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The contribution of the purely phase intramolecular relaxation to the broadening of the spectra of 
the transitions between the highly excited vibrational states of polyatomic molecules in the 
vibrational-mode mixing region is investigated. A comparison with the contribution to the 
broadening due to the redistribution of the energy among the modes is carried out. New 
possibilities for extracting information about the intramolecular dynamics from spectroscopic 
data on the highly excited vibrational states are discussed. 

1. INTRODUCTION 

The spectroscopy of the highly excited vibrational 
states of polyatomic molecules is directly connected with the 
problems of intramolecular dynamics. Both aspects-spec- 
troscopic and dynamical-are being intensively investigated 
at present both theoretically and experimentally. The ex- 
periments (see, for example, Ref. 1 and the papers cited 
therein) indicate the existence in the molecules of an energy 
limit above which the eigenstates of the vibrational Hamilto- 
nian correspond to a statistically equilibrium distribution of 
the energy over the vibrational modes. This observation is in 
accord with the well-known theoretical predictions (see, for 
example, Refs. 2-6) that stochasticity (mode mixing) 
should develop as a result of the overlap of the intermode 
resonances in nonlinear systems of coupled oscillators as the 
energy (and, consequently, the nonlinearity) increases. 

The vibrational-mode mixing region in molecules, 
which is also called the vibrational quasicontinuum, is an 
interesting object for spectroscopy. The vibrational-transi- 
tion spectra in this region of energies should be "homogen- 
eously broadened" as a result of the fact that there can occur 
from each quantum state transitions into a band consisting 
of a set of very closely disposed discrete  level^.^-'^ Such broa- 
dening~ have been observed experimentally in measure- 
ments under normal conditions of the shape of the funda- 
mental high-frequency bands of large  molecule^".'^ and that 
of the ~vertones,"-'~ as well as in measurements of the ab- 
sorption bands of molecules specially prepared in the highly 
excited vibrational states. 17-20 

Theoretically, the shape of the bands in the vibrational 
quasicontinuum has been investigated in a number of pa- 
pers. The essential purpose of these investigations was to 
understand how the experimentally observed spectral 
widths relate to the intramolecular relaxation times, how to 
express the intramolecular relaxation times in terms of the 
microscopic characteristics of the molecules, and which in- 
formation can be obtained from the spectral shape. The gen- 
eral formulation of the problem consists in the follow- 
ing.9.'0s21 The vibrational mode whose spectrum is being 
investigated is set apart, and the remaining modes play the 
role of a reservoir. The simplest analytic result is the Lorentz 
spectral shape obtainable from the well-known solution to 
the quantum problem of a harmonic oscillator that relaxes in 
a one-quantum fashion into a heat bath with an infinite num- 

ber of degrees of freedom.22 In this case the rate of energy 
exchange between the selected oscillator and the reservoir is 
connected by a simple relation with the spectral width, and 
its dependence on the total vibrational energy of the mole- 
cule can be expressed in terms of the densities of the inter- 
mode resonances of different orders and the anharmonic in- 
teraction constants corresponding to these resonances. 

Taking the indicated result as the starting point, let us 
briefly discuss the approximations underlying it. 

1. The possibility of reducing the interaction of the sep- 
arated mode with the reservoir to simple relaxation terms in 
the equations for the oscillator density matrix (the Markov 
approximation for the collision integral) is the most difficult 
aspect of the analysis. Physically, this approximation corre- 
sponds to a fairly strong overlap of the intermode resonances 
in the molecule. The formal conditions for its applicability 
are traced in Ref. 10. 

2. The finiteness of the number of degrees of freedom of 
the reservoir, as well as the possible contribution of the pro- 
cesses of two-quantum decay of the oscillator excitation into 
the reservoir, should, apparently, not lead to important 
changes in the spectral shape, an assertion which is con- 
firmed by the results of numerical computations (see, for 
example, Ref. 18 ) . 

3. As the analytic solution obtained in Ref. 23 (see also 
the Appendix) shows, the anharmonicity of the relaxing os- 
cillator generally leads to the distortion of the spectral shape 
and the complication of the procedure for finding the relaxa- 
tion time from the observed width, which is determined not 
only by therelaxation, but also by theintramode anharmoni- 
city constant. 

4. Finally, the analysis of the nonresonance terms of the 
intermode anharmonicity (which are responsible in the ab- 
sence of mode mixing for the normal anharmonic shifts of 
the hot bands) leads in the absence of mixing to the purely 
phase relaxation effect. The present paper is devoted to the 
investigation of this effect in molecules (only the limiting 
cases are described in other published  investigation^^^-'^). 

