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The transparency of a finite-area specimen acting as a tunneling barrier for electrons is 
considered. When the barrier parameters undergo spatial fluctuations, the specific 
transparency is determined by punctures, i.e., by infrequent, widely spaced regions whose 
transparencies are exponentially large relative to the typical transparency. Because the number 
of perforations and their transparency for a specimen of finite thickness are random variables, 
the specific transparency varies from one specimen to another. The distribution functions for 
the logarithm of the transparency are calculated for specimens of large, small, and 
intermediate area. When an external factor such as an applied electric field is varied, a 
distinctive type of mesoscopic effect arises in which the logarithm of the transparency 
oscillates over the width of the distribution function. The oscillations are characterized by the 
correlation function for the transparency logarithm, which is calculated for several external 
field strengths. 

I. INTRODUCTION 

We consider a flat specimen offinite area which acts as a 
tunneling barrier for electrons. The barrier parameters are 
assumed to fluctuate randomly in space due, e.g., to surface 
roughness or random fluctuations in the potential of impuri- 
ties present in the barrier. Since the barrier transparency 
depends exponentially on its dimensions, even small fluctu- 
ations of the latter can cause the local transparency to vary 
exponentially. If the area of the barrier is large, the main 
contribution to the average transparency will come from 
perforation, i.e., from exponentially sparse regions in which 
the transparency is exponentially large compared to the typi- 
cal value. To calculate the average transparency one must 
consider a perforation which is optimal, i.e., for which the 
transparency times the probability of formation is a maxi- 
mum. Several special cases of this problem have been solved 
in Refs. 1-5. 

Let us now suppose that the area of specimen is so small 
that the average number of optimal perforation over its area 
is less than 1. Clearly, in this case the specific transparency 
will fluctuate by up to - 100% from one specimen to the 
next, and its logarithm will thus fluctuate by an amount of 
the order of unity; in this case, only the distribution function 
of the specific transparency for a population of specimens is 
meaningful. This situation was first analyzed in Ref. 6, 
where wave transmission through a finite system of indepen- 
dent filaments containing randomly distributed impurities 
was studied. It was shown there that the maximum of the 
distribution function (DF) for the logarithm of the specific 
transparency is determined by the most transparent of the 
perforations (the number of such perforations per specimen 
is typically of order unity). The distribution function itself 
was not calculated. 

In this paper we calculate the D F  for the logarithm of 
the specific transparency for a population of specimens. We 
show that the DF differs qualitatively for specimens with 
large, small, and intermediate areas. For large areas the D F  
is gaussian with width inversely proportional to the square 
root of the area; the position of the maximum is determined 
by the optimal perforations and is independent of the area. 
For intermediate areas, the maximum of the D F  corre- 

sponds to the same transparency as in the large-area case, 
but the D F  is not gaussian; its width is much less than unity 
and depends in a very complicated way on the area. Finally, 
for small areas the area-dependence of the D F  maximum is 
described by the results in Ref. 6, while the width ofthe D F  is - 1 and increases with decreasing area. 

Let us now assume that the local transparency of the 
barrier varies exponentially in response to some external 
agent (e.g., due to a change in barrier shape caused by an 
applied electric field). The resulting change in the transpar- 
ency of the perforations will then vary from one puncture to 
another, and hence so will their relative contributions to the 
specific transparency of the specimen. In addition, the num- 
ber of perforations giving the dominant contribution to the 
specific transparency may also change. In this paper we ana- 
lyze how the D F  changes in response to an external agent 
and show that the effects are equivalent to those produced by 
varying the area of the specimen. 

We will also show that changes in the external agent 
alter the properties of the perforations responsible for the 
characteristic deviation of the transparency logarithm for a 
given specimen from its average value over a population of 
specimens. The effect of changing the external agent is thus 
equivalent to changing the random configuration of the im- 
purities in the specimen (or the random potential), i.e., to 
replacing one specimen by another. It should therefore be 
possible using a single specimen to observe a distinctive 
mesoscopic effect similar to the one studied in Refs. 7-9, in 
which the transparency logarithm was found to oscillate 
over the width of the D F  as the external agent was varied. 
The oscillations are characterized quantitatively by the cor- 
relation functions of the transparency logarithm for various 
types of external agents. In this paper we calculate the corre- 
lation function for the specific barrier model considered in 
Ref. 5. 

2. DERIVATION OF THE FUNDAMENTAL EQUATIONS 

We assume for definiteness that local fluctuations in the 
impurity concentration N ( r )  are responsible for the forma- 
tion of the perforations. The specific transparency of the 
specimen is 
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where Ani is the number of perforations of the ith kind over 
the entire specimen [they are characterized by their concen- 
tration distribution Ni ( r ) ,  which is assumed known]; 
exp [ - vi (F) ] is the transparency of perforations i for a 
specified external agent F; S is the specimen area, and S A'2 is 
the characteristic dimension of the perforations (S is given 
in units ofS, in what follows). It is important to note that the 
perforations contributing the most to a, are separated by 
distances much greater than S;'*, i.e., they are formed by 
different impurities. The probability of finding An, perfora- 
tions of type i in a specimen is therefore given by the Poisson 
distribution 

where is the mean number of perforations of type i 
present on a surface of area S. We use the formula 

for the specific transparency a, and define the DF for Q for a 
population of specimens by the formula 

where ( . . . ) denotes an average over specimens performed 
using the DF (2).  Rewriting f, (Q) as 

inserting (2 ) ,  and replacing the 6-function by its Fourier 
expansion, we obtain 

e-Q 
1. (9)  = - d l  exp  ( i t e -Q)  I: e x p  (-G) 

