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We propose a deformation mechanism which is linear in the amplitude of the external variable 
electric field for generating longitudinal ultrasound normal to the surface of a degenerate 
conductor. The effect is due to the anomalous penetration of this field into the conductor, 
whose carriers have a long mean free path I: perturbations of the electron density are due both 
to intrinsic elastic lattice vibrations (with wave vector k z o / S ) ,  and to induced vibrations 
(with wave vector ?t z (w + iv)/u,, where o and S are the frequency and speed of the 
ultrasound, and v and u, are the collision rate and Fermi velocity of the carriers), and the 
imbalance between these two factors at each point in the conductor is responsible for the 
generation of ultrasound. We show that the amplitude of the elastic vibrations excited 
increases with increasing I and w. Measurements made on monocrystalline tin at liquid-helium 
temperatures bear out the observability of the effect, which can provide information about the 
diagonal components of the deformation potential tensor of a degenerate conductor. 

In the present paper, we propose a new mechanism for 
remote excitation of longitudinal ultrasound in degenerate 
conductors. The prediction of various mechanisms for di- 
rectly transforming electromagnetic energy into acoustic en- 
ergy, as well as the search for such mechanisms and their 
implementation, is of interest in its own right, and has al- 
ready found its way into practice.'.' Moreover, the wave 
transformation phenomenon can be used to obtain informa- 
tion about important characteristics of conductors, in par- 
ticular, about the components of the electron deformation 
potential tensor. Research along these lines has thus far been 
limited to consideration of the conversion of a transverse 
electromagnetic wave into ul t ra~ound.~ When a constant 
magnetic field H, is present, an induction mechanism is re- 
sponsible for the transformation, and when H, = 0, it is de- 
formation, which is effective when the anomalous skin effect 
comes into play. Under those circumstances, an electromag- 
netic wave generates transverse ultrasound which, as has 
been demonstrated by a multitude of experimental and theo- 
retical ~ tud i e s ,~ - ' ~  makes it possible to determine the nondia- 
gonal components of the deformation potential tensor. The 
proposed conversion mechanism seems to hold promise for 
determining the diagonal components of this tensor (see also 
Ref. 14). When a transverse electromagnetic wave is con- 
verted into acoustic form, diffuse reflection of electrons by 
the surface is responsible for the appearance of concentrated 
forces right at the boundary, which can be treated as an addi- 
tional source for the generation of elastic vibrations.15 AS we 
shall see, this connection of force at the surface also occurs, 
in the case we are considering, with specular reflection of 
electrons as well. 

1. The penetration of a variable (and, naturally, nonun- 
iform) electric field into a conductor destroys the equilibri- 
um between conductor electrons and the ion lattice of the 
crystal, which causes the latter to vibrate. The acoustic and 
macroscopic electromagnetic fields in conducting crystals 
are related by a well known16 self-consistent set of equations, 
which includes the dynamical equation of the theory of elas- 
ticity, the kinetic equation for the electron distribution func- 

tion, and Maxwell's equations. The addition of appropriate 
boundary conditions to this system enables one, in particu- 
lar, to determine acoustic displacements based on specified 
electric and magnetic field strengths, i.e., to solve the prob- 
lem of electromagnetically excited ultrasound. 

It is well known that in a quasistatic longitudinal elec- 
tric field (E = Ex ), the surface of a conductor occupying the 
region of space x>O is subject to a pressure 

wherep, is the unneutralized charge density induced by the 
field. A varying pressure naturally generates an acoustic 
wave in the conductor. This conversion mechanism, which is 
usually known as electrostatic acoustic transformation 
(ESAT), has been observed experimentally many times (see 
Ref. 17, for example). It is clear that the force corresponding 
to this mechanism is quadratic in the applied variable field 
strength. 

In degenerate conductors, however, even to a linear ap- 
proximation in E(O), there is another possible mechanism 
for generating longitudinal sound which is associated the 
anomalous occurrence of a variable electric field in a con- 
ductor whose carriers have a long mean free path.18 It is due 
to the deformational interaction of the nonequilibrium elec- 
tron subsystem with acoustic vibrations of the lattice (see 
Ref. 16): 

where A,, is the component of the deformation potential 
after subtraction of its mean value at the Fermi surface (to 
order ofmagnitude, A,, is the same as the Fermi energy E, ) . 
In the dynamical equation (2) ,  p is the crystal density, S is 
the speed of sound," and angular brackets signify an average 
over the Fermi surface; the temporal factor 
exp( - iwt) has been omitted both from displacements 
(U = u ( x )  ) and from the nonequilibrium increment (&/ 
~ E ) X  to the electron distribution function f,; primes denote 
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differentiation with respect to x. 
The force on the right-hand side of (2)  acts on the ion 