Allowance for the purely phase relaxation can be of vi- 
tal importance both for the interpretation of the observed 
broadenings of the vibrational spectra of the molecules and 
for an adequate assessment of the possibilities of selective 
laser excitation of the individual molecular bonds. We can, 
in principle, have the situation in which the mode in question 
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is relatively weakly coupled to the remaining modes owing, 
in particular, to the absence of sufficiently close intermode 
resonances of the third order. (If the mode is a high-frequen- 
cy one, e.g., of the type of the bonds C-H, 0-H, etc., then 
such a situation is the rule.) Then it is quite natural that the 
spectral width will be largely due to the purely phase relaxa- 
tion, and not to the process of mode-energy relaxation. 

2. CAUSE OF THE PURELY PHASE INTRAMOLECULAR 
RELAXATION 

Let us write the vibrational Hamiltonian of the mole- 
cule in the form of a sum of harmonic and anharmonic parts: 

It is convenient to represent the second term in the form of a 
power series expansion in the normal coordinates q, . 
h 1 1 
~ a n h = - z @ ~ , k ~ i ~ j q k + ~ z @ i f i l q i ~ i q k ~ i + . . . .  3! ijk ijkl  (1)  

We shall be interested in the vibrational-transition spectrum 
in the vicinity of the frequency vo of some IR-active molecu- 
lar mode from the group of states with energy E (the vibra- 
tional-level density is assumed to be so high that only the 
spectra averaged over the large number of initial states can 
be of interest). The anharmonic terms in ( 1 ) can be split up 
into terms pertaining only to the vo mode, when all the sub- 
scripts assume the value zero, terms pertaining only to the 
reservoir made up of the remaining modes, when none of the 
subscripts i, j, . . . is equal to zero, and mixed terms describ- 
ing the interaction o[ the vo mode with the reservoir (let us 
denote their sum by V ) .  For = 0 the wave functions of the 
molecular states with energy E can be represented in the 
form 

where no is the occupation number for the vo mode and Eo is 
the energy of the (no) state and differs from novo by a small 
quantity stemming from the intramode anharmonicity. For 
V = 0 only two transitions from the state (2)  are allowed in 
the vicinity of yo, namely, the transitions into the states ly- 
ing, in energy terms, immediately above and below this state, 
and respectively described by the wave functions $,, + , 
XPE-Eo ( qifo ), where p is the same quantity entering into 
(2) .  We shall distinguish between two cases: a )  when the 
intermode anharmonic interaction in the reservoir amounts 
to a weak perturbation; b) when this interaction leads to 

mixing of the harmonic states of the reservoir. The 
wave functions p in these two cases have qualitatively differ- 
ent structures. In the case (a)  they are products of the har- 
monic wave functions of the modes (with small anharmonic 
corrections); in the case (b) ,  superpositions of large 
numbers of such products corresponding to cloze total har- 
monic energies. Next, let us take the interaction Vinto consi- 
deration. In the case (a)  each of the states (2)  is coupled by 
an off-diagonal matrix element of each term of the expansion 
( 1 ) to only a few states; in the case (b),  to a large number of 
states. In the case (b)  the exchange of energy between vo and 
the reservoir is realized precisely through the closest and 
(or) strongest-in terms of the anharmonicity constant- 
intermode resonances in which vo  participate^.^.'^ 

But here we shall be interested in another effect, and, in 

order to separate it out in its pure form, we shall assume that 
there is no resonance interaction between vo and the reser- 
voir. Let us turn our attention to the terms q i  q:. In the 
absence of mixing in the reservoir, they lead, in first-order 
perturbation theory, to level shifts that are linear in the vi- 
brational quantum numbers no and ni , and the effect of the 
off-diagonal matrix elements for these terms in the case 
when the frequencies vo and vi differ sufficiently strongly 
from each other can be ignored. Another picture obtains 
when there is mixing in the reservoir: in the basis of the states 
(2)  the off-diagonal part of the interaction with the closely 
spaced levels is important. To show this, let us represent the 
wave functions in the form of an expansion in terms of the 
harmonic wave functions of the reservoir: 

h 

Let us introduce the notation W = 2, pi qi q: (where 
pi = iQooii ) for that part of the interaction which is being 
investigated by us, and leius first find the diagonal matrix 
elements of the operator W (we shall, for brevity, drop the 
subscript no) : 

where n(" is the occupation number for the ith mode in the 
rth harmonic state, and we have used the well-known expres- 
sion for the matrix element of the square of the coordinate of 
the harmonic oscillator. Making the natural 
that there are no correlations between the expansion coeffi- 
cients c, and the vibrational quantum numbers n(" under 
conditions of global mixing of the vibrational modes, and 
averaging over s, we have 

where the bar indicates averaging over the reservoir states 
with energy close to E - Eo in an arbitrary basis. 

