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Spherically symmetric inverse problems for the scattering of quantum particles by a static 
gravitational field are considered in the framework of the general theory of relativity. Methods 
are developed for recovering the metric tensor from scattering data at fixed energy or zero angular 
momentum for the Klein-Fock-Gordon equation in the Schwarzschild metric. The connection 
between theSmatrix and the operator of the square of the 4-momentum in curved space is 
investigated. The main links of the developed algorithm are two definite nonlinear ordinary 
differential equations of third and fourth order constructed from the scattering data. On the one 
hand, the investigated inverse problems generalize the previously solved classical inverse 
problems for the gravitational field to the quantum case; on the other hand, they generalize the 
Marchenko and Regge-Newton methods known in quantum scattering theory to include the case 
of gravitational fields. A certain analogy is established between the motion of a scalar particle in a 
strong gravitational field and motion in a field with a potential that depends on the angular 
momentum or the energy in nonrelativistic quantum mechanics. This analogy makes it possible to 
model relativistic problems in the general theory of relativity by nonrelativistic problems. The 
results are also valid for electromagnetic waves and may be topical for direct determination of the 
internal structure of neutron stars by probing in the range of radio waves. 

Spherically symmetric inverse problems for the scatter- 
ing of classical particles by a static gravitational field have 
been formulated and solved by one of the present 
in the framework of the general theory of relativity. For 
massless weakly interacting particles, the inverse problem 
consisted of recovering the form of the gravitational field 
(the 4-space metric) from a null geodesic asymptote behav- 
ior that depends on the impact parameter. For massive parti- 
cles, three algorithms were established for recovering the 
metric for the cases when the scattering data are given for 
fixed angular momentum, fixed energy, and fixed impact 
parameter. The solutions of all these problems reduce to 
definite nonlinear ordinary differential equations of second 
order constructed from the scattering data. In the Newtoni- 
an limit, these algorithms give the well-known inversion 
methods of Hoyt4 and Firsov 'x6 and the method proposed by 
the present authors7,' for inverse problems of the simplest 
potential scattering. 

In the present paper, we propose a quantum generaliza- 
tion of the previously considered classical inverse problems 
in the theory of gravitation. This generalization will be done 
initially for spinless relativistic particles of mass m (for ex- 
ample, mesons), i.e., for the Klein-Fock-Gordon equation. 
The gravitational field is assumed to be classical and to satis- 
fy Einstein's equations. 

Although the exposition is given in this paper in corpus- 
cular language, the results can mostly be translated to the 
case of electromagnetic waves. Of practical interest here 
may be the range of radio waves whose wavelength is com- 
parable with the diameter of neutron stars. 

From the theoretical point of view, it is interesting to 
trace how the inversion algorithms change with increasing 
complexity of the interaction on going from the electromag- 
netic to the gravitational field. The methods developed here 

are a generalization of the algorithms that exist in quantum 
scattering theory for solving inverse problems in flat space to 
the case of curved space. We are referring to Marchenko's 
well-known algorithm for the inverse problem for fixed an- 
gular momentum and the Regge-Newton algorithm for the 
inverse problem for fixed energy. Reviews of the theory of 
inverse wave problems can be found in the papers of Fad- 
d e e ~ , ~ , ' ~  and the monographs of Agranovich and Mar- 
chenko," de Alfaro and Regge,lz Newton,13 and Chadan 
and Sabatier.14 It is natural to expect that the Marchenko 
and Regge-Newton integral equations can be derived from 
their gravitational analogs in the Newtonian limit. 

Several studies have been devoted to the generalization 
of the nonrelativistic methods for inverse problems to the 
case of relativistic particles in flat space. For example, for the 
Klein-Fock-Gordon equation the first results were obtained 
by Corinalde~i,'~ de Alfaro, l6  and Verde. l7 They relate to the 
Gel'fand-Levitan and Jost-Kohn '' methods. Marchenko's 
method for the Klein-Fock-Gordon equation was developed 
by Weiss and Scharf.Ig Finally, relativistic inverse problems 
at fixed energy were investigated by Coudray and C O Z . ~ ~ ~ ~ '  
They generalized the Regge-Newton method to scalar and 
spinor particles, i.e., to the Klein-Fock-Gordon and Dirac 
equations. However, in these studies the gravitational field 
was not considered at all. 