2n-- An1=0 i 

x (I ln(exp{-  ( i t l S )  exp [ -u i  ( F )  ] ) ) A ~ I  
( A n , )  ! ( 6 )  

The sums over An, are easily calculated for each i. 

e-Q 
fF ( Q )  = - 1 at e r p  (ite-O) 

2n - x  

The final expression for the DF is obtained by replacing the 
product in (7) by an integral over the argument of the expo- 
nential. The integration is over all impurity concentration 
fluctuations. The results can be expressed conveniently in 
terms of 

the average concentration of perforations with a specified 
transparency logarithm u. Here exp{ - fl [N(r)  ] ) is the 
probability density for the formation of a fluctuation N(r) ,  
and exp{ - v [N(r  ) , F ]  ) is the barrier transparency near the 
fluctuation. Expression (7) then becomes 

e  - 
jr ( Q )  = - d t  exp { i t e -Q+S  J du pr ( o )  

2n - m  0 (9)  

We will also be interested in the pair distribution function 

It describes how the transparency logarithms for a given 
specimen are correlated when F changes. An expression for 
4F1,F2 (Ql,Q2) can be derived from Eq. (10) by the same 
method used to obtain Eq. (9)  for fF (Q) from (4):  

m m 

X e s p  ( i t , e -Q1+i t ,e -Q2)X , , , ,x  ( i t , ,  i t , ) ,  (11) 

where 

{ e x p  [- ( ~ e - ~ + ~ e - u ~ ) ]  -I}}, 
S S 

The correlation function for the transparency logarithm is 

K(F,, F,)=((ln or,--(ln a , , ) )  (ln o.,-(In OF,))), 
(14) 

which can be expressed in terms of the function ( 12) as fol- 
lows (see Appendix 1 ) : 

c.7 rn 

Calculations based on Eqs. (9) ,  ( 11 ) and ( 15) require that a 
specific barrier model be chosen. In this paper we consider a 
barrier in ap-n semiconductor junction, although we will see 
that the choice of model does not affect the qualitative re- 
sults. 

3. DESCRIPTION OF THE MODEL 

Figure 1 shows the band diagram for a p-n junction. 
Interband tunneling of electrons is responsible for the cur- 
rent that flows when a large potential difference is applied 
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between the n- and p-type regions. Since there are no free 
electrons in the region 0 < x < x, , the distribution of charged 
impurities determines the shape of the barrier beneath which 
the electrons tunnel. The barrier height is fixed and equal to 
the gapwidth E, , however, its thickness may vary with fluc- 
tuations in the charged impurity concentration. These fluc- 
tuations are particularly important when the mean donor 
and acceptor concentrations ND and NA are nearly equal, 
i.e., the condition ND - NA are nearly equal, i.e., the condi- 
tion ND - NA <ND - NA for strong compensation is satis- 
fied; this is because the average barrier thickness depends on 
the difference - &'A , while the thickness fluctuations de- 
pend on the sum ND + N, . Regions of high donor or low 
acceptor concentration where the barrier is much thinner 
than normal, can also act as perforations in this model. The 
electric field applied to thep-n junction serves as the external 
agent. It was shown in Ref. 5 that most of the contribution to 
the transparency comes from perforations that form due to 
gaussian fluctuations in the impurity concentration, - 
i.e., fluctuations for which N ( r ) g & ,  NA, where 
N(r )  = ND ( r )  - NA ( r )  - ND + NA . In this case we have 

for the formation probability of a fluctuation exp( - R ) .  
Let V(r) be the component of the potential produced by the 
fluctuation N(r) ;  V(r) and N( r )  are related by the Poisson 
equation. The logarithm of the electron tunneling probabil- 
ity is given by5 

X, 

where the integral is along the axis of the perforation and m 
is the effective electron mass. The quantity pF (u)  can be 
found by substituting Eqs. ( 16), ( 17) into (8)  and calculat- 
ing the functional integral by the method of steepest descent. 
To find the result to exponential accuracy, one must find a 
distribution ~ ( r )  minimizing R subject to the constraint 
v{N(r), F} = u. A calculation similar to the one in Ref. 5 
yields the result 

Here a, = fi2x/me2 and EB = me4/2fi2x2 are the Bohr radi- 
us and electron energy, x is the dielectric constant, and the 
characteristic electric field is 

Zr2("4) E;'.E '. ( R  +R ) ';aB" Fo = 
3 

B D A  
(20) 

Formula (18) is valid when F<FO; a qualitative derivation 
of ( 18) for F = 0 is given in Appendix 2. 

