-t,) -q(x-y) IK,[td,I, 

(21 
with x = w - w, and q = k - k,; let us recall that w, and k, 
are respectively the frequency and wave vector of the inci- 
dent light. The symmetrized heating correlator is equal to 

where 6( t)  is the Heavyside step function and K[t4t3] is 
defined according to (7).  The quantum nature of the motion 
involving the internal degrees of freedom of the impurity 
particle does not change anything in the formulas (20)- 
(22), but as the heating correlator in (22) we should, within 
the framework of our model, substitute the expression ( 17). 

The expressions (17) and (20)-(22) completely deter- 
mine the intensity I(w,n,v) of the NTIS. The facor J con- 
tains the dependence of I(w,n,u) on all the important pa- 
rameters of the problem, except the polarization [see (20) 
and (21)J .  

Let us consider the NTIS in the case when the scattering 
angle 6 between the vectors k and k, is so small that we can 
set q = k - k, =;O in (21), and immediately carry out the 
d 3~ and d 3y integrations, using the equality 
Jd 3 ~ G ,  (x,t) = 1. Under the conditions of the experement 
reported in Ref. 1, this requires that 6 < 20 or 25". Concern- 
ing the scattering at large angles, we only note that the NTIS 
intensity should decrease with increasing t9 because of the 
presence of a rapidly oscillating factor in (21 ). 

For the small-angle scattering the subsequent computa- 
tions are carried out with the aid of standard mathematical 
methods. We shall give only the results here. We shall find 
the dependence of the NTIS intensity on the characteristic 
incident-light intensity I, and pulse duration t, by carrying 
out in (21) integration over all the frequency detunings x .  
The factor J(x,8) does not depend on the scattering angle B 
if this angle is small. Let us introduce the notation 
Q = JdltJ(x). Usually, the dissipation rate v=: 10" sec-', 
which is much greater than t, -' = 5 X lo7 sec-'; therefore, 
the expression (21 ) should be analyzed in the three limiting 
cases for the dependence on the characteristic value of the 
excitation rate iir: if 

Wgt, g v  (weak excitation), then Q a I,'t12, 

tl - ' < W g v  (moderate excitation), then a I,3t,3, (23) 
I, - ' < v g  W (strong excitation), then Qa I,tI3. 

Belyaev et al.' observed the dependence Q a I, 3, which cor- 
responds to the case of moderate excitation. 

Let us find the frequency spectrum of the NTIS, i.e., the 
dependence of J ( x )  on the frequency detuning x .  We shall, 
depending on the magnitude of the detuning, call the sec- 
tions of the NTIS spectral line as follows: Ix I 5 t, - ' the line 
center, t, -' ( 1x1 5 2G + Y the line slope, and 2 6  + v 5 1x1 
the line wings. 

Let us perform the dt, and dt, integrations in (2 1 ) by 
parts, and then make the substitutions t, --+ t - z/2 and 
t, + t + z/2. We obtain 

where the prime denotes differentiation with respect to the 
argument. The frequency spectrum of the NTIS at the line 
center varies slowly because of the absence of large analytic 
parameters in (21 ) and (24). On the slope and at the wings 
of the line, i.e., in the region where Ix ItI $1, the frequency 
spectrum of the NTIS is determined by the distant Fourier 
components of the expression in the curly brackets in (24). 
The correlator K, [ t  + z/2,t - 2/21 and, along with it, the 
first term in the curly brackets as functions of z, have first- 
derivative discontinuities at the pointz = 0. The other terms 
are smoother functions ofz, and they can be discarded in the 
evaluation of the dz integral. Next, let us use (22) and ( 17), 
with account taken in ( 17) of only the term containing the 
exponential function and furnishing the first-derivative dis- 
continuity. Setting gl ( t  + z/2) 23, ( t  - z/2) =:@:(t), and 
extending the limits of the dz integration to infinity, we ob- 
tain 

j dtB12(t) 
w ( t )  ( w ( t )  + v )  

( 2 w  ( t )  S v )  [ ( 2 w  ( t )  + V ) ~ + X ~ ]  
. (25) 

0 

According to (25 ), on the line slope we have, depending on 
the magnitude of the excitation, the following estimates for 
J: In the case of weak and moderate excitations 

while in the case of strong excitation 

At the wings of the line we have for any excitation 
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Notice that the dependence of J o n  t, and I, on the slope and 
at the wings of the line differs from the corresponding depen- 
dence for the total line intensity. 

As can be seen from the foregoing, there exists the criti- 
cal value x ,  = 2 6  + Y,  where ii, is the characteristic value of 
the excitation rate. When the frequency detuning x passes 
through this value, the dependence J ( x )  changes (see (26) 
and (27) 1. Since xc ccIl, the NTIS spectral line width in- 
creases linearly with the incident-light intensity I,. 

The assertions (23),  (26a), (26b), and (27) are entire- 
ly accessible to experimental verification. 

5. CONCLUSION 

In one article it is impossible not alone to investigate, 
but even to indicate, all the relations between the above- 
developed theory of temporal fluctuations in dissipative 
quantum systems and the related areas of physics. We only 
note that the various aspects of the theory of fluctuations 
have been investigated in a large number of papers (see, for 
example, Refs. 7-14), but not one of these papers considers 
in its explicit form the problem of interest to us, which is 
formulated and solved in Secs. 1 and 2 of the present paper. 

We have considered the physical situation in which the 
heating of the transparent medium by the radiation proceeds 
via microscopic impurity particles (atoms or molecules), 
which play the role of intermediaries between the radiation 
and the medium. The heating fluctuations are not connected 
with the quantum nature of the radiation, but are due to the 
discreteness of the energy spectrum of the impurity parti- 
cles. If we model the impurity particle by a linear oscillator, 
and assume that the radiation excites the oscillator to high 
levels, where the discreteness is unimportant, then the heat- 
ing fluctuations vanish1'. 

In the other physical situation in which the heating pro- 
ceeds via impurity grains or other absorbing macroscopic- 
type centers, temporal heating fluctuations can also occur, 
but they occur for other reasons (see, for example, Ref. 16 
and the literature indicated therein). 
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ally computed. 
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