The aim of the present paper is to investigate the prob- 
lem of the connection between the S matrix and the operator 
of the square of the 4-momentum in the gravitational field. 
We shall use the relativistic system of units with .ti = c = 1. 
As in the classical we assume that the structure 
of the gravitational field is determined by the interior 
Schwarzschild metricz2 

which we extend to the entire space. Further, we assume that 
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the metric functions v( r )  and p ( r  ) are regular at the origin 
and that the space with the metric ( 1 ) is asymptotically flat, 
i.e., that v and p together with all their derivatives decrease 
sufficiently rapidly as r- oo . 

The corresponding system of three Einstein equations 
in the framework of a static hydrodynamic model is given in 
Ref. 23. In such a model, the gravitating matter is character- 
ized by radial distributions of the density, p ( r ) ,  and pres- 
sure,p(r), these being connected by the Oppenheimer-Vol- 
koff integrodifferential equation (condition for a static 
solution). In these approximations, the system of Einstein 
equations can be integrated in quadratures; its solution, with 

. allowance for the boundary conditions, has the form 

where x is the Einstein gravitational constant. The inverse 
formulas 

make it possible to recover the density and pressure of the 
fluid from the metric tensor. 

From the Oppenheimer-Volkoff equation, which fol- 
lows from the field equations, one can derive the differential 
equation 

which connects the functions f and v. Thus, in the frame- 
work of the hydrodynamic model the metric tensor compo- 
nents 

are not independent. This is a consequence of the problem's 
being static. 

The quantum (wave) inverse problems studied in the 
present paper consist of recovering the metric functions f 
and v (and then the pressure and matter density) from me- 
son scattering data that depend both on the angular momen- 
tum I for fixed energy E as well on E for fixed I. 

In Sec. 2, we consider the Klein-Fock-Gordon equation 
in the Schwarzschild metric; in Sec. 3, we solve the inverse 
scattering problem for fixed energy; and in Sec. 4, we solve 
the inverse scattering problem for fixed angular momentum. 

2. WAVE EQUATION 

To take into account the interaction of classical meson 
and gravitational fields, it is necessary to construct the gen- 
erally covariant generalization of the Klein-Fock-Gordon 
equation. This question is considered in detail in the book of 
Grib, Mamaev, and M~stepanenko.~~ The simplest appro- 
ach is to replace the ordinary derivatives in the free Klein- 
Fock-Gordon equation by covariant The 
wave equation obtained in this manner is called the equation 
with minimal coupling. However, for massless particles this 
equation does not possess the property of conformal invar- 
iance. A different approach leads to a more complicated 

equation with conformal coupling, which is free of this 
shortcoming. 

For simplicity, we shall restrict ourselves in what iol- 
lows to the Klein-Fock-Gordon equation with minimal cou- 
pling, 

0Y+m2Y =0, (4)  

since we shall consider the scattering of massive mesons. 
Equation (4)  contains the covariant Laplace-Beltrami oper- 
atorZ6 

where g=det(gu ),i, j = 0,1,2,3, and contractions over re- 
peated indices are understood. In the Schwarzschild metric 
( 1 ), the stationary wave equation (4)  takes, after separation 
of the variables in terms of spherical functions, 

the form 

where u = f '/Zev'2 . Replacement in ( 5 )  of the radial wave 
function in accordance with R, - JI, = u 1 1 2 ~ ,  gives the final 
equation for the partial wave, 

which no longer contains a first derivative. Equation (7)  
determines a spherically symmetric field U(r) that vanishes 
in the limit r-, a, by virtue of the condition of an asymptoti- 
cally flat nature of space (u(oo) = 1, ul(oo) =0 ,  u V ( m )  
= 0). In the free case, when there is no gravitating matter 

v = p = O ,  f = 1 ,  U =  1, U=O. For a weak gravitational 
field (m- oo ) we put in (6)  UzO, f z l ,  v z 2 V / m g  1, 
where V/m is the Newtonian gravitational potential and e - ' 
z 1 - v, and we obtain the ordinary Schrodinger equation in 
the potential field V(r) . 

