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We have investigated corrections to the impurity conductivity originating from interference 
between the electron-phonon and electron-impurity interactions. The conductivity was 
calculated both by a method based on the quantum kinetic equation and by the linear response 
method. We show that because of peculiarities in the screening of transverse electromagnetic 
fields in metals, the interference corrections to the impurity conductivity from longitudinal 
and transverse phonons have differing signs. However, since the longitudinal sound velocity is 
larger than the transverse sound velocity, the total correction turns out to be negative, leading 
to an increase in resistance with temperature. We also consider the interference of electron- 
magnon and electron-impurity interactions in ferromagnetic metals. 

INTRODUCTION 

Recently, the problem of how electron scattering affects 
and is affected by the kinetic properties of normal metals has 
attracted considerable interest. At sufficiently low tempera- 
tures the conductivity of "dirty" metals is determined by 
localization and electron-electron interaction effects1; how- 
ever, as the temperature increases, the processes considered 
in this paper, which are related to interference between elec- 
tron-phonon and electron-impurity interactions, become 
significant. 

The influence of these processes on the resistivity of 
normal metals was investigated in Refs. 2 4 .  A quasiclassi- 
cal kinetic equation was used in Ref. 2, which did not permit 
consideration of all the various quantum interference ef- 
fects. In fact, the only processes discussed in this paper in- 
volve inelastic scattering of electrons by impurities."' In Ref. 
3, the linear response method was used, which makes it pos- 
sible to include all these interference processes. However, 
the authors of Ref. 3 arrived at the erroneous conclusion that 
only inelastic electron-impurity scattering processes were 
important, in agreement with Ref. 2. In Ref. 4, a tempera- 
ture-dependent correction to the impurity resistivity was 
found by using the quantum kinetic equation in the same 
form as in Refs. 2 and 3; however, this correction is due to 
impurity renormalization of the vertex which describes the 
interaction of an electron with longitudinal phonons. For 
q , ls l  (q, = T/u, u is the sound velocity, I is the mean free 
path of electrons due to impurity scattering), the corrections 
to the resistivity found in Refs. 2-4 have the form 

which gives rise to an increase in the resistivity with tem- 
perature ( E ~  and p, are the Fermi energy and momentum, 
and p, is the residual resistivity). 

However, in fact that situation turns out to be more 
complex than this. As we show in this paper, there are addi- 
tional processes due to electron-phonon-impurity interfer- 
ence, which lead to corrections to the resistivity similar to 
( 1 ); however, they are of opposite sign. In the region of at- 
tainable temperatures T >  (u/c) ( ~ , p , u ) " ~  (c is the veloc- 
ity of light), these processes are found to be significant only 
for longitudinal phonons, while interactions with transverse 
phonons are "exhausted" by inelastic electron-impurity 

scattering processes. This latter assertion is based on an 
analysis of the screening of longitudinal and transverse elec- 
tromagnetic fields presented in Section 2. As a result, the 
corrections to the resistivity due to the interactions of elec- 
trons with longitudinal and transverse phonons have differ- 
ent signs. However, since the longitudinal velocity u, is larg- 
er than the transverse velocity u,, the sum of these two 
corrections to the resistivity turns out to be positive. 

The basic results of the paper are obtained in Section 3, 
using the quantum kinetic equation. In Section 4 we briefly 
discuss the linear response method. In the kinetic equation 
method we analyze a comparatively small number of dia- 
grams; however, in calculating the contributions from these 
diagrams it is necessary to include a different kind of correc- 
tion for each diagram. The linear response method allows us 
to calculate the contributions from each diagram in the same 
way; however, the number of diagrams which must be inves- 
tigated is considerably increased. In our ~ p i n i o n , ~  kinetic 
phenomena related to electron-phonon-impurity interfer- 
ence are most conveniently discussed in a comoving coordi- 
nate system (CCS), i.e., a reference frame in which the lat- 
tice is at rest. This method of calculating Ape.,,.,,, is briefly 
described in Section 5. In Section 6, the method developed 
above is applied to the investigation of interference between 
electron-magnon and electron-impurity interactions in a fer- 
omagnetic metal. In the conclusion, we analyze the results so 
obtained and discuss the experimental situation. 