In our model the function ( 13), which will be used to 
calculate the transparency logarithm correlation function 
(15), is equal to 

QoH ''I Fo 
P F ~ , F ~ ( U I ,  ~ 2 )  = ~ F ( E )  - 6Fii 

where F =  (Fl +F2)/2, ii = (u, +u2)/2, S F = F ,  -F2, 
Su = u, - u2, and   is the dimensionless ra t ioF/~ , .  Expres- 
sion (21) is valid when Su<ii, SF&, in which case the 
concentration fluctuations N( r )  contributing most to the 
functional integral (13) differ only slightly from the opti- 
mum fluctuation determining the functionp, ( u )  in (8).  We 
have used this fact in deriving Eq. (2  1 ), which shows that for 
perforations with transparency exp( - ii) in a field F, the 
change S F  in the field is described by a gaussian distribution 
peaking at Su, where Su is equal to the change in the trans- 
parency - logarithm for a perforation which is optimal at 
F = F a n d u  = i i .  

The width of this distribution is of the order of ii6F/ 
Fo(Q&) ' I2  and depends on H. We have H -  1 when F-Fo; 
however, when calculating H for F<Fo it is important to 
note that the potential distribution V(x) on the axis of an 
optimum perforation (Fig. 1) is of the form 
V(x) + E, - (x, - x ) ~ ~ ~  for F-+O and x, - x gx ,  (Ref. 5) ;  
the electric field therefore vanishes as (x, - x) ' I3  when 
x -x, . A small region x, - x &x, of the perforation is thus 
most sensitive to changes in the external field, and fluctu- 
ations of the charged impurity concentration in this region 
therefore give the dominant contribution to the characteris- 
tic spread in Su and hence to H. This contribution increases 
as x, - x  decreases and depends on the minimum value 
x, - x = 2, determined by the requirement that the fluctu- 
ation charge in a region of volume Z3 near x = x, cannot be 
less than the charge of one electron. In this case one finds 
that His  much less than unity and is equal in order of magni- 
tude to (F/Fo)3 for F&Pand  to (F/F,)~ for F&, where 

where Q,, < 1 is given by 

FIG. 1. Band diagram for a p-n junction. The positions of the top of the 
valence band ( u )  and the bottom of the conduction band ( c )  are shown 
near a puncture (solid line) and in the absence of fluctuations (dashed 
line). The arrow shows the tunneling path of the electron; x ,  is the turning 
point. 

4. QUALITATIVE ANALYSIS 

We first consider the case of zero applied field F = 0. 
The specific transparency averaged over a population of 
specimens is given by the contribution from all the perfora- 
tions, 

m 

o= 1 dug ( a ) .  (22) 
0 
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where 

g ( u )  =e-"p,(u) =esp (-u-Q,"4zu), ( 2 3 )  

and is equal to the perforation transparency u  times the con- 
centration of perforations with transparency u  [Eq. ( 18) ]. 
Since the integrand g ( u )  is sharply peaked at 
u  = u,,, = Q,/2$ 1 with width ju - Qo/2j -Q ,"~,  the 
average transparency is determined primarily by the opti- 
mum perforations with transparency exp( - Q , / 2 )  and is 
equal to 

(numerical factors multiplying the exponentials will be ne- 
glected in this section). The derivation of ( 2 4 )  assumes that 
the specimen area S  is exponentially large, so that the num- 
ber of optimum perforations in the specimens is also large. 
This condition can be expressed as 

Spo(u, , t )~l .  ( 2 5 )  
Introducing the parameter 

In S 
Y = -- - I n s  

I In pa ( u o n r )  I Qo 
we can rewrite ( 2 5 )  as exp[Q,,(v - 1 ) / 2 ]  $ 1, which for 
Q,$ 1 reduces to the condition Y > 1 .  If ( 2 5 )  fails (v  < 1 ) 
then most specimens will not contain even a single optimum 
perforation, and in this case the few perforations with the 
largest transparency will give the dominant contribution to 
the specific transparency. This means that when calculating 
the specific transparency for a typical specimen, we must 
take the lower limit of the integral in ( 2 2 )  to be u = u f ,  
where uf is given by the conditions S p , ( u f )  - 1 ,  so that 
exp( - u f )  is the maximum transparency of the perfora- 
tions in a typical specimen. Recalling the definition ( 2 6 ) ,  we 
obtain 

Since the integral ( 2 2 )  in this case is determined by the value 
of the integrand at u  = u f ,  we have 

for the specific transparency of a typical specimen. This 
expression agrees with ( 2 4 )  when v = 1 (more precisely, 
when 1 - v -Q , - ' I2 ) .  