3. INVERSE SCATTERING PROBLEM FOR FIXED ENERGY 

In this section, we consider the regular solution pl ( r )  
of the Klein-Fock-Gordon equation (6).  In the limit r-0, 
such a solution has the regular asymptotic behavior p, - C,  
r' + '. In the limit r- oo , the radial wave function behaves as 

R,+rpl-A, sin (kr+6,-ln/2), (8  

since the space is asymptotically flat. The wave number is 
k = ( E Z  - m2) 'I2. 

The inverse scattering problem for fixed energy consists 
in this case of recovering the metric tensor (the components 
g, and g,, ), i.e., the "potential" of the gravitational field, 
from the infinite sequence of phase shifts 6,, given for all 1. It 
is clear that the complete set {S,) can be readily calculated 
from the angular dependence of the scattering amplitude 
given at a certain energy. 

We express Eq. ( 6) in terms of Vl and V, : 
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and we then obtain 

where V2 >O and V,, V2 -0, r-t a. In such a form, the 
Klein-Fock-Gordon equation for fixed energy is mathemat- 
ically equivalent to the Schrodinger equation with central 
potential V, and potential 1(1+ 1 ) V2, which depends on the 
square of the angular momentum. A Schrodinger equation 
with L2-dependent potentials is encountered in nuclear 
physics. 

To solve the inverse problem, we use Hooshyar's meth- 
ode2' We form the radial functions 

and introduce the constant 

7 = lim b ( r )  /r= b' (w) . 
r + m  

(12) 

The analog of the Regge-Newton integral equation for 
the gravitational field has the form 

b ( r )  

K (r ,  r l )  = F ( r )  G ( b  ( r )  , r') - j d t  t-'K ( r ,  5 )  G ( E ,  r ' )  . 

The symmetric part of the kernel of this last equation is 

where q, ( r )  - (kr/y)j, (kr/y) is the free solution of the 
wave equation ( 10) with effective momentum k /y, and the 
summation is over only half-integer A I + 4. The constants 
c, in (14) can be calculated given the scattering data; the 
result of the summation depends parametrically on the con- 
stant y. The kernel of Eq. (13) can be symmetrized by the 
substitution 

The integral equation ( 13 ) expresses the essence of the 
connection between the S matrix, given for all A, and the 
metric tensor. The function K(r, r') is the triangular kernel 
of an integral operator of generalized shift, namely, the oper- 
ator of transformation from the free solution q, 2 to the per- 
turbed q,, : 

b ( ~ )  

= -  1 E - A .  (15) 
0 

As can be seen from ( 1 1 ), the region of triangularity of the 
kernel K is determined by the component g,, of the metric. 

For the kernel K(r, r') there is a boundary condition at 
r' = b: 

V,=kZ-y-Zk2b'Z+F-'[F"-(d/dr) ( b- ,brK(r ,  b )  ) 

-b- 'bl(d/dr)  K ( r ,  b ) ] .  (16) 

basis of the scattering data." 
For each fixed r, the linear integral equation ( 13) is an 

inhomogeneous Fredholm equation of the second kind and 
can be solved by the method of determinants. 28 After inver- 
sion, we have on the boundary r' = b 

Here, Z! is the Fredholm resolvent for the kernel of the ana- 
log of the Regge-Newton equation ( 13) ; it depends parame- 
trically on y and the limit of integration b. 

For the metric components g, and g,, we can derive a 
closed system of two differential equations. It is convenient 
to do this in terms of the functions v and b. From Eqs. ( 1 1 ), 
we find 

and this, after the substitution of the values off and f '  in (3),  
gives the first equation of the system. We obtain the second 
equation from the expression (16) by using Eqs. (9) ,  (7 ) ,  
( l l ) ,  (19), and (17). Thissystem hasthe form 

where both equations are of second order in b, since the third 
derivative b "' drops out of (2 1 ) (it is contained in F " and in 
U). Equation (20), which does not contain v explicitly, 
guarantees that our relativistic problem is static, and Eq. 
(2 1 ), which is exact in relativistic quantum mechanics, is 
the link between the metric tensor and the asymptotic behav- 
ior of the wave functions. 