lattice of the crystal. At the same time, the conductor as a 
whole is electrically neutral, and to a linear approximation 
in the external electric field, it must remain in mechanical 
equilibrium. This means (cf. Ref. 15) that its surface is sub- 
ject to additional pressure from the nonequilibrium electron 
gas, due to the integral of the force (2)  over the entrie thick- 
ness of the sample, and taken with the opposite sign. Thus, if 
the surface of the sample is not subject to any external me- 
chanical forces, the boundary condition there can be written 
in the form 

m 

pSauf (0) = - Jdx<haf  (x) )=<hX (0) ). 
0 (3  

2. In order to solve this problem quantitatively, it is 
necessary to assume a specific form for the dispersion rela- 
tion of the carriers and the boundary condition imposed on 
their distribution function. We will illustrate the effect of the 
deformation mechanism for transformation with the simple 
case in which the electron Hamiltonian is quadratic in the 
quasimomentum, and the xx-component of the deformation 
potential tensor can be represented in the form 

where v, = (v, ),,, is the electron Fermi velocity. In that 
case, the force on the right-hand side of (2)  can easily be 
represented, with the aid of the kinetic equation and Max- 
well's equations, in terms of the electric field E ( x )  within the 
metal [we assume that its value E(0)  outside the metal is 
given ] : 

A 
uu+2fu=- [E"-a' ( E  + E-E (0) 

Sa 4nepSa E-l 

Here E is the permittivity of a conductor with carrier density 
n, 

and w, is the plasma frequency, which under actual experi- 
mental conditions is much greater, for metals and semime- 
tals, than both the freuqency of the electric field and v, the 
reciprocal of the electron relaxation time. In the quasistatic 
case, the parameter a - 31'2wo/v, is practically identical 
with the decrement of the exponentially decaying part of the 
electric field. Hence, it is already clear that the latter does 
not play an important role in the excitation of sound it will be 
evident in what follows that the effect in question is due to a 
"pulling field"I8 which arises in the conductor. 

The equation to determine the field is obtained by dif- 
ferentiating the Poisson equation with respect to x, giving 

Taking acoustic displacements into account, this may be 
written out explicitly as 

m 

io-v P ( x )  = 

the subscript " + " signifies integration over that part of the 
Fermi surface where u, > 0. 

Equation (6)  assumes specular reflection of electrons 
by a metal ~urface.~ '  Note that when sound is excited by a 
transverse electromagnetic wave, the surface force is zero 
when electron reflection is specular, since at the surface, 
electrons do not lose the momentum acquired from the elec- 
tric field. In the present case, the acquired momentum is 
directed along the normal, and the nature of the reflection 
does not play so important a role. The occurrence of the 
surface force (3)  is a consequence of a loss of momentum by 
electrons at the boundary of the metal. Rigorously specular 
reflection simplifies the treatment; as shown previously in 
Refs. 18 and 19, taking surface scattering of the carriers into 
account does not qualitatively change the distribution of the 
longitudinal electric and acoustic fields in the conducing 
half-space. 

The set of equations (4)  and (6)  and the boundary con- 
dition ( 3 )  completely describe the self-consistent distribu- 
tion of the acoustic and electric fields in the conducting half- 
space x>O. Continuing the unknown functions u(x)  and 
El (x) = E(x )  - E(O)/& to negativex as odd functions, this 
system may be solved using Fourier transform  technique^.^' 
Eliminating El ,  for the Fourier transform of the acoustic 
field w 

up = x J dx u (x) e i p  (ixpx) , x= (o+iv) /uo (8 
- w  

we obtain 

where we have used the notation 

and u ( + 0)  is the boundary displacement, which must be 
determined from (3) .  The dispersion relation 

may be expressed in terms of the Fourier transform of the 
kernel Q(x)  [see ( 7 ) ] :  
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It is possible to prove that in the lower half of thep-plane, the 
solution up has only two singular points: close to - a, there 
is a zero of the dispersion relation ( 1 1 ) at - p,, and there is a 
branch point at p = - 1. The region near the zero of the 
permittivity of the metal [the latter is equal to the denomina- 
tor in ( 11 ) multiplied by 3 ( 1 - &)p-,] contains no singular 
points of u p ,  i.e., the exponentially decaying part of the elec- 
tric field drops out of consideration, as indicated above. This 
circumstance is a consequence of the special form of the de- 
formation force (2)  ( (A,, ) = 0) ,  which reflects the quasi- 
neutrality of the metal. With all this in mind, the solution 
satisfying the boundary condition (3)  can be represented in 
the form 