Expressions ( 2 8 )  and ( 2 4 )  given the specific transpar- 
ency for typical specimens of small and large area. Actually, 
however, as has already been stated in the Introduction, the 
transparency fluctuates from one specimen to another. An 
exact expression for the D F  of the logarithm of the specific 
transparency was given above in Eq. ( 9 ) ,  Sec. 2. Expressions 
( 2 4 )  and ( 2 8 )  specify the position of the maximum of the 
DF. In this section we analyze qualitatively how the width of 
the distribution function depends on the parameter v. The 
large-area case v >  1 will be considered first. The specific 
transparency of a given specimen is a random variable de- 
scribed by Eq. ( 1 ). Since the perforations are distributed 
randomly and independenly, the variance of the transparen- 
cy can be calculated without difficulty: 

where S(An ,  ) is the fluctuation in the number of perfora- 
tions of type i. Since the distribution of Ani over the speci- 
mens is given by the Poisson formula ( 2 ) ,  we have 

Inserting ( 3 0 )  into ( 2 9 )  and replacing the sum by an inte- 
gration, we get 

cs 

0 

where the function 

gives the contribution to ( ( 6 0 ) ~ )  from perforations with 
transparency e - " .  Since h ( u )  peaks sharpely at u  = Q,/ 
2312,  with width -Q,"~,  most of the contribution to 
( ( 6 0 ) ~ )  comes from perforations whose transparency is 
much greater than for the perforations determining the aver- 
age transparency, for which u  = Q,,/2. Evaluating the inte- 
gral in ( 3  1 ), we obtain 

( ( ~ o ) ' ) = Q o ' "  exp [ -Qo(v /2+2 '" ) ] .  ( 3 3 )  

The width AQ of the D F  for the logarithm of the specific 
transparency is equal to the ratio [ ( ( 60 )  2 ,  1 1'2 /u ,  apart 
from a numerical factor; using Eqs. ( 2 4 )  and ( 3 3 )  we thus 

get 
AQ=Q,-'" esp  [ - ' / 4Qo(v -4+2") ] .  ( 3 4 )  

The width of the distribution function is seen to be inversely 
proportional to S ' I 2 .  The above analysis is valid only when 
the number of perforations contributing to the variance is 
large. Since this number is 

Eq. ( 3 4 )  can be used when v > 2It2. Although Eq. ( 3  1 ) for 
the variance remains correct for 1 < v < 2'12, the principal 
contribution in this case comes from exceptional specimens 
that contain perforations with u  = (the number of 
such specimens is exponentially small). However, since the 
width of the distribution function is determined by the typi- 
cal specimens, it can be calculated by considering only the 
perforations present in such specimens. This is equivalent to 
replacing the lower limit of the integral in (31 ) by uj- given 
by Eq. ( 2 7 ) .  The width of the D F  for the logarithm of the 
specific transparency is found to be 

m 

which upon substitution of ( 2 4 )  becomes 

We see that as the area increases, the narrowing of the DF is 
much slower than predicted by Eq. ( 3 4 ) .  Equation ( 3 6 )  re- 
mains valid for v < 1, provided Eq. ( 2 8 )  is used for the spe- 
cific transparency u. The result is 
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The above analysis breaks down for v <  1, for which the iluc- 
tuations in uf from specimen to specimen become important 
near the value Q,/2v. It  is clear from the definition of uf that 
these fluctuations have the characteristic scale 

Since llnal for v<1  is nearly equal to uf [Eq. (27)] ,  the 
fluctuations in Ilnal, and hence also the width of the DF, are 
of order 1/v2 for v 1. 

We have thus far considered the case of zero applied 
field. According to Eq. ( 18), the concentration of perfora- 
tions with a specified transparency e - " increases with the 
applied field. This is because the field enhances the transpar- 
ency of all of the perforations. Indeed, perforations with 
transparency e " at a given field Fwould less transparent at 
F = 0, and hence more numerous, than perforations with 
transparency e - " in zero field. To calculate the average spe- 
cific transparency for F # 0 in the large-area case (v  > 1 ), 
one must replacep,(u) byp, ( u )  in (23).  One finds that the 
optimum perforations again correspond to u = Q0/2, and 
hence the average specific transparency is 

For small areas ( v  < 1) the transparency for F f 0 is deter- 
mined by the perforations for which Sp, ( u )  - 1, whence we 
find from Eqs. ( 18) and (26) that 

The specific transparency for a typical specimen is then 

1 
0, = - exp[-u, ( F )  ] =exp 

S 

(41) 
In addition to increasing the transparency, the applied field 
also narrows the distribution function. Here the range of 
areas Iv - 1 I < 1 is of greatest interest, since a small change 
in the field suffices to replace large fluctuations ( v  < 1)  by 
small ones (v  > 1 )  in a given population of specimens. In- 
deed, Sp, (u,,, ) % 1 is the condition for the fluctuations to be 
small; using Eqs. ( 18) and ( 2 6 ) ,  wecan rewrite it in the form 
v > 1 - 2 F  /F,. For F # 0 this inequality can clearly be satis- 
fied even when v < 1, i.e., when large-fluctuation behavior 
occurs at zero field. As was pointed out above, Eqs. (24) and 
(28) imply that the interval of v values over which the tran- 
sition from large to small fluctuations occurs is of length - Q,-'/2, which corresponds to 

in terms of the external field. In terms of its effect on the 
transparency, the applied field is thus equivalent to an ex- 
ponentially large increase in the effective area of the speci- 
mens. 