The system of equations (20) and (21) can be reduced 
to a single closed differential equation of third (but not 
fourth) order for the function b(r).  Equations (20) and 
(21) form a linear algebraic system for the highest deriva- 
tives v" and b ", and this system is degenerate, i.e., its deter- 
minant vanishes identically. By combining (20) and (21) 
we then get the first-order equation 

which must be solved simultaneously with Eq. (20). Separ- 
ating v in (22) 

differentiating both sides of (23) with respect to r, and sub- 
stituting v" from (20), we arrive at a quadratic equation for 
v', from which we determine 

Equation (16) connects the "potentials" V, and V2 on the 

3 Sov. Phys. JETP 66 (I), July 1987 

where 

I. V. Bogdanov and Yu. N. Demkov 3 



Eliminating now Y' and Y" from (20) by means of (24) and 
differentiating once more and eliminating the irrationalities, 
we find the required closed equation for the function b(r)  : 

Here 

The nonlinear third-order differential equation (25 ) is the 
main link in the algorithm for recovering the metric from the 
phase shifts {S,). It can be constructed from the S matrix 
which determines the form of the function H(b )  . The equa- 
tion must be integrated for the initial conditions b(0) = 0, 
b'(0) = l , b  "(0) =0,  whichfollowfrom (ll).Thehighest 
derivative b " occurs in Eq. (25) quadratically (it is con- 
tained only in a, ) and can be separated. This is helpful in 
numerical calculations. The integral b(y, r )  of Eq. (25) de- 
pends parametrically on the constant y. It satisfies the tran- 
scendental equation 

which follows from ( 12). After the calculation of y, we find 
the other unknown function ~ ( r )  of the system using formu- 
las (24) and (23 ), for which no integrations are required. 

We now consider the question of the construction of the 
coefficients {c, ) of the series ( 14) from the known sequence 
of phase shifts (8,). Substitution of the expansion ( 14) for 
Gin the analog of the Regge-Newton equation gives in con- 
junction with the representation ( 15) an expansion for the 
kernel 

I. 

with respect to the free and perturbed solutions. Using (27) 
in the integral representation ( 15), we obtain 

The asymptotic form of the system of equations (28) makes 

it possible to relate the physical phase shifts to the numbers 
c,. If we go in (28) to the limit r - +  UJ and take into account 
the asymptotic behaviors for the free wave function 

R:=cp2- sin (kr/y+n/4-nh/2) 

and for the perturbed R, ( 8 ) and also Eqs. ( 1 1 ) and ( 12), 
then we obtain the system of equations 

xA erp isA=l - i""~u (w)  E ~ ~ A ~ ~  exp i6~9, 
a'  

(29) 
- 

with Z, = (k  /y ) C, , A, ~ ' " A A  and 

A,, ( w ) -  (h'2-h2)-i sin [ (nI2) (h'-h) I. 

The infinite system of algebraic equations (29) for the con- 
stants Z, (it also contains the unknown amplitudes 2, ) has 
exactly the same form as the corresponding system in the 
potential inverse problem with V2 -0. The potential case 
has been rigorously investigated by Newtonz9 and Saba- 
tier30,31 The main results are in the monographs of ~ewton ' ,  

and Chadan and Sabatier14. The system of equations (29) 
decomposes into two infinite groups of equations: 

sin 6, = ~AvM,.,, cos (6~8-&), (30) 

Ax = cos 6,- (4,)-'noA - a A - ~ A A z  sin (6,~-6~), (3 1) 
A '  

where a, =Z,z,, MA,, = (A l2 - A2)  - for odd value of 
A ' - A and MA,. - 0 for even A ' - A. The first group of equa- 
tions (30) is a system of linear equations for the numbers a,, 
while formulas (3 1 ) express the amplitudes 2, in terms of 
a, . Thus, the problem of calculating the sequence {a,) is 
reduced to the inversion of numerical matrices. We deter- 
mine next the amplitudes 2, and the numbers Z, and c,. 
After this procedure, the function G in the kernel of the ana- 
log of the Regge-Newton equation can be constructed. 