2. EFFECTIVE VERTICES FOR LONGITUDINAL AND 
TRANSVERSE PHONONS 

In Keldysh's diagram t e ~ h n i q u e , ~  the Green's functions 
for electrons and phonons, and also the electron and phonor, 
self-energies, are represented by the matrices 

In the absence of the electron-phonon interaction, the elec- 
tron Green's function averaged over impurity positions 
equals 
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Here, 7 is the electron's momentum relaxation time due to 
impurity scattering, and m is the electron mass. 

To linear order in the electric field, G takes the form4: 

where the last term denotes a Poisson bracket. In the case of 
a constant electric field, 

In this section we limit ourselves to calculating the equilibri- 
um vertex, i.e., we will assume that the distribution function 
S(p,&) =So(&) = - tanh(~/2T).  The corrections to the 
equilibrium function and to the Poisson bracket which are 
proportional to the electric field will be taken into account in 
the following section. 

Elastic scattering of electrons by impurities is expressed 
by the matrix ( V,,,, 1 (a, ),,, where a, is the familiar Pauli 
matrix. The impurity potential we will assume to be short- 
range and isotropic: 

where N,,, is the impurity concentration. 
Following Ref. 7, we will treat the electron-phonon in- 

teraction as an interaction of electrons and ions with an elec- 
tromagnetic field; this allows us to discuss both transverse 
and longitudinal phonons in the same way. In contrast to 
Ref. 7, our goal is to construct an effective electron-phonon 
interaction vertex, which is necessary to calculate the self- 
energy of an electron. 

The interaction of electrons with an electromagnetic 
field is described by the Hamiltonian 

where q,, A,  are Fourier components of the scalar and 
vector potentials; c& is a creation operator for an electron 
with momentum p and spin s; the prime on the summation 
sign indicates that terms with q = 0 are omitted. 

The Hamiltonian (7)  corresponds to the following elec- 
tron-phonon interaction vertices: 

assuming that q <p.  From here on, the index 0 will refer to 
vertices describing interactions with scalar potentials, while 
1 will denote interactions with vector potentials. 

The Hamiltonians for interactions of ions and impuri- 
ties with the electromagnetic field have the form 

where the charge density and current are given by the equa- 
tions 

Here, Z,,, is the valence of atoms in the host lattice and Zimp 
is the impurity valence; Mand Mi,, are the host and impuri- 
ty masses, R, and Rp their coordinates; and P, = a,, Pp 
= M,,, R,. The absolute value of the electron charge is in- 

cluded in the definition of the electromagnetic potentials. 
Let us first investigate the Hamiltonian Hi,,,,,, . We 

extract from it terms which are linear in the displacement of 
the ions from their equilibrium positions AR, = R, - R,, 
(R,,  is the equilibrium position of an ion). We then express 
AR, and AR, in terms of creation and annihilation opera- 
tors for phonons b $, b,, (A is the index of a phonon 
branch) : 

As a result, we obtain the phonon-photon interaction Hamil- 
tonian 

q h  

where the vertices Q are shown in Fig. 1, and equal 

where N is the number of unit cells, and w,, is the phonon 
frequency; w,, = u,q, where u, is the sound velocity; and e, 
is the polarization vector. Under conditions of charge neu- 
trality the relation 

holds, where n, is the electron density. 
In order to include the two kinds of operators Q0 and 

FIG. 1. Electron-photon interaction vertices, a', a"; Q" is the phonon- 
photon interaction vertex. 
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@ I ,  we introduce the matrix Green's function for phonons: 

where 6iA ( t )  is an operator in the Heisenberg representa- 
tion and T, is the symbol for time-ordering. As will be shown 
below, we will require only the function Doo(q,w) in what 
follows, which we will write without the lower indices: 

DR(q, o)=[DA(q, O)  ] *=(u-m,,+iO)-'- ( ~ + w ~ + i O ) - ~ .  