We will now consider another consequence of the influ- 
ence of the external field on the transparency of the perfora- 
tions: The logarithm of the transparency of the specimen 
oscillates as a function of F about the mean value given by 
(41). We will show this for the small-area case ( v  < 1 ), 
which is of greatest interest. We assume for simplicity that 
for some initial external field F = F *, the main contribution 
to the transparency of the specimen comes from only two 

perforations A and B of maximum transparency. The differ- 
ence between the transparency logarithm for these perfora- 
tions in a typical specimen is of order l/v2, which for v 5 1 is 
comparable to the width of the DF for the transparency log- 
arithm. The perforations A and B both become more trans- 
parent when the external field is increaed by SF. According 
to Eq. (21), the change in the transparency logarithm for 
each perforation is expressible as the sum of a regular com- 
ponent Su = - 4u$SF/F,Qo, which is the same for both 
perforations, plus a random component described by a gaus- 
sian distribution of characteristic width 

If S F  is sufficiently small, the random component in the 
transparency logarithm has little effect on the ratio of the 
transparencies for perforations A and B. However, for 

we haveSul- l/v2 SO that, roughly speaking, half of the time 
perforation B "overtakes" A when Fincreases by SF,, i.e., it 
becomes more transparent than A even though it was less 
transparent initially. As F increases further, a new perfora- 
tion Covertakes perforation A,  the transparency of the speci- 
men is determined by the sum of the transparancies of perfo- 
rations B and C, and the entire preocess is repeated. The 
transparency logarithm thus oscillates with characteristic 
period SF, and amplitude comparable to the width of the 
distribution function. These oscillations are shown schema- 
tically in Fig. 2. 

One can show that for specimens of large area ( v  > 1 ), 
the logarithm of the transparency should also oscillate with 
the same period SF, over the width of the distribution func- 
tion. The oscillations in this case are due not to competition 
among the perforations determining the transparency loga- 
rithm but rather to competitions among the much more 
transparent perforations that determine the width of the dis- 
tribution function. 

The above explanation might appear to be inconsistent. 
Indeed, the successive overtakings should cause the trans- 
parency logarithm to grow at an ever-increasing rate, where- 
as Eq. (41) predicts that the mean value about which the 
oscillations occur should depend linearly on the external 
field. In fact, however, the slopes d Iln~I/dFof the transpar- 
ency logarithms decrease with F for all of the perforations 
considered above, and one can show that on the average this 
completely cancels the faster-than-linear increase due to the 
overtakings. 

We have seen that the transparency is determined by 
perforations which are newly formed when the external field 

FIG. 2. 

1277 Sov. Phys. JETP 65 (6) ,  June 1987 M. E. Ralkh and I. M. Ruzin 1277 



changes; since different perforations form in regions of high 
impurity concentration which are remote from one another, 
this can be regarded equivalently as a reconfiguration of the 
impurities in the specimen, i.e., as a replacement of an old 
specimen by a new one. In this sense the oscillations are 
analogous to the mesoscopic oscillations in the hopping and 
metallic conductivities of a small-area specimen when the 
magnetic field changes; these oscillations are caused by in- 
terference effects associated with multiple electron scatter- 
ing.7-9 We note that in our case, the typical sample dimen- 
sions for which the oscillations can be observed are 
exponentially large. 

5. DERIVATION OF EXPRESSIONS FOR THE DISTRIBUTION 
FUNCTION 

We will carry out the calculations for the zero-field 
case, F = 0. Substituting expression ( 18) forp,(u) into (9) ,  
we can rewrite the distribution function as 

e-Q 
f(Q) = -- j d t  enp[itecQ+Iv (i) 1, 

~ J E  -- 

We first assume that v < 1. According to Eqs. (27),  (28) in 
Sec. 4, Q and u in this case are nearly equal to Q, ( v  + 1 ) /v) / 
2 and Q0/2v, respectively. It is therefore convenient to make 
the following change of variables in the integrals in (42) and 
(43 ) : 

Since u' is typically much less than Q,, the exponential in the 
first factor in (43) can be expanded to second order in the 
small parameter u1/Q0, and the integral (43) becomes 

'. 

The evaluation of (46) depends on the range over which v 
varies: 

where 

is the error integral. Formula (47a) follows by neglecting 
the second term in the argument of the exponential in (46),  
so that the integral reduces to the r-function. The real part 

of (47b) follows in precisely the same way. The imaginary 
part of (47b) can be found by expanding the exponential in 
the second factor in (46) and replacing the lower limit of 
integration by u = lnv. Formulas (47a) and (47b) assume 
that v > 0, which is no restriction since it is clear from (46) 
that I, ( - v )  = I j ( v ) .  The final expression for the distribu- 
tion function follows upon inserting (47a) and (47b) into 
(42). For the case 1 - v$Q, '/' it is convenient to center 
the distribution function near Q = Qo(v + l /v)/2 by intro- 
ducing the quantity 