The problem of uniqueness in this inverse problem re- 
sides in the uniqueness of the choice of the function H(b )  in 
the differential equation (25). It is clear that the choice of 
H(b)  is unambiguous if the coefficients c, can be chosen 
uniquely given the phase shifts S,, Therefore, the question 
reduces to the uniqueness of the solution of the system of 
linear equations (30). If the phase shifts S,+O sufficiently 
rapidly as I+ W ,  then the system (30) has a unique solu- 
tion.14 In the potential case, the algorithm then gives a po- 
tential with asymptotic behavior V(r) = o( r  -3/2 ) as r+  w .  
For a unique solution of the gravitational inverse problem it 
is necessary to require definite rates of decrease of the "po- 
tentials" V, and V2 as r +  w .  However, in the metric ( l ) the 
space is asymptotically flat, and large distances correspond 
to the nonrelativistic case. Here, the contribution V2 ( V, 
and V, zm2v. Therefore, our inverse problem has a unique 
solution in the class of metric tensors for which v(r)  
= ~ ( r - ~ ' ~  and g, = 1 + ~ ( r - , ' ~ ) ,  r +  W .  The rate of de- 
crease of the metric function p ( r )  is immaterial. If Y de- 
creases more slowly, then there is no uniqueness in the solu- 
tion of the inhomogeneous equations (30). For example, for 
the case 6, = 0 for all I we obtain Y = p = 0 (flat Minkowski 
space) and other nonvanishing metric functions. Such met- 
r i c ~  may be called "transparent" by analogy with "transpar- 
ent"  potential^.^' Study of the properties of "transparent" 
metrics is an interesting theoretical problem. 
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We now present briefly the method developed for reco- 
vering the metric tensor from the phase shifts 6, of mesons 
scattered in the gravitational field. First of all, given the 
phase shifts it is necessary to calculate the constants a, by 
solving the linear algebraic system of equations (30) and 
then, in accordance with the expressions (31), find the am- 
plitudes 2, and the coefficients E ,  and c, . After summation 
of the series ( 14) for the function G, we construct the Fred- 
holm resolvent a for the analog of the linear integral Regge- 
Newton equation ( 13). By means of ( 18) we obtain the 
function H(b, y) ,  which determines the form of the nonlin- 
ear third-order differential equation (25) for the function 
b(r).  The integral of this equation depends parametrically 
on the unknown constant y, which is given by the transcen- 
dental equation (26). Formula ( 19) now enables us to cal- 
culate the metric function f(r) ,  and formulas (24) and (23) 
the metric function v(r) .  From the field equations (2)  we 
can then determine the hydrodynamic parametersp(r) and 
p ( r )  of the matter and, eliminating the radial variable, find 
the equation of statep(p) of the matter. 

Finally, knowing the metric, we can obtain the exact 
wave function R , directly without solving the Klein-Fock- 
Gordon equation. Indeed, we have 

b(t) 

and from the integral representation ( 15) we calculate R ,  
= u - 1'2p,. Thus, the wave function can be found by means 

of two quadratures and is completely determined by its own 
asymptotic behavior. 

The scheme for recovering the metric tensor has the 
form 

To illustrate the method, we take the example discussed by 
Newton29 and H~oshyar .~ '  Suppose all c, = c, , ,  S ,,., 
where c,. #O, S,, . is the Kronecker delta, and there is no 
summation. In this case 

and the expressions (27),  (28), and ( 17) give2) 

H ( ~ ) = c A ,  [ ' ~ + C L . & . . , ~  (b) ] - ' ~ ~ , " ( b ) .  

The differential equation (25) for b(r)  therefore contains 
spherical Bessel functions, is still very complicated, and can- 
not be solved in quadratures. Thus, the simple example of 
Newton does not lead in the gravitational inverse problem to 
a result that has an explicit form. 

We consider the Newtonian approximation (nonrelati- 
vistic limit) for the established algorithm. HereZ2m -+ cc ,goo 
~l+2V/m,g,,~1,andthenUz0,Vl=:2mV,V2z0,i.e., 
the "potential" that depends on the angular momentum can 
be ignored, and then b(r)  z r ,  F ( r )  =: 1, y z  1. Formula ( 17) 

for the kernel of the transformation operator takes the trivial 
form K(r, r )  z H ( r ) ,  and the differential equation (21) 
gives 

2 d K(r, r) 2mV= ------ 
r d r  r ' 

since Y z 2 V / m  4 1. The expression (32) is the well-known 
(Ref. 14, p. 239 of the Russian translation) connection be- 
tween the potential3' and the kernel K from the integral 
equation 

,' 

K (r, r') =G (r, r t )  - dE E-'K(r, E) G (E, r l ) ,  
0 

which follows from ( 13 ) . This is the Regge-Newton equa- 
tion, which solves the inverse problem for fixed energy in flat 
space. 