Next, let us find th%sum of the squares of the matrix 
elements of the operator W that connect the state Is) with all 
the other nearby states, including the state Is) itself: 

no+'/, =(T) 'E p i p j  

(n:') +'/') (njr'+l/,) 

vivj Icr.1" (6 )  i j r  

where we have used the orthogonality property of the wave 
functions p, , ( 3  1. Averaging in (6)  over s under the same 
assumptions that were used in going from (4) to (5),  we 
obtain 

Squaring the expression (5 ) and subtracting it from (7), we 
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arrive at the result that, in th%presence of mixing in the 
reservoir, the off-diagonal part Wof the interaction is deter- 
mined by the dispersion of the quantity 

b (n;Tild (8  

for the given vibrational energy E - Eo of t)he reservoir. 
The presence of an off-diagonal part W of the interac- 

tion implies that the interaction mixes the states ( 2 )  that are 
energetically close. When allowance is made for W, the cor- 
rect reservoir states are different for different vibrational 
quantum numbers no, since no explicitly enters into (5 )  and 
(7) .  On the basis of this f ~ t  we arrive at the conclusion that, 
becase of the interaction W, from each true state with vibra- 
tional quantum number no there are allowed a great number 
of closely spaced IR transitions into the states with quantum 
numbers no & 1. In this case there is no energy exchange 
between vo and the reservoir (it can occur only in the higher 
orders of perturbation theory ); consequently, we are dealing 
with an effect that we can (conditionally, for the present) 
call a purely phase intramolecular relaxation. 

Above we took account of the terms of the form q; q3 in 
the first order perturbation theory. The terms of the form 
q; qi and go q, q, give rise to a similar effect, but in second 
order perturbation theory. The total effect of the cubic and 
quadratic anharmonic terms is to prescribe the spectroscop- 
ic anharmonic constants xoi , which we shall use below. 

It is, in principle, not difficult to take into account the 
higher order anharmonic terms, e.g., of the type q; qi q, q,, 
etc. (see, for example, Ref. 25 ) . It makes sense to do this in 
the case of the intermode exchange, since it is a priori not 
clear which of the two factors-the decrease of the anhar- 
monicity constant or the increase of the resonance density- 
prevails at higher orders of the interaction. But this hardly 
makes sense in the case of the purely phase relaxation, since 
the terms written out above were explicitly set apart precise- 
ly on the basis of their resonance character: they are diagonal 
in the harmonic basis, and it is precisely because of this that 
they mix the energetically close states ( 3  ) . 

We considered above the IR transitions in the vicinity 
of the fundamental mode frequency v,, but all the foregoing 
applies equally to the overtones and the Raman scattering 
(RS) spectra. 

3. SIMPLE MODEL FOR THE PURELY PHASE RELAXATION 
CONNECTION WITH ONE RELAXING MODE 

h 

Let us consider the simplest form of the interaction W, 
when only one term in the sum, namely, the q; q: term, is 
nonzero. We can also take into account the q; qi- and 
go q: -type terms, assuming that the differences 2v0 - v, and 
vo - 2v1 are relatively large compared to the corresponding 
off-diagonal interaction matrix elements. We shall seek the 
spectrum of the transitions from the statistical ensemble of 
states with the vibrational quantum number no of the vo 
mode and energy E - Eo in the remaining molecular modes 
into the states with the vibrational quantum number n; of 
the vo mode and energy ( E  - E,)' in the remaining modes, 
the latter energy differing little from the former (see Fig. 1 ). 
In the case when n, is a good quantum number, we have a 
series of lines with frequencies 

FIG. 1. Energy-level diagram illustrating the purely phase relaxation 
model. State%with fixed n, (lower sublevels) and n; (upper sublevels) are 
shown. For W = 0 the dependences of the wave functions on the normal 
coordinates of the remaining molecular modes, except the v, mode, for 
each pair of states coupled by a dipole transition moment (thin straight 
arrows) are identical. The relaxation (wavy arrows) couples states with 
close total energies and different v,-mode occupation numbers n, .  In the 
figure the quantity A, which stems from the intermode anharmonic con- 
stant x,,, is negative, which is more often the case for molecules. The 
double arrow indicates the external monochromatic perturbation fre- 
quency R at which the susceptibility of the multilevel system shown is 
sought. 