(19) 
The phonons are assumed to be in equilibrium; hence, 

The Green's function for the electromagnetic potentials 
also are in matrix form V,,. In the Coulomb gauge, 
div A = 0; the matrix V,, is diagonal in the momentum rep- 
resentation, and when screening is included takes the form7v8 

m, n denote the Cartesian coordinates x, y, z; if the vector q 
lies along the z-axis, then 

Tm.=6mn-qmqn,~2 = [i 8 %] ; (23) 

P,, (q,w) is the polarization operator (Fig. 2) with the ver- 
tices a: [corresponding to (8) ,  a: =p,/mc; for the scalar 
vertex a0 we define a: = ao = - 11. In calculations using 
the Keldysh technique, the vertices must be multiplied by 
the tensor K f, (the upper index for bosons, the lower for 
electrons) : 

Then 

For 91% 1 we have 

For normal metals, the condition for strong screening 

FIG. 2. Equation for the Green's function of the electromagnetic field: the 
thin zigzag ("sawtoothed") line denotesthe bare interaction, while P,, 
denotes the polarization operator. 

of longitudinal fields is satisfied: 

and thus 

For the transverse fields, the applicability of the strong- 
screening condition 

depends on the values of w and q. For the frequencies and 
wave vectors of the phonons of interest to us, i.e., w- T, 
q-q, = T / u ,  the inequality (28) is found to hold only in 
the extreme low-temperature regime: 

For practically attainable temperatures, the transverse elec- 
tromagnetic fields are not screened, i.e., V f ,  = - 4n-e2/q2. 

The effective electron-phonon interaction vertex is 
shown in Fig. 3: 

Using (8)  and (27), we find 

From the condition for weak screening of the transverse 
electromagnetic field we have for thermal phonons 

Condition (32) justifies the assertion made earlier that it is 
necessary to include only the function D,,(q,w) in calcula- 
tions. As a result, for T >  T, the Hamiltonian H,o,.p,o, leads 
to an interaction of the electrons only with longitudinal 
phonons. 

In an analogous fashion, we can also discuss the Hamil- 
tonian H,,p~p,,, (10). Taking into account the shift of the 
impurities from their equilibrium positions, we obtain an 
effective vertex y which describes inelastic scattering of elec- 
trons by the impurities. Since the momentum transferred by 
the electron in this process is of orderp, while the frequency 
w is of order T, according to the analysis given above of the 
screening of the electromagnetic field, the term j,,, A in the 
Hamiltonian ( 10) can be neglected. Including only the sca- 

FIG. 3. Vertices g, y describing electron-phonon scattering and inelastic 
scattering of electrons by impurities;f; y, A are effective vertices. 
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lar potential interaction, we have5 

In order to calculate the conductivity, we also need a 
vertex which describes inelastic scattering of electrons by 
impurities through interactions with two phonons, which we 
immediately write in the effective form (see Fig. 3) : 

The factor 1/2 appears when we go to Keldysh's triangular 
repre~entation.~ 

Let us introduce the effective vertex T shown in Fig. 3: 

Along with T, we also construct the vertex A for longitudi- 
nal phonons (Fig. 3), which takes into account electron- 
phonon-impurity interference to lowest order in perturba- 
tion theory; for q l )  I :  

Thus, the interaction of electrons with longitudinal 
phonons is described by the vertices g, y, f, T, and A; for 
thermal transverse phonons we need only include y,J 

3. THE KINETIC-EQUATION METHOD 

In calculating the temperature-dependent corrections 
to the impurity conductivity Aa(T) ,  we will use a method 
based on the quantum kinetic equation developed in Ref. 4. 
When linearized in the external electric field, the kinetic 
equation for the electron distribution function S(p,&) can be 
represented in the form 

where the collision integrals on the right side include elec- 
tron-impurity and electron-phonon scattering along with in- 
terference between them. Each collision integral is related to 
a corresponding self-energy part by the relations 