4. INVERSE PROBLEM FOR FIXED ANGULAR MOMENTUM 

To analyze this inverse problem, we restrict ourselves to 
the case ofS  waves. The r- co behavior of the physical wave 
function is 

and in the limit r-0 this function is regular. The inverse 
scattering problem for I = 0 consists of recovering the metric 
tensor from the energy dependence of the S-wave phase shift 
S(k) .  

We express the coefficients in the wave equation (6) for 
I = 0 in terms of 

wi (r) = U+m2f-' (I-e-") , W 2  (r) =f-'e-"- 1, (34) 

and we then obtain 

where W, > 0 and W,  , W2 -. 0, r-+ 0 3 .  In such form, the 
Klein-Fock-Gordon equation for fixed I = 0 is equivalent to 
the Schrodinger equation with a central "potential" W, and 
a potential k2 W2, that depends on the square of the momen- 
tum. 

Energy-dependent potentials may be of topical impor- 
tance in nuclear theory. However, if we discount some re- 
marks of Mar~henko,~'  the only study hitherto made of the 
inverse problem for energy-dependent potentials is the S- 
wave case for a potential with linear dependence on k (Ref. 
14, p. 185 of the Russian translation). This problem has been 
more or less completely solved by Jaulent and ~ e a n . ~ ~  

Thus, it is necessary to develop an algorithm of the in- 
verse problem for a k2-dependent potential in nonrelativistic 
quantum mechanics. Such an algorithm will be a generaliza- 
tion of Marchenko's well-known algorithm in scattering the- 
ory. 

We give only the main results. We shall assume that 
gravitating matter is distributed in the exterior of an abso- 
lutely inpenetrable sphere of some finite radius r,. There is 
no gravitational field within such a hollow sphere, and the 
metric is Galilean. 22 The wave function is $(k,r,) = 0. We 
form the radial functions 

cc 

B(r) - r - JdE( j  e2- I), @ (r) -- [ p' (r) ]-"2=f"4ev'4. 
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Then ro is a root of the transcendental equation 

and, thus, in the region r > ro of space in which are interested 
the monotonically increasing P ( r )  > 0. In the inverse prob- 
lem, ro is not known a priori and must itself be determined. 

We introduce a linear integral equation, the analog of 
the Marchenko equation for the gravitational field: 

a 

B (r, rr) =@ (r) D (P (r) +rl) + dg B (r, E) D (E+rl). 
6(r) 

(37) 

The symmetric kernel D of this equation is constructed from 
the scattering data. 

The k+  a, behavior of the solution of the Klein-Fock- 
Gordon equation (35) can be found in the standard man- 
ner.34 It has the form 

and the wave function oscillates rapidly. In (38), we go to 
the limit r+  a, and note that P ( r )  -r; then it can be seen 
from the asymptotic behavior (33) that C(m ) = 1 and 
6( a, ) = 0. It is interesting to note that for the Klein-Fock- 
Gordon equation in flat space the high-energy limit of the 
phase shift is non~e ro . ' ~  The connection between the kernel 
D and the phase shift is given (in the absence of bound 
states) by 

m 

D (r) = (2ni) -' dk {erp 2i6 (k) - l )  eikr. 
- m (39) 

The integral equation (37) is the principal link between 
the S matrix, which is given for all k, and the metric gv of 
space. This equation determines a triangular integral opera- 
tor of the transformation from the free to the perturbed solu- 
tion. Let h(k, r )  be the Jost solution of the wave equation 
(35), i.e., h-exp ikr, r +  CO; then 

m 

h (k, r) =m (r) exp [ikp (r) I + 1 dE B (r, a) eik', r>ro. (40) 
B ( T )  

This is the gravitational analog of Levin's repre~entation.~~ 
The region of triangularity of the kernel B is given by the 
determinant g,g,, of the radial-temporal part of the metric 
tensor. 

For the kernel B (r, r') there is a boundary condition at 
r' =B 

This last formula connects the "potentials" W, and W,  
through information on the phase shift. 