where x,, is the spectroscopic anharmonicity constant stem- 
ming from the level shifts that occur as a result of the consi- 
deration of the cubic and quadratic anharmonic terms in the 
second- and first-order perturbation theories, respectively. 
The intensities of these lines are described by the distribution 
function f,, over the vibrational quantum number n, for the 
microcanonical distribution in the reservoir at energy 
E - Eo, or, in other words, by the densities of reservoir states 
with different n,. But we are interested in another case, 
namely, the case when the intermode resonances, including 
v,, guarantee the exchange of energy between v, and the 
remaining molecular modes. We assume (see the Introduc- 
tion) that this exchange for v, is a one-quantum exchange, 
and that it can be described in terms of relaxation rates. Let 
us introduce the rates r,,,,, - , of quantum loss by the states 
with vibrational quantum number n,. The rate for the in- 
verse process is, in accordance with the principle of detailed 
balance, given by 

rnr-1, n,=(fn,lfn,-I) rn,, ni-1. 

The no+ n; transition spectrum of interest to us can be found 
from a linear system of algebraic equations for the elements 
of the density matrixp::?, which is nondiagonal in the index 
no and diagonal in the index n ,. Let us introduce the notation 
pn = ~p::: (n En,, and the indices no and n; have, for the 
sake of brevity, been dropped). Let us settle the choice of the 
constant C: We shall normalize the spectrum to the quantity 
Id l 2  (whered is the dipole moment of the transition n o - +  n; ) 

if we are interested in the IR-transition spectrum, or the 
Raman polarizability of the no + n; transition if we are inter- 
ested in the RS spectrum. Then the system of equations giv- 
ing the spectrum assumes the form 

where S = 0 - w,;,, (0 is the frequency at which the re- 

sponse of the system is being sought) and A = (n; - no)xo, 
[see (9)  1. In order to find the IR spectrum from ( lo), we 
must determine the imaginary part of the susceptibility 

11 SOV. Phys. JETP 66 (I), July 1987 A. A. Makarov and V. V. Tyakht 1 1  



( ) clusion] . The above-formulated approximation is physically 
justified (see the Introduction), since for n 5 5 the correc- 

The absorption spectrum is determined by the difference be- 
tween the values of Im ~ ( 6 )  for the upward (no-+ n; ) and 
downward (no+ n: ) transitions, where nl; = 2n0 - n; . The 
RS spectra are also described by the quantity Imx(6 ) :  
Stokes RS if n; > no and anti-Stokes RS if n; <no. To deter- 
mine the CARS spectrum, we must find Ix(S) 12.  

We omitted above the derivation of the system of equa- 
tions (10). It is effected by a standard procedure, in which 
we write down the equations for the density matrix with an 
external monochromatic perturbation, and find the quasi- 
stationary approximation to the transition rates in second- 
order temporal perturbation theory. In the case of the two- 
level system this derivation can be found in textbooks, and 
the difference lies in the fact that the equations ( 10) contain 
off-diagonal density matrix element arrival terms-an im- 
portant characteristic of the description of all quantum sys- 
tems with close f req~encies .~~ .~ '  

The following approximation to the system of equations 
(10) allows us to obtain an analytic solution. This approxi- 
mation embraces three assumptions: a )  the system ( 10) is 
infinite; b) the density of states f, decreases in geometrical 
progression: fn = (1 - { ) p  ; and c) the rates T,, , - , are 
described by the oscillator-type dependence r,, , - , = nr. 
All these assumptions correspond to the case when the num- 
ber of degrees of freedom of the reservoir is infinite. Then the 
distribution f. corresponds to the Boltzmann distribution at 
some temperature T, i.e., 6 = exp( - v,/T) (naturally, the 
reservoir energy E - Eo is formally infinite), and the 
changes that occur, when n is changed, in the mean vibra- 
tional quantum numbers of the remaining modes (except the 
Y, mode) contained in the expression for the relaxation rates 
T,, . - , (see Ref. 10) can be neglected [concerning the de- 
pendence I? (TI, see Ref. 10 and the discussion in the Con- 

tions to f, and T,, . - , are small, and the terms with large n 
in the sum ( 11 ), for which these corrections are important, 
make a negligibly small contribution to the sum. 