In Eqs. (371439) we have dropped the arguments ( E ,  p); in 
what follows we will omit these arguments for brevity in the 
collision integrals, self-energy parts and distribution func- 
tions. The SZ terms are corrections to (5) in Poisson- 
bracket form; they are linear in electric field, and appear 
when the diagram technique js used to describe nonequilibri- 
um processes in the momentum representation. When the 
basic momentum relaxation mechanism is scattering by im- 
purities, the kinetic equation (37) can be solved by iteration, 
using S = So + q.7, + p,. Without including phonons, the 
nonequilibrium correction to the distribution takes the well- 

known form: 

To first order in perturbation theory we have 

The last term in (41) is due to phonon renormalization of 
the electron density of states in the electron-impurity colli- 
sion integral, i.e., this integral is not calculated with the zero- 
order Green's function (3)  but rather includes the phonon 
correction 

6,,,GA (S) = (GoA) [xefph (S) f ~~fpk-irnp (S) I .  (42) 

The electric current is determined by the expression 

dp de 
i = o ~ = 2 e l  --vS(p, E )  Im GA (p, E ) ,  

( 2 ~ ) ~  

from which it is clear that the source of the temperature- 
dependent correction ACT is both the phonon correction to 
the distribution function (41 ) and the correction to Im G A: 

where SG A is the correction due to the Poisson bracket: 

6GA (S) = (GoA) [8~~!ph (s) +b~~- :h-{~~ (s) 1. (45) 

The electron self-energy diagrams related to electron-impu- 
rity and electron-phonon interactions are shown in Figs. 4.1, 
and 4.2. The next diagrams (Figs. 4.3-4.7) are interference 
diagrams. Under the conditions q l )  1, p,l ) 1, these dia- 
grams take into account the electron-phonon interaction to 
first order in perturbation theory, while the electron-impuri- 
ty interaction is taken into account since the electron 
Green's function is chosen in the form (3); in calculating the 
vertex renormalization due to impurities, we need work only 
to first order in the electron-impurity interaction. 

Turning to calculation of the contributions from each of 
the diagrams, we will first make some comments. The calcu- 
lations show that for any diagram, the second term in (44) is 
cancelled by that part of p, Im G t  which is related to the 
electron-impurity collision integral [the last term in (41 ) 1. 
Furthermore, in the integral over E in (44), only the follow- 
ing combinations of distribution functions are nonnegative: 

FIG. 4. Self-energy diagrams for electrons in the laboratory system. 
Graphs 3-5 and 7 actually denote two diagrams each: theone shown in the 
figure and another one which differs from it by an interchange of vertices. 
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along with the terms symmetric to them under interchange 
ofso(&) andso(& + w ) ;  the first ofthese terms (46) depends 
on the electron temperature, while the second depends on 
phonon temperature. Finally, as is clear from (42) and (45), 
all corrections to Im GA(p,&) in (44) contain the factor 

which must be retained only when calculating the contribu- 
tion from 2,,, . The interference diagrams contain an addi- 
tional small factor (q1)-' from the vertices, y, r and A; 
therefore, the corrections from them to Im GA(p,&) are not 
included. 

Let us first discuss the longitudinal phonons. The dia- 
gram 2,,, (Fig. 5.2) gives both the well-known Bloch cor- 
rection to the impurity conductivity and corrections of the 
form ( 1 ) . The first arises because of the usual collision inte- 
gral of electrons with phonons r , (~ ,&)  (38): 

I .  (p, e) = - (dq88q12 Im GoA (p+q ,  &+a) 

x Im DR (iq, o ) R  ( E ,  a ) ,  (48) 

where 

Using the collision integral so obtained, let us determine the 
correction to the distribution function p, ( p , ~ )  (41), which 
should be substituted into (44) to calculate the conductiv- 
ity. As a result, we find 

where 

Expression (49) was obtained earlier in Ref. 4, and in 
contrast with the pure-metal case is derived under the as- 
sumption that the basic mechanism for electron momentum 
relaxation is scattering by impurities, i.e., under conditions 
appropriate to a "weak" Mattheisen's rulee9 

For the corrections to the conductivity of the form ( 1 ) 
from the diagrams in 4.2, the remaining part of the collision 
integral SIis found to be important; SI: appears only because 
of 8G ' [the last term in (4)  ] : 