Making the change of variable x = v [T ( 1 - v2) .v2] we 
obtain 

Figure 3a shows the function f calculated numerically for 
several values of v. For large positive and negative A we have 
the asymptotic formulas 

sin nv2 f(Q) = ----r(v2+l)eAvz, IT A I A I  >I, (51b) 

where 

The derivation of Eqs. (5  1 ) is given in Appendix 3. 
As shown in Appendix 3, for v g  1 the expression for the 

distribution function simplifies to 

We see that the width of the D F  increases as l/v2 as v de- 

FIG. 3. Distribution function for the logarithm of the specific transparen- 
cy for several values of the parameter v:  a: 1 ) 0.5; 2)  0.707; b: 1 .O; c: 1 ) 1.2; 
2)  1.3; 3 )  1.4. The distributions were calculated by Eqs. (50), ( 5 6 ) .  and 
(621, respectively. 
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creases, in agreement with the results of our qualitative anal- 
ysis. For the case 11 - Y I  < Q; '/, we find upon inserting 
(47b) in (42) and writing 

that the distribution function is 
m 

1 
f (Q) = - j due-nu12 cos 

nwl 

which is plotted in Fig. 3b. For large negative mismatches 
Al<O, IA,I%w,, f (Q)  decaysasw,/A~,whileforA,%w, is 
falls off as exp [ - exp ( Al/w, ) I .  The distribution function 
(56) has width - w,, for which we have the asymptotic for- 
mulas 

zu1=2 (1-v), I -VBQ~- '~ ,  

in the two limiting cases, in agreement with the results (37), 
(38) of the qualitative analysis. Expression (55) for w, can 
be used to analyze how the distribution function becomes 
narrower as one goes from large ( v  < 1 ) to small (v  > 1 ) 
fluctuations. 

An expression for the width of the D F  for / v  - 1 & 1 in 
a finite field F can be obtained by replacing v in Eq. (55) by 
Y + 2F/Fo. This can be seen formally by replacingpo(u) in 
(43) by p, ( u )  and carrying out calculations similar to the 
ones above. Thus, as was already noted in Sec. 4, the transi- 
tion from large to small fluctuations can be accomplished by 
changing the external field. 

We next examine the case v > 1, for which the width of 
the distribution is determined by the values u =:Q0/2v and 
the position of the maximum by the values u =: Q0/2. Expres- 
sion (46) for I,, was derived under the assumption that 
/ u - Q0/2v/ & Q,. Since this does not hold in the present 
case, we must first separate out the contribution from 
uzQ0/2  in the integral (43); this contribution is a sum of 
two terms: z"=zv(i)-t-Iv(2', 

where u' and v are related to u and t by Eqs. (44) and (45 ). 
Since the integrand in (58) is sharply peaked at u = Q0/2, 
the integral is readily evaluated by the method of steepest 
descent: 

Since the integral for I F) converges for I u' 1 < Q,, in deriving 

(59) we have expanded'the exponential in the first factor in 
(43) in powers of the parameter u1/Q0. As in the case of 
(46), the evaluation of the integral (59) depends on Y: 

(nQo) "' [ Qo ( 2 " - ~ ) ~ ]  
1 y ( ~ ) = - ~ 2  

2". exp 7.1, 

Qo'" 
(61b) 

X@ (F  (2'"-v) ) , 12"'-v 1 <Q;"'. 

Expression (61a) and (61b) follow from (59) in exactly the 
same way as (47a) and (47b) follow from (46). Substituting 
the sum of (60) and (6  l a )  into (42) and making the change 
of variable 

we obtain 
m 

for the distribution function f (Q), where 

Equation (63) shows that the D F  is centered at Q-Qo and 
has width - w,, in agreement with Eqs. (24), (37) from the 
qualitative analysis. Figure 3c plots the distributi~n function 
for several values of v. 

For I Y  - 2It21 <QO-113 the integral in (42) can easily 
be evaluated by substituting the sum of expressions (60) and 
(61b). The resulting distribution function is gaussian: 

f (Q) = [ (2x) ~ ~ ~ 1 - l  exp (-A,2/3w3') (65) 

with width 

J - 
Ql '  

w - 2 - ' 8  ( n ~ , )  -'I$ exp [- Q (y-i+?") ] ill'- [+ (2111-u) 
- 

Expression (65) is in fact valid for all v >  2Ii2, as is readily 
seen by expanding the integrand in (43) through second or- 
der in t, after which the integrals in (43) and (42) are easily 
evaluated. Expression (66) for the width of the D F  simpli- 
fies for Y - 2 1 1 2 % ~ ;  

~ - = 2 - ' / ~ ( ~ 9 ~ ) -  ' exp [-l/lQo (Y-4+2' ) ] (67) 

which agrees with Eq. (34) in Sec. 4 up to a numerical coeffi- 
cient. 

6. CALCULATION OF THE CORRELATION FUNCTION FOR 
THE LOGARITHM OF THE TRANSPARENCY 

As already stated in the Introduction, the amplitude 
and period of the transparency oscillations are characterized 
quantitatively by the correlation function for the transpar- 
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ency logarithm. To calculate the correlation function using 
Eq. ( 15), one must first derive an expression for the function 
x ~ , , ~ ,  (x,y) by substituting expression (21 ) for pFIsF2 
( u , , ~ , )  into Eq. ( 12). Since the oscillations should be lar- 
gest for small specimens (v < 1 ), we will do the calculations 
for this case. We showed in Sec. 4 that for v < 1 the transpar- 
ency of a typical specimen is determined by perforations for 
which u = Q,/2(v + 2F/F,,). It is therefore helpful to re- 
place Ti in expression (21)  for^^,,^, (uI,u2) by the variable 
u' = iiQ0/2(v + ~F/F,) and expand in terms of the small 
parameter u1/Q,, This gives 

which upon substitution in ( 12) yields the following expres- 
sion for X: 

02 

Here we have written 

and replaced the variables of integration u,, u, by u' and 
v = Su + QoSF /Fov2. The integral over du' was already eval- 
uated in Sec. 5 in the derivation of Eq. (47a) from (46). 
Because of the integration,the  function^,,,,^ (x,y ) becomes 
dependent on the arguments x', y', as well as on the param- 
eters v and 

and is given by the following expression: 

Substituting (73) into (15) and integrating with respect to 
x', y' instead of x, y (this does not change the form of the 
correlation function), we obtain 

L .  