Thus, we arrive at the system of equations 

-i(6-nA)p,--nrp,--g (n+l)  l'p,,f (n+l )  Fpn+i 
+tnrp,-,=-iJdlZ(l-E)'l,"/n. (12) 

Similar equations are analyzed in Ref. 24, where the purely 
phase relaxation of molecules on a surface is considered, and 
approximations in the limiting cases are found. Here we 
shall find the exact solution to the system (12). For this 
purpose, let us introduce the arbitrary function 

m 

For it we have the equation 

Let us seek that solution to Eq. (13) which vanishes at 
d = 0. From this solution, which we shall not write out, we 
can find all the p,. But we are interested only in the sum 
( 1 l ) ,  which it is convenient to represent in the form 

m 

where 

A A 
" 4 " / . . . . a 
. . b 
. . . . . . . . 
. . . . . . 
. . . . . . . . . . . . . . : . . . . . . . . - .  . . 

FIG. 2. The spectra Imx(S ) ,  (14),  for different pa- 
rameter values: a )  { = 0.5; b)  { = 0.7; and c )  { = 0.9 .  

0 1 Z 3 -1 0 2 Y J/A For the dotted curves in all the figures r = 0.1  A, while 

I I I I 

for the dashed curves r = A. For the dot-dash curves 
A / r <  ( 1  - {I2,  with: a )  r = 5A; b)  r = 10A; and c )  
r = 100A. For the continuous lines A/r< ( 1  - {)', 
with: a)  r = 10A; b) r = 1006;  and c )  r = 1000A. 

Irn X (8) The arrows indicate the values of the mean occupation 
numbers R = {/(  1 - {). The vertical lines under the 
figures depict the spectra in the absence of mixing: 
Imx(6) O L ~  for 6 = nA. 

-2 0 2  Y 6 8 1 0 1 2  
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In spite of the extreme simplicity of the model, the solu- 
tion obtained gives a physically clear picture and correctly 
reflects the most fundamental features. In Fig. 2 we show the 
spectral dependences of the imaginary part x ( S )  for differ- 
ent values of the parameters r and {. In the r ( A  limiting 
case we have a set of slightly broadened lines. Actually, each 
line is described by one term of the sum ( 14), the frequencies 
of these lines differ little from the frequencies (9),  the inte- 
grated intensities decrease in geometrical progression, and 
the widths increase linearly as we move in the direction of 
the wing. As r increases, the lines at the wing first begin to 
overlap. When r- A, the structure in the spectrum is no 
longer visible, but the contour differs greatly from the Lor- 
entz contour. Finally, upon the fulfillment of the condition 

the dominant integrated contribution to ( 14) is made by the 
first term of the sum, and we arrive at a Lorentz contour 
having a half width 

and shifted relative to wnAn,, by the amount 

f i o = ~ g / ( 1 - g ) .  (17) 

which corresponds to the position of the center of gravity of 
the contour for all r. It should, however, be noted that at the 
distant wings the first term in the sum is not the dominant 
term. The interference of all the terms leads in the case when 
8 %  l- to the asymptotic form Imx(S)  cc S-4, which follows 
directly from ( 12). 

Thus, we have considered the no-+ n; transition spec- 
trum. If we are interested in the spectrum for the transitions 
from the ensemble of molecular states with total vibrational 
energy E, then we should sum the spectra for the transitions 
from the states with all the vo-mode occupation numbers in 
accordance with their statistical weights at this energy. 

We defer the discussion of which relations between r 
and A in molecules are real and how they vary with varying 
molecular energy until Sec. 5. Here let us point out only the 
circumstance that increases in r that do not depend on the 
remaining parameters lead, in accordance with ( 16), to the 
narrowing of the spectrum. This effect is similar to the well- 
known Dicke collisional narrowing (see, for example, Refs. 
28 and 29). 

It is also useful to follow the correspondence between 
the result obtained in the present section and the formalism 
of Sec. 2. From the expressions (5) and (7) we have for the 
single-mode coupling approximation under consideration 
by us the relation 

A 

The off-diagonal matrix elements of the interaction W are 
responsible for the dynamics of the 1s) states. Their depen- 

dence on the energy defect is determined by the spectrum of 
the off-diagonal matrix elements of the operator 4: in the 
basis of the states ( 3 ) .  If the halfwidth y of this spectrum is 
large in comparison with the quantity 

and the characteristic distance between neighboring levels is 
smaller than 1 Wss, I, then the dynamics of the 1s) state re- 
duces to the exponential decay of its amplitude with charac- 
teristic decay rate 

a relation which is an equality when the spectrum of the 
operator 6: is L~rentzian.~'  The relaxation of the off-diag- 

onal matrix elementsp2, which determines the broadening 
of the no-& transitions, is governed by the dependence of 
the rate (19) of decay of the Is) state on no. For the 
p2-relaxation rate we can obtain the expression (see, for 
example, Ref. 3 1 ) 

Comparing (16) and (20), we see that, since 
(n; - no)xo, = A, complete correspondence is achieved 
when 3-Fi: =g/ (1 - ( )2  and y =  (1 - 6 ) r .  The first 
of these equalities corresponds exactly to the relation for the 
Boltzmann distribution, while the second relates the half 
width of the spectrum of the operator 4: to the relaxation 
rate for the v, mode in the Markov approximation. 