The correction to the conductivity on S I  is calculated using 
(41 ), (44). The third term in (44), caused by the correction 
Sph G A due to the nonequilibrium I::,, (42), gives exactly 
the same contribution to Au( T). The final correction to the 
conductivity connected with diagram 4.2, equals 

The interference diagrams 4.3-4.6 give only corrections 
to the conductivity in the form ( 1 ). Let us note that the 
effective vertices A and r, which enter into the diagrams 4.3 

and 4.4, themselves depend on the electron distribution 
function. The equilibrium vertices were determined from 
Eqs. (35), (36), while the nonequilibrium corrections to 
them are obtained by taking p,(p,c) into account, and equal 

6,A211=-6,r211 = - 
dSo de (&+a) s ( 9 ,  A), 

$ (q, h )  =eFEel/3 (MNoqr)  '". 

There are no corrections to the vertices with other in- 
dices. Since the diagram Z, (Fig. 4.3) has the same index 
structure as 84 while it is clear from Eq. (52) that the ver- 
tices a,r and SPA are opposite in sign, the contributions 
from diagrams I:, and 2, calculated using the nonequilibri- 
um vertices (52) cancel each other. The collision integral 
including only the equilibrium vertices for diagram 4.3 
equals 

a s O ( e )  GoA (p+q ,  e + o )  D A ( q ,  w ) .  (53) X- 
d& 

Correspondingly, for diagram 4.4 we have 

J dq do ervEgqlrS0 , (e+w)  I ,  ( p ,  e )  =2 Im - 
(2n)' 

Substituting the expressions for the collision integrals (53), 
(54) into (44), and taking into account (41), we obtain 

We calculate corrections to the conductivity related to 
the fifth, sixth, and seventh diagrams in an analogous way. 
Let us note that for each of the diagrams 4.2 to 4.5 individu- 
ally and for the sum of the diagrams 4.6 and 4.7, contribu- 
tions from the combinations of distribution functions (47) 
cancel each other. In addition, the fifth and sixth diagrams 
give contributions containing the combination of distribu- 
tion functions (46) which also cancel: 

2 n2PlT2 
Ao5 ( T )  =-Aoa ( T )  = -- 00. 

3  e ~ p ~ u l  

Calculations show that in the case of transverse phonons, the 
contributions from the sixth and seventh diagrams equal the 
corresponding contributions for longitudinal phonons when 
u, is replaced by u,.  Hence, the total correction to the con- 
ductivity connected with interference between electron- 
phonon and electron-impurity interactions for one longitu- 
dinal and two transverse branches equals 

From (57) it is clear that the sign for longitudinal 
phonons is positive, while for transverse phonons it is nega- 
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tive. The total result depends on the ratio of sound velocities 
u,/u,. We also point out the fact that AO,~~,.,,~ depends only 
on the electron temperature, while ha,,, depends on both 
the electron and phonon temperatures. 

4. THE LINEAR RESPONSE METHOD 

In the linear response method, the correction to the im- 
purity conductivity is determined by the equation 

Ao=e2 lim IIR (P)/ (-iQ), 
P -0 

(58) 

where I I R ( f l )  is the retarded loop with two vector vertices 

As was already noted in the Introduction, for calculations 
involving the same order of perturbation theory, it is neces- 
sary to analyze a considerably larger number of diagrams in 
the linear response method than with the kinetic-equation 
method. Therefore, in Fig. 5 we limit ourselves to depicting 
only the important diagrams. The function IIR( T )  is en- 
countered only in the case where lIR contains the products 
G ,C and G ZD C .  It can be shown that in the first case only the 
combinations G,C(E)G~(E + w + 0) and 
G$(E + O)G t ( c  + W )  give a nonzero contribution to the 
conductivity. For each of the diagrams 5.1-5.8, the contri- 
butions from all possible orderings of the indices leading to 
the combination G ZD mutually cancel. Analogous contri- 
butions from diagrams 5.9-5.12 cancel only in the total sum. 
The final result for the correction to the conductivity coin- 
cides with that calculated in Section 3 by the kinetic-equa- 
tion method. In this case, the second diagram in Fig. 4 corre- 
sponds to diagrams 5.1-5.3, the sixth and the seventh 
diagrams to diagrams 5.9-5.12. Diagrams 5.4 and 5.6 are 
comparable to the third and the fourth diagrams in Fig. 4, 
calculated by the kinetic-equation method with equilibrium 
vertices. Diagrams 5.5,5.7, and 5.8 in linear response theory 
correspond to inclusion of the nonequilibrium vertices in 
diagrams 4.3 and 4.4, along with diagram 4.5. 