The gravitational analog of the Marchenko equation 
(37) is a linear integral Fredholm equation of the second 
kind, which can be in~erted.~ '  1fZ) is the Fredholm resolvent 
of the kernel D (it depends parametrically on the limit of 
integration p) , then 

and on the boundary r' = P 

For the metric tensor, one can derive a closed system of 
two differential equations. We do this in terms of the func- 
tions v and p. From the definition (36), we have 

and, substituting f and f '  in (3),  we obtain the first equation 
of the system. We find the second equation from the bound- 
ary condition (41 ), taking into account Eqs. (34) (7),  (36), 
(45), and (43). The resulting system 

contains the relativistic condition (46) for a static situation 
and the connection (47) between the metric and the kernel 
of the transformation operator. The first equation does not 
contain p, and the second does not contain v' and v"; the 
third derivatives fl " from a'' and from U cancel. 

We now establish a closed differential equation for the 
function &r) .  In (47) we separate 

where w, (p) m - 2wa,, and, differentiating (48) with 
respect to r twice, we eliminate v, v', and v" from Eq. (46). 
We then obtain the required equation for P ( r )  : 

r38 '  2 P  P ( 0 + r 4 0 i p '  5 p ( 0 - r 3 p '  Z p ' "  2-4r3p'p" Z P " '  

-lor'+aip' 4PB""-2r"' ""fi"'+4r4wz~' VP"' 
-4r30,fi' 51j"r+6r3p" 4+ 15r40iP' 3P" 
+ (5rZ+2m-') P'P" 3-12r40,p' 5 p "  
+3r(3r2+2m-2)o,P' 'p" '+rP' 'P 

-2r2(r2-3m-2) oi2P' "P " -2r403P' "P " 
-2rho,P' '01-2m-2rh13P' 'Of 4r40i02P' 9-2r30iZp' '=0. 

(49) 

Here 

The nonlinear fourth-order differential equation (49 ) 
is the final result in the algorithm for recovering the metric 
from the phase shift S(k) .  It can be constructed from the S 
matrix, which determines the form of the function w(P). 
Equation (49) must be integrated subject to the boundary 
conditionp(r)-r,r-a,whencep1(m) = l , p l ' ( w )  = 0 ,  
andp "'( a ) = 0. The highest derivatep '4' occurs linearly in 
(49). The other unknown function of the system, v(r) ,  can 
be found in accordance with (48) without any integrations 
at all. 

Uniqueness of the solution of the inverse problem is 
ensured by unique choice of the function w (P) in the differ- 
ential equation (49). If there are no bound states, the metric 
is determined by the phase shift S(k)  uniquely. Otherwise, 
identical phase shifts and binding energies lead to different 
gU. It is interesting to use this circumstance to obtain families 
of metrics that do not give any scattering at all. Such "trans- 
parent" metrics are analogous to the "transparent" poten- 
tials for fixed angular m ~ m e n t u m . ~ ~ , ~ '  

6 Sov. Phys. JETP 66 ( l ) ,  July 1987 I. V. Bogdanov and Yu. N. Demkov 6 



The main stages in the recovery of the form of the gravi- 
tational field from the S-wave phase shift 6 (k)  of mesons is 
as follows. It is first necessary to calculate the Fourier trans- 
form (39), i.e., the kernel D of the analog of the linear inte- 
gral Marchenko equation (371, and find the Fredholm resol- 
vent 5 for this kernel. Then, using the definition (44), it is 
necessary to construct the function w (p) ,  which determines 
the structure of the nonlinear fourth-order differential equa- 
tion (49) for the function P( r ) .  After integration of this 
equation, we obtain r,, which gives the transcendental equa- 
tion P ( r )  = 0. Then, using (48), we calculate the metric 
component g, and, using (45 ) , the component g , , . From 
the field equations (2), we can then determine the pressure 
and density of the fluid and, then, the equation of state of the 
matter. 

Knowing the recovered metric tensor, we can find the 
exact meson wave function R ( r )  by means of quadratures 
without solving the wave equation. Indeed, having the func- 
tion @(r) ,  we calculate in accordance with (42) the kernel 
of the transformation operator B(r, r') and the Jost solution 
h ( r )  by means of the analog of Levin's representation (40). 
Thus, the wave function R = ul/*h is uniquely determined 
by the phase shift and the parameters of the bound states (if 
there are any). 