4. GENERALIZATION TOTHE CASE OF COUPLING TO 
SEVERAL RELAXING MODES 

A 

Let us now consider the situation when W includes an- 
harmonic interactions of the vo mode with several modes, 
the number of which we denote by m. If we assume that each 
mode v, ( j = 1, . . . , m) relaxes independently of the rest of 
the modes, and remain within the framework of the assump- 
tions made in the preceding section, then we have for the 
determination of the transition spectrum the following sys- 
tem of equations, which is similar to ( 12) : 

(. 

where the set of constants A,, 6, , and rj pertains to the jth 
mode. The susceptibility x (S ) ,  analogous to ( 1 1 ), can now 
be found through summation over all the modes, and, as can 
easily be verified by direct substitution, is expressible in the 
form of a multidimensional convolution of the solutions 
xi (a), (14), for the individual modes: 
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Further, since eachxj ( 8 )  is a sum of complex Lorentzians, 
and the convolution of Lorentzians is also a Lorentzian with 
the total shift and width, we find thatx(8) can be represent- 
ed in the form of a sum of complex Lorentzians with all 
possible total shift and halfwidth combinations. The numeri- 
cal computation of the spectral shape [e.g., of Im ~ ( 8 )  1 for 
given values of the parameters offers no difficulty. For small 
values of Tj, when the broadening of the spectrum is due 
largely to the effect of the inhomogeneity of the transition 
frequencies, the characteristic halfwidth of the spectrum is 

For fixed values of Aj and {,, this is the maximum magni- 
tude of the effect. As rj increases, narrowing begins. At 
large values of rj , when the inequality ( 15) is valid for each 
mode, and, furthermore, the condition 

111 

is fulfilled, the transition spectrum degenerates into one Lor- 
entz contour whose half width is equal to the sum of the half 
widths ( 16) of the individual modes: 

The centers of gravity of the contours for the various Tj 
occur at the same place, their position being given by the sum 
of the shifts ( 17) of the individual modes. 

Care should be taken in the interpretation of the results. 
Formally, the conclusion is contradictory, since the modes 
are assumed to relax independently of each other. Actually, 
this assumption implies that the number m of modes effec- 
tively interacting with the vo mode should be much smaller 
than s, the total number of modes in the molecule; in particu- 
lar, it is in accord with the "model10 of the active and passive 
modes." 

But if we are interested only in the estimate for the limit- 
ing case, then the stipulation made above hardly has any 
significant meaning. Again, as at the end of Sec. 3, let us use 
the formalifm of Sec. 2. If we neglect the difference between - 
ninj and Ei (in the case of the Boltzmann distribution we 

have exact equality), then from (5) and (7) we obtain 
,n 

Next, introducing for the estimation the effective half width 
y, of the sp%ctrum of the off-diagonal matrix elements of 
the operator Win the basis of the states (3 ), and reasoning in 
the same way as in the derivation of ( 19) and (20), we find 
for the half width of the transition spectrum the expression 

m 

Comparing (27) and (25), we see that, roughly speaking, 
the results are close, in any case if the values of 

( 1 - Jj ) Tj - y, for the various modes are of the same order 
of magnitude. 

5. CONCLUSION 

The process of energy exchange between the vibrational 
modes of a highly excited molecule in the Markov approxi- 
mation is described by the relaxation ranges T,. Direct ex- 
perimental investigations of this process will, apparently, re- 
quire picosecond, or even subpicosecond, time resolution, 
while the theoretical computations will require knowledge 
of the intermode anharmonic interaction constants of the 
third or higher orders," which are, as a rule, not known. The 
spectra also contain information about the intramolecular 
dynamics. But what indirect conclusions can we draw from 
measurements of vibrational transition spectra, considering, 
by way of illustration, an experimental setup to be perfect 
when the spectrum is formed by a narrow vibrational distri- 
b ~ t i o n " - ~ ~  with the given energy E? 