5. THE COMOVING COORDINATE SYSTEM 

As we mentioned before, use of a CCS to describe the 
electron-phonon interaction allows us to ignore inelastic 

FIG. 5. Diagrams which contribute to the conductivity in the linear-re- 
sponse method. For asymmetric graphs only one diagram is shown. 

FIG. 6. Vertices which describe the electron-phonon interaction and the 
self-energy diagrams of electrons in the CCS. 

scattering of electrons by impurities, which significantly 
simplifies the calculation. 

The bare electron-phonon interaction vertex in a CCS 
 equal^^.'^.^ 

For longitudinal phonons, inclusion of screening effects 
leads to the vertex 

where the vertex g!', is defined in ( 3  1 ) . For transverse phon- 
ons, the weak screening implies that the vertex r, retains the 
form ( 60). 

Renormalization of the vertex T, due to impurities 
leads to the vertex rf shown in Fig. 6. In the case of longitu- 
dinal phonons the vertex ( r f  ): calculated with equilibrium 
distribution functions coincides with the vertex Af; (36), 
and the nonequilibrium correction satisfies 6, Tf = 0. For 
transverse phonons, on the other hand, the equilibrium ver- 
tex satisfies rf = 0 while the nonequilibrium vertex satisfies 
S,(Tf)t  = -S,Af;,whereS,Aisdefinedby (52).  

In solving this problem by the kinetic-equation method, 
we encounter the self-energy diagrams shown in Fig. 6. Cor- 
rections to the self-energy from these diagrams are calculat- 
ed in a way analogous to the corrections from the diagrams 
in Figs. 4.2 and 4.3 discussed in Section 3. Let us simply 
exhibit the final results for the interference contributions 
from the diagrams of Figs. 6.1, 6.2: 

The total correction, as we could have anticipated, coincides 
with expression (57). 

6. IMPURE FERROMAGNETIC METALS 

The approach used in this paper can be applied to find- 
ing interference corrections to the impurity resistivity of a 
metal due to interactions of electrons with any Bose excita- 
tions. Let us discuss, for example, the impure ferromagnetic 
metal. The interaction of electrons with magnons we will 
describe by the s-d exchange ~amiltonian." When we in- 
clude only the one-magnon processes 
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FIG. 7. Vertices for the electron-magnon interaction. 

where a: is a magnon creation operator, J is the exchange 
integral, and N is the number of magnetic atoms with spin S. 
The magnon Green's function and magnon spectrum have 
the form 

where O, = a J  2 / ~ ,  ( a  - 1 ) is the Curie temperature. 
The spectrum of electrons for each of the spin-split sub- 

bands is given by the equation &,, = (p2/2m) 7 JS, while 
the vertex A, ,  related to magnon absorption and the vertex 
A , ,  related to magnon emission according to (64) satisfy A,, 
=A,, = - J (~s /N) ' ' ~ .  

Following Section 2, we introduce the effective vertices 
(A,, ) f;, and (A,, )f; (Fig. 7), which take into account elec- 
tron-magnon impurity interference to lowest order. The ver- 
tices (A,, ): and (A,, )I;, calculated by including the equi- 
librium distribution functions, are analogous to the vertex 
A:, in (36), and can be obtained from (36) by substituting 
A = A:, for A,, and A,, respectively, where 

When the conditions qT>qo = WS/v,, q , l )  1, ~ q $  
= Tare fulfilled, the subband splitting can be neglected and 

Then corrections to the impurity conductivity due to elec- 
tron-magnon-impurity interference can be obtained if in the 
diagrams shown in Figs. 4.2, 4.3, or in Figs. 5.1-5.5, which 
contain the vertexgql, we substitute for the latter the quanti- 
ty J(2S /N) ' I 2  and take into account (65). Finally we obtain 

In the opposite case, where qT 4q0,W;S7> 1, we have 

At+= (A,,) '=i(S/N)'"/BSz, (70) 

while the nonequilibrium corrections to the vertices satisfy 
SPA,, =SqA,, =o.  