where the integration contour C = C, + C,, consists of two 
"loops": the first (C, ) encompasses the pole at - p,, and the 
second surrounds the cut from the branch point at p = - 1 
to infinity along the realp-axis. The acoustic wave u,, (x) is 
the residue of the integrand in ( 12) at p = - p,: 

The prime here denotes a derivative with respect top. Note 
that there is an integral over C, in the numerator. It is well 
known (see Refs. 18 and 19) that there is a branch point 
because the electron gas is degenerate, and the electrons 
have a maximum (Fermi) velocity v,. Electrons with 
u, = v, produce an anomalous component of the longitudi- 
nal electric field-the "pulling field"-which penetrates a 
distance on the order of the mean free path 1 = u,/v into the 
metal. It is xpparent from eq. (13) that it is precisely this 
field which is responsible for the linear acoustic excitation 
mechanism. 

3. Equations ( 12) and ( 13 ) provide an exact solution of 
the problem for arbitrary values of the input constants 
(which permit a quasiclassical description). As applied to 
the usual conditions, however, these expressions contain the 
very small parameter 

i.e., the square of the ratio ofthe Debye length to the acoustic 
wavelength. In a typical metal, at a frequency w = lo9 sec- ', 
we have ( o / a S ) * z  lo-', and this grows very slowly (pro- 
portional to n-'I3) with decreasing electron density, so we 
will not consider cases in which the inequality of ( 14) does 
not hold, which are only possible at very high frequencies in 
degenerate semiconductors. Making the basic approxima- 

tion in the dispersion relation ( 1 1 ) may be written 
in the form 

D,=p2-a2+~ [ 3 + p 2 Q n l ( l - Q p )  1, 
and its zero is at 

It is necessary to have 1 y 1 ' I2 4 la 1 in order forp, not to differ 
too much from 8. Note that when /a  / % 1, 1 y 1 - 1, while when 
la1 4 1, Iyl -a/., whereupon we get the constraint 1% (S/ 
v,) ( S  /W ) in the second line of Eq. ( 15' ) . 

Thus, the acoustic wave excited by the electric field 
takes the form 

u,, (x, t )  =A exp(ixp,x-iot).  (16) 

For typical metals, the collisionless damping coefficient 
(with U,/Y $ S /w), which is well known from Ref. 20, is of 
order w/v,, and the amplitude, according to ( 13) and ( 14), 
is 

A straightforward but somewhat tedious calculation of 
the integral in the numerator (performed numerically for 
la1 -0) gives 

The normalizing integral in ( 17) is basically determined by 
the residue at - p,. As a result, 

The amplitude of the ultrasound which is excited first in- 
creases rapidly with wl /S; as might be expected, the "colli- 
sionless" regime is the most favorable, where the electron 
mean free path 1 is much greater than the acoustic wave- 
length S/w. For w $v,  the frequency dependence and the 
dependence on the mean free path approaches saturation 

We can compare this result with the amplitude of an 
acoustic wave generated by the quadratic transformation 
mechanism: 

1 UESAT I =E2 (0) I16npSo 
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(see Ref. 17). Since the latter falls off with increasing fre- 
quency, we find that at frequencies greater than 

0,  = 
evoE ( 0 )  = eE (0 )  

4A ln ( vo /S)  mu, ln ( vo /S)  ' 

the linear deformation mechanism for generating ultra- 
sound is dominant. This estimate is made under the assump- 
tion that w, corresponds to perfect collisionless conditions, 
i.e., that w, $v, but in fact, there is little change if  the much 
weaker constraint w, $ (S/u,)v is employed. Assuming for 
the numerical estimate that E ( 0 )  = 1 CGSE unit, we obtain 
w, =: 10"1O9 sect'. 

In pure conductors at low temperatures, the experimen- 
tal conditions for the two effects are the same. The presence 
of an acoustic signal at the frequency of the applied field 
(and not at double the frequency, as in the case of ESAT and 
an increaing amplitude as a function of wl /S would be indi- 
cative of a linear conversion mechanism. 