The scheme of the method has the form 

We consider the Newtonian approximation for this al- 
gorithm. In the nonrelativistic limit m -+ co , v z 2 V /m, 
p zO, W2 z 2 m  V, W2 zO, i.e., there is no energy-dependent 
potential. Then P ( r )  z r ,  @(r )  z I, r,zO, and from Eq. 
(43 ) we have B(r, r )  z w ( r )  . The differential equation (47) 
reduces to 

which expresses the well-known (Ref. 14, p. 101 of the Rus- 
sian translation) connection between the potential and the 
kernel B of the transformation operator. The kernel B now 
satisfies the integral equation - 

~ ( r ,  r') =D ( r + r f )  + d~ B ( r ,  E) D (E+rr)  , 
I 

which follows from (37). This is the Marchenko equation 
that solves the inverse problem for fixed angular momentum 
I = 0 in flat space. 

5. CONCLUSIONS 

The key elements of our algorithms are the two definite 
nonlinear ordinary differential equations for the metric ten- 
sor. In the inverse problem for fixed energy, the inversion 
process leads to an equation of third order, and in the inverse 
problem for fixed angular momentum to an equation of 
fourth order. These differential equations are constructed 
from the scattering data and thereby resolve the problem of 

relating the S matrix (for all I or for all k )  to the covariant 
Laplace-Beltrami operator in relativistic quantum mechan- 
ics. 

The wave equations ( 10) and (35 ) for the inverse prob- 
lems for fixed k and I with corresponding boundary condi- 
tions induce generalized eigenvalue problems of the form 

h 

for linear Hermitian differential operators Q of second order 
with functions a ( r )  > 0. The scalar product in the Hilbert 
space of the eigenfunctions must be determined with weight 
a ;  then the basic properties of the spectrum of the simplest 
Hermitian problem (when Sl(r) = 1 ) are preserved. This 
weight is a =  rp2g,,  in the inverse problem for fixed k and 
a =  g,gl, in the inverse problem for fixed 1. Thus, the 
weight function is unknown a priori and can be found from 
the S matrix. 

The analogy between the Klein-Fock-Gordon equation 
in the Schwarzschild metric for fixed k and the Schrodinger 
equation with potential that depends on the angular momen- 
tum leads to the existence of two identical one-parameter 
families of solutions $A ( r )  (relativistic and nonrelativistic) 
with parameter A. The metric tensor gu  is in one-to-one cor- 
respondence with the equivalent "potentials" V, and V2, 
and the obtaining of g, from given V, and V2 reduces to 
integration of a second-order equation. On the other hand, 
the Klein-Fock-Gordon equation in the Schwarzschild met- 
ric for fixed I = 0 is identical to a Schrodinger equation with 
energy-dependent potential, and there exist two identical 
one-parameter families of solutions $(k, r )  with parameter 
k. The metric and the "potentials" W, and W2 are also in a 
one-to-one correspondence, and to obtain gu  it is again nec- 
essary to solve a second-order equation. These isomor- 
phisms make it possible to reduce the calculation of the mo- 
tion of mesons in a strong gravitational field to the 
calculation of motion in fields with potentials that depend on 
R2 or k2 in nonrelativistic quantum mechanics and, thus, 
afford a unique possibility to model relativistic problems in 
general relativity by nonrelativistic problems. 

If the particles have electric charge, a corresponding 
potential interaction must occur in the inverse scattering 
problems on the gravitational background. This background 
can be specified either by a spherically symmetric metric 
within a star or by the exterior Schwarzschild metric in the 
vacuum. The case when the exterior gravitational back- 
ground is known may be of interest for applications, for ex- 
ample, in atomic and nuclear physics. If an electric field is 
taken into account in the formalism of inverse problems de- 
veloped here, its unknown scalar potential can be recovered 
from scattering phase shifts obtained from an experiment by 
means of phase-shift analysis. 

We thank A. A. Grib for interesting discussions. 

"In Ref. 27 there is a misprint in Eq. (2.7): in the second term on the 
right-hand side there should be b instead of b '. 

"In Ref. 27, there is a misprint in Eq. (3.6): in the argument of the second 
factor on the right-hand side there should be b ( r )  instead of r. 

"In the monograph of Ref. 14, a system ofunits in which 2m = 1 is adopt- 
ed. 
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