1. Let us first discuss the case when the spectrum of one 
band v0 has been measured, and it has a nearly Lorentzian 
shape (see, for example, Ref. 20). It is natural to try to relate 
the observed half width a,,, with the rate of energy exchange 
between vo and the remaining modes. The contribution of 
this process to the half width of the spectrum is estimated to 
be oeX,, = ( 1 - lo) r0/2 (see Ref. 22, as well as the Appen- 
dix), where To and go have the same meaning as r, and {, in 
the equations (2 1 ) . Also contributing to the broadening is 
the purely phase relaxation, on which we have focused our 
attention in the present paper. We can propose the following 
recipe for estimating the relative contributions of the two 
processes. From the quantities A, obtained from conven- 
tional spectroscopy we compute the quantity a,,,, (23), 
which gives the upper bound for the contribution of the 
purely phase relaxation. If uob, > a,,, , then we draw the con- 
clusion that, in any case ueXch k uob, - a,,, . If, on the other 
hand, uob, < a,,,, then we draw the conclusion that the con- 
dition ( 15) is fulfilled at least for a significant fraction of the 
modes contributing to the purely phase relaxation of v,, i.e., 
the contribution of the purely phase relaxation should be 
estimated, using Eq. (25). Thus, we have 

m 

and we clearly can draw the important conclusion that the 
mode v, under investigation relaxes more slowly on the aver- 
age than the remaining modes. 

The following are typical experimental data17-20.33: 
15 5 a,,, 5 30 cm-' for vibrational energies ranging from 
2~ lo4 to 3 x lo4 cm-I. Taking for the estimation a pentato- 
mic molecule (m = s - 1 = 81, { = -+ (a  mode frequency of 
1OOOcm-' and a total vibrational energy of 1.8 X lo4 cmp ' ), 
gobs = 15 cm-', we find that, if we ignore the contribution 
from the purely phase relaxation, then we must take 
r, = 100 cm-'. At the same time, for typical values of A,, 
e.g., 2 cm-', the substitution of Tj - 100 cm-' into the sec- 
ond term in (28) yields for it a value - 10 cm-I. Thus, we 
see that the experimental data point to the fact that we can- 
not ignore the contribution of the purely phase relaxation 
(see also Ref. 25 ) . 

2. Let the experiment be much more informative: the 
half widths a:;: of all the fundamental bands of the molecule 
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are known. Then, as a first step, we can propose the follow- 
ing procedure. Let us solve the system of equations 

for the determination of all the T i .  If the solution leads to a 
physically absurd result, then this can imply that the condi- 
tion (15) or (24) is not fulfilled, and we should resort to 
more complicated calculations, using the general formula 
(22). Here we should note that the formula (22) needs to be 
modified when allowance is made for the exchange of energy 
between Y, and the other modes. To determine the spectrum 
within the framework of the model assumptions used in Sec. 
4, we must find the convolution of,y(S), (22), and the sus- 
ceptibility x,(S) of the anharmonic oscillator relaxing into 
the heat bath (see the formulas (A3) and (A4) in the Ap- 
pendix). If the intramode anharmonicity is weak, then, as 
noted in the Appendix, such a modification amounts simply 
to the addition of ( 1 - go) T,/2 to all the half widths in (22). 

3. An appreciable deviation of the band shape from the 
Lorentzian shape can serve as an indication of the fact that 
the condition ( 15) is not fulfilled for a substantial fraction of 
the modes. The spectra presented in Fig. 2 show that, in the 
intermediate region of the relations between the parameters 
T ( l  - g, )' and A,, we cannot do without computations 
with the general formula. 

4. It is of interest to measure the shape of the bands as a 
function of the total vibrational energy of the molecule, since 
the relation between the parameters ( 1 - 6, )' and Aj can 
change. The dependence of Tj on E is determined by the 
order 1 of the intermode resonances, which make the domi- 
nant contribution to the relaxation of the energy of the jth 
mode. In particular, T, a El- ' for sufficiently high ener- 
gies, when E k 1 for the modes resonating with the jth mode. 
On the other hand, 1 - gj a E - -' when E, k 1. Thus, for I = 3 
(i.e., when the dominant contribution to the relaxation is 
made by the third-order intermode resonances), the param- 
eter T j  (1 - {, )' does not depend on the energy, while for 
1 > 3 it increases with increasing energy. Thus, the changes 
that occur in the shape of the spectrum as the vibrational 
energy increases can, in principle, facilitate our grasp of the 
extent to which the intermode resonances are responsible for 
the mixing of the modes in the molecule in question. 

The dependence on E of the width due to the purely 
phase relaxation is also determined by the order I. In particu- 
lar, for I = 3 we have linear growth of a,, ( 2 5 ) ,  while in the 
general case a, a E ' . Let us note that, for I = 3, the quan- 
tity a,,,, , which is equal to ( 1 - 6,) l?,/2, also depends lin- 
early on E at sufficiently high energies, while for 1 > 3 the 
dependence is more rapid: a,,,, a El- 2 .  