It is clear from expressions (73) and (74) that the correla- 
tion function for the transparency logarithm is a function of 
the argument T and decays with a single characteristic scale 
T-  1, which corresponds to achange SF-Fo(H /Qov2) ' I 2  in 
the external field. This result agrees with the characteristic 
period of the oscillations in the transparency logarithm 
found in the qualitative analysis. 

One of the integrals in (74) (e.g., the one over x ' )  can 
be evaluated explicitly by making the change of variable 

y' = x'u. Since the integrals of the two terms taken separately 
diverge, it is convenient to first replace the product x>' in the 
denominator in (74) by (x'y')' -' and then let 6-  0 in the 
final result. We then obtain 

rn 

The results from a numerical calculation of the correlation 
function K ( r )  are shown in Fig. 4. We have the asymptotic 
formulas 

The first formula (for small 7) follows by expanding (76) to 
second order in T ;  the second follows by using the fact that 
for Irl $1, the integrand in (76) has two well-separated 
maxima at t = f r / 2 .  

7. CONCLUSIONS 

All the results in this paper were derived for the specific 
barrier model considered in Ref. 5. A similar analysis can be 
given for the models in Refs. 1-4, 6, of which the ones in 
Refs. 1, 2 resemble the model considered here most closely. 
In both of those models, one studies the transmission of elec- 
trons across a dielectric film containing randomly distribut- 
ed neutral impurities whose energies are nearly equal to the 
electron tunneling energy. The model in Ref. 1 assumes that 
the impurity levels have a nonzero energy spread, and that 
the electrons move by tunnel hopping from one impurity to 
the next. Isolated impurity chains that connect the opposite 
sides of the film, and in which the distance between the im- 
purities is much less than the characteristic hopping length 
in the bulk material, serve as the perforations in this case. In 
the model in Ref. 2, all the impurity levels are assumed to lie 
at the same energy, while the energy of the oncoming elec- 
trons is uniformly distributed throughout some interval. In 
this case the electron transmission involves resonant tunel- 

FIG. 4. Plot of the correlation function for the logarithm of the specific 
transparency [Eq. (75)  ] for three values of v:  1 ) 0.0; 2 )  0.75; 3 )  1.0. 
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ing through the impurity levels, and the perforations consist 
of sparse chains of equidistant impurities which form an en- 
ergy band whose transmission coefficient is close to unity. 
The optimum chains in Ref. 2 are the one for which the band 
width times the formation probability is a maximum. The 
results in the present paper concerning the distribution func- 
tion for the transparency logarithm all carry over to these 
models without change, provided Q, is taken equal to the 
logarithm of the specific transparency in the large-area lim- 
it'' and Eq. (26) is used for v. 

Two other models were considered in Refs. 3 and 6. 
Electron tunneling through a film was considered in Ref. 3, 
the film acting as a barrier of constant height. Owing to the 
surface roughness of the film, the electron tunneling length, 
and hence the tunneling transparency, fluctuates along the 
plane of the barrier. The perforations consist of exponential- 
ly infrequent narrow regions, and a potential difference 
between the two sides of the film can serve as the external 
agent. A system of isolated filaments containing randomly 
distributed impurities acting as absorbing centers was con- 
sidered in Ref. 6. Although the filament transparency in- 
creases exponentially as the number of impurities decreases, 
the number of perforations (filaments with only a few im- 
purities) is exponentially small. The wave transmission coef- 
ficient through an individual impurity is the only paramter 
that can be manipulated externally. The models in Refs. 3 
and 6 lead to the same results for the width and position of 
the maximum of the D F  as a function of the parameter v. 
The ranges v < 1, 1 < v < 4, and v < 4 correspond to small, 
intermediate, and large areas, respectively. The distribution 
functions for these intervals are given by Eqs. (50),  (62), 
and (65), respectively, in which v2 must be replaced by v'I2. 

Our results on the effect of an external agent on the 
width of the distribution function (in particular, the transi- 
tion from large to small fluctuations) are also valid for the 
models in Refs. 1-4,6. However, the properties of the oscil- 
lations in the transparency logarithm when the external 
agent varies depend on the specifie model. In the small-area 
case ( v  < 1 ), oscillations of amplitude comparable to the 
width of the distribution function should occur for all mod- 
els except the one in Ref. 6. The latter model is exceptional 
because the perforations there are characterized by a single 
parameter (the number of impurities in a filament); the rate 
at which the transparency of a filament changes when the 
external agent varies (i.e., as the transmission coefficient 
through the impurities changes) therefore depends only on 
the filament transparency itself, so that it is impossible for 
the perforations to "overtake" one another. 