Including diagrams like those in Figs. 4.2 and 4.3 for 
each subband, and adding the results, we obtain 

Let us note that Aue.,,,, from (69) and (71), just as for 
Aue~,,,,, from (57), contains functions only of the electron 
temperature. Equations like (69), (7 1 ) but containing a de- 
pendence on the magnon temperature were obtained in Ref. 
13. An important difference between our results and theirs is 
the positive sign of the correction (71 ) to the conductivity 
Age-,,,, for q, <go, which leads to a minimum in the resis- 
tivity. 

The reason for the disagreement can be found in the fact 
that in Ref. 13 what is calculated is not the correction to the 
impurity resistance but rather the imaginary part of the elec- 
tron self-energy, which is artificially supplemented by a 
"transport factor." This approach makes it impossible in 
principle to include any effects of quantum interference in 
the resistivity. 

7. CONCLUSION 

The overall features of the low-temperature behavior of 
the resistivity of an impure metal are determined by elec- 
tron-electron interaction processes,' and also the electron- 
phonon-impurity interference processes discussed in the 
present paper, along with the inelastic electron-phonon pro- 
cesses. According to the results of Sections 3-5, when we 
include the corrections Au/uo = - Ap/po, the impurity re- 
sistivity due to electron-phonon-impurity interference 
Ape,,,,, is determined by Eq. (57); the contribution due to 
the longitudinal phonons has a negative sign, while the one 
due to transverse phonons is positive. Keeping in mind that 
the longitudinal velocity of sound is larger than the trans- 
verse u, > u,,l4 we find that the total correction Ape,,.,,, 
turns out to be positive, resulting in an increase of the resis- 
tivity with temperature. 

In Fig. 8 we shown the temperature dependence of the 
resistivity of an impure conductor, where Ape-,, and 
Ape,,,,, are calculated using Eqs. (49) and (57) along 
with the expression from Ref. 1 for Ap,, , i.e., 

As is clear from Fig. 8, the resistivity first decreases due 
to Ape,, and then increases because of Ape-ph.imp and Ape,, . 
The correction Ape,,,,, , which is quadratic in temperature, 
turns out to be appreciable over a wide temperature range, 
which makes possible its detection in experiments. 

Turning to a discussion of the temperature dependence 
of the resistivity of impure ferromagnetic metals, we note 

FIG. 8. Temperature dependence of the resistivity for the following pa- 
rameter values: E ~ T  = 10, cF/pFu, = 100, /j = 1.  For comparison, curve 2 
is drawn without including Ape.,, .,,, . 
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that for the characteristic value J-0.1 E~ the condition q, 
= q, is fulfilled at a temperature To-- 10 K, while the in- 
equality q,l 9 1 is valid when the impurity concentration is 
not too high. In the low-temperature region T< To, the resis- 
tivity is determined by the magnitudes of Ap,, , 
and Ap,,,,,, ; the first two of these are negative and give rise 
to the resistivity minimum. For T> To, the resistivity grows 
at first due to and and then due to Ape., 
and Ape,, . In low-dimensional systems the quantity Ape, 
becomes appreciable' and for T <  To the relation Ap, 
%Ape.,,,, holds. Actually, in recent experimentsl%n thin 
films of iron the resistivity minimum was determined entire- 
ly by electron-electron interaction effects. 

In conclusion, we note that in order to identify experi- 
mentally the corrections discussed in this paper to the resis- 
tivity of an impure metal, it is necessary to investigate not 
only the temperature behavior of the resistivity but also to 
measure the dependence on the electron mean free path. 

The authors express their deepest gratitude to B. L. 
Al'tshuler for useful discussions, and M. E. Gershenzon and 
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