All the above characteristics should manifest them- 
selves also in the dependences on the number of degrees of 
freedom in homologous series of molecules at a fixed total 
vibrational energy, since the controlling quantity is the ener- 
gy in the mode. 

5. Also informative is the dependence of the width of the 
overtone-band spectrum on the overtone number. The an- 
harmonicity-induced shifts Aj increase in proportion to 
n6 - no. In particular, this implies that, when the conditions 
( 15) and (24) are fulfilled, the dependence of the half width 
a,, (25), due to the purely phase relaxation on the overtone 

number should be quadratic, which indeed has been ob- 
served in  experiment^,"^'^ at least for the low-order over- 
tones. At the same time the simplest considerations (follow- 
ing from the dominant role played by the one-quantum 
decays) indicate that the mode-energy relaxation makes to 
the width a contribution that depends linearly on the over- 
tone number, although the mode-frequency shift due to the 
anharmonicity of the mode over the grid of intermode reson- 
ances can, in principle, also lead to irregular  dependence^.^^ 
Let us emphasize that, in the experiments reported in Refs. 
11 and 15, the bands of a high-frequency mode [the C-H 
bond in the (CF,),CH moIecule] were measured, and it is 
precisely in this case (see the Introduction) that the domi- 
nant role of the purely phase relaxation is most tangible. If 
the broadening in the (CF,),CH spectra is indeed due to the 
purely phase relaxation, then we can immediately draw the 
following important conclusion: The intermixing of the 
modes occurs even in the case of vibrational energies corre- 
sponding to room temperature, at which the measurements 
were carried out! 

In conclusion let us note that the spectroscopy of the 
highly excited vibrational states of polyatomic molecules is 
only now being developed. Progress in the experimental 
technique will undoubtedly pose new problems for theory. 
Presumably, one of such problems is the development of 
non-Markov models; another is the elucidation of the role 
played by the internal rotations (up to and including the 
present paper, the object of theory has been the quasirigid 
molecule). 

The authors thank V. S. Letokhov for support of the 
work and V. A. Alekseev, M. V. Kuz'min, and A. A. Stuche- 
bryukhov for useful discussions. 

APPENDIX 

, In Ref. 23 an integral representation is obtained for the 
spectrum of the temporal correlation function of the coordi- 
nate of a nonlinear oscillator relaxing into the heat bath. For 
our purposes it is more convenient to represent the result in 
the form, similar to ( 14), of a sum of complex Lorentzians. 

The system of algebraic equations for the off-diagonal 
nonlinear-oscillator (v , )  density matrix elements, which de- 
termines the spectrum of the transitions in the I th overtone 
(for the fundamental band I = O), has the for& 

- - ( d l Z  ( n f l f  I ) !  '" 
i-[ 

n n!  ( H I ) !  ] ( 1 - E o ) t o n ,  ( A l )  

where d is the dipole 0- I + 1 transition moment fixing the 
normalization, n -no, A, = 2x,,(I + 1 ) (x,, is the intra- 
mode anharmonic constant), and the remaining designa- 
tions are the same as in Eqs. ( 12) and (2  1 ) . The susceptibil- 
ity ~ ~ ( 6 )  differs from ( 1 1 ) : 

rn 

The system (A1 ) can be solved by the same method as ( 12). 
For x0(S)  we obtain 

rm 
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where the parametersp and R are the same as in the solution 
(141, 

6,=-Aa-(k+1)I'o Im [ ( 1-~0y2)/pl+1E0~0 Im y. 

-ra(1-g,o)/2+ (k+l )  Fa Re [ (1-Eay2)lpl 

-lEoro Re y+lI ' , (~+ g,)/2.  

To determine the spectrum of the transitions in a molecule 
with allowance for both the relaxation of the mode in ques- 
tion and the purely phase relaxation, we must find the sus- 
ceptibility %(a) ,  which is given by the convolution ofx0(S), 
(-421, andx(S) ,  (22): 

In the limiting case, when To( l  - {o)2)Ao, only the 
first term, with uo = ( I  + 1 ) ( 1 - lo) r0/2, in (A3),  i.e., the 
Lorentzian with the half width of the spectrum of the relax- 
ing harmonic oscillator, is important.'' In particular, for 
I = 0, the convolution (A4) reduces simply to the require- 
ment that we add the term ( 1 - go)  r0/2 to the half widths 
of all the Lorentzians entering into the expression (22) for 
~ ( 6 ) .  
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