4. The wave ( 16) does not exhaust the displacement 
field excited in the conductor: there is another significant 
contribution at high frequencies w > v from the branch point 
up, usually referred to as a quasiwave (cf. Ref. 19). This part 
of the displacement field u,, ( x )  is described by the integral 
over C, in ( 12), and can be put in the form 

where 

When x g I, the damping in this expression with increasing x 
is due only to the increase in oscillation frequency of the 
integrand, and is not exponential, i.e., a quasiwave is typical- 
ly produced in the conductor at a distance of one mean free 
path length I of the carriers. The values ofp which are impor- 
tant in determining the magnitude of the integral ( 19) lie in 
an interval u,/wx above the lower limit, so for x$S/w, the 
integrand can be expanded in powers of ( ~ / a ) ~ .  

h dp exp (ixpx) 
.an ( x )  - Z;. j 

I { I +  (1/2p)ln[ (p-1) /  ( p f  1 )  ])2+n2/4p2? 

We have also dropped terms of order v/a2 compared with 
unity. It is then not hard to see that u,, is much less than A 
[see ( 17) 1, so that right down to a depth of the order of the 
distance traversed by an electron in one period of the field 
(v,/w), the solution u(x,t) is actually an acoustic wave 
( 16), moving at speed S. At large depths, however, collision- 
less damping takes place, and for w $ v, the ultimate asymp- 
totic acoustic wave in the conductor turns out to be a 
quasiwave propagating at the Fermi velocity v,, 

iAE(0) v0 
u,, ( x ,  t )  = ln-' - exp - 

nepvo2 O X  ( )  ( imivz - - imt  1 , 

5. The physical nature of the linear conversion mecha- 
nism is the following. A varying electric field which pene- 
trates a metal (to a very small depth of the order of the 
Debye length u,/w\/5, to a first approximation) causes oscil- 
lations of the electron density, which in a degenerate Fermi 
gas are carried by electrons into the metal at the Fermi veloc- 
ity u, a distance equal to their mean free path length." Being 
associated by virtue of the deformation potential with lattice 
displacements, these oscillations of the electron density ex- 
cite both intrinsic vibrations (with wave vector k z w / S )  
and induced vibrations (x z (w + iv/u,) of the lattice. 
These waves do not cancel one another anywhere in the met- 
al, thus giving rise to the observed effect. 

To conclude this point, we make the following com- 
ment. Just as in other boundary-value problems, it appears 
here at first glance that there is some difficulty associated 
with the fact that "bulk" effects such as the deformation 
potential and even the quasiparticle dispersion relation lose 
their meaning, strictly speaking, at microscopic distances 
from the crystal boundary. Our calculations indicate, how- 
ever, that in the present case the behavior of the deformation 
force [see (2 ) ,  (4)  1 at macroscopic depths comparable to 
the wavelength of the excited acoustic wave is important [in 
the integral (17) for the amplitude, only wave vectors ?r, 
less than or of order w/S are significant]. The extrapolation 
we have made therefore does not detract from the applicabil- 
ity of the results obtained. 

6. Preliminary measurements made at liquid-helium 
temperatures on monocrystalline tin bear out the observ- 
ability of the effect. The measurements were made by the 
pulse-echo method at a frequency w ~ 6 . 3 . 1 0 '  sec-I, with 
the ultrasound propagating in the direction of the [OOl] 
fourth-order symmetry axis; at T = 4.2 K, the parameter 
kl=: 12. The linear-generation amplitude was approximately 
1% of the amplitude of ultrasound excited by the ESAT 
mechanism at twice the frequency, which is qualitatively 
consistent with our calculations. 

As can be seen from Eqs. ( 16) and ( 17), quantitative 
measurements of the amplitude of longitudinal ultrasound 
excited by a longitudinal electric field in degenerate conduc- 
tors can serve as a source of information about the diagonal 
components of the deformation potential tensor, to which 
we plan to devote a separate communication. 

"We assume that the normal to the surface of the sample corresponds to a 
"good" crystallographic direction, along which a purely longitudinal 
wave can propagate. 

2)Equation (4 ) ,  which derives only from the Boltzmann equation (with 
the collision integral in the form Y(X - (x) ) / (  1) ) and Poisson's equa- 
tion, does not depend on the nature of the reflection. 

"AS follows from the continuity condition for electric displacement, the 
field in the interior of the metal tends to the limit E(O)/&, so that 
E l  ( + w ) = 0. It is easily seen that the constant E(O)/& also drops out 
of the deformation force (4).  
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