We observe in closing that although the distribution 
functions found above for large-area specimens are exponen- 
tially narrow, their width is bounded from below in practice. 
First, the quantity Q, cannot be too large if the transmission 
of the specimen is to be observable; second, v turns out to be 
- 1 even for very large specimens. As an estim!te let us 
choose Q, = 40; for a perforation of diameter 100 A the val- 
ues v = 1, 1.2, and 2'" correspond to sample dimensions 
0.2, 1.6, and 140 mm, respectively. The corresponding 
widths of the D F  calculated using (55), (64), and (66) are 
0.25, 0.12, and 0.017. 

We are grateful to B. I. Shklovskii for helpful discus- 
sions, and to A. L. ~ f r o s  and Yu. F. Berkovskaya for help 
with the numerical calculations. 

APPENDIX l 

We rewrite the definition ( 14) of the correlation func- 
tion as 

ce CQ 

Inserting expressions ( 11 ) and ( 9 )  for q5,,,2 and f, and 
making the change of variable a = e - Q ,  we get 

1 
K ( F , ,  F,) = lim- [ do ,  do,  J d t ,  5 d t ,  in o, ln o ,  

8-0 (2nI2 *O O - m  

xexpl  (it,--s)o,+ (it,-s) o , ]  

Interchanging the order of integration over t and a reduces 
Eq. (A1.2) to 

K ( F , ,  F,) = - - S dz1 I dz ,  [ X ~ , . ~ ~ ( Z ~ ,  z,) 
( 2 ~ ) ~  (A1.3) 

- x R ~ , F ~  0) XF, ,F~  (O,z2) 1'4' ( z i )  Y ( z z ) ,  

where - 
I ( z )  = J d o  ln oe(z-*)q 

0 

and the integration over z,  and z, in (A1.3 ) is along the 
imaginary axis (the counter C in Fig. 5).  We convert this 
into an integration over the real axis by deforming Cinto C ', 
which passes along the edges of the cut (Fig. 5 ). The cut is 
necessary in order for q ( z )  to be continued analytically into 
the right-hand halfplane; the continuation is given by 

J due-ulnu- 
l n ( s - z )  

'lf ( z )  = - - 
Z-s , S-z (A1.5) 

We note that the expression in the square brackets in (A1.3) 
vanishes when either z, or z, is zero. The first term in (A1.5) 
therefore does not contribute to the integral in (A1.3), be- 
cause the residues at the poles z ,  = s and z, = s tend to zero 
as s-0. Equation (15) follows by substituting (A1.5) into 
(A1.3) and noting that the values of ln(s - z)  on the top and 
bottom edges of the cut differ by - 21ri. 

FIG. 5 .  
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APPENDIX 2 

In our heuristic derivation of Eq. ( 18) we will assume 
that the perforation has the same longitudinal and trans- 
verse dimensions, both equal to x, , and that the fluctuation 
concentration of the impurities is constant and equal to N 
throughout the perforation. The probability of formation for 
such a perforation is e  - Q ,  where 

The tunneling transparency of the barrier near a perforation 
can be estimated by Eq. ( 17) with F = 0 and V - E ~ .  Since 
we are interested in perforations with a given transparency 
e  - " , we obtain the relation 

u=(m,ep) lhxt/fi. (A2.2) 

Because the change in the potential over the tunneling length 
x, due to the excess charge near the perforation is equal to 
E ~ ,  the quantities N and x, are related by the Poisson equa- 
tion 

The desired expression for the concentrationp,(u) of perfo- 
rations coincides to exponential accuracy with the probabil- 
ity e Q  for formation of a perforation with transparency 
e  " . Using (A2.2) and (A2.3) to express N and x, in terms 
of u and substituting the result into (A2. I ) ,  we obtain 

1 
In po ( u )  =-Q=- - 

U 

It is easy to see that the expression in the square brackets 
coincides up to a numerical factor with Q i, where Q, is giv- 
en by Eq. ( 19). 

APPENDIX 3 

We rewrite the distribution function (50) in the form 

--A P 

where the path of integration C in the complex plane is 
shown in Fig. 6. The integrand in (A3.1) has a saddle point 
at z = z, = (v2eA ) " ( I  - V ' )  on the real axis. We shift C so 
that it passes through the point z, (contour C ,  in Fig. 6).  For 
A 1 the integral along C ,  can be evaluated by the method of 
steepest descent, because most of the contribution comes 
from valuesz such that lz - z,I <z,. This leads to Eq. (5 la ) .  

To derive the asymptotic formula (51b), we deform C 
into the contour C, passing along the edges of the cut in Fig. 
6. Expression (A3.1) then becomes 

co 

e - A 

f (Q)  = dt exp (-faA--tv' cos nu2) sin (l.'sin nv2). 

FIG. 6. 

For A < O  and IAI % 1, most of the contribution to the inte- 
gral comes from values t  < 1. We can therefore replace the 
sine by its argument and omit the second term in the expo- 
nential; the resulting integral is readily evaluated to yield 
(51b). 

Expression (A3.2) is also useful for finding the distri- 
bution function when Y (< 1. In this case it simplifies to 

which after the change of variable u = te - A gives 
&. 

f ( ~ )  =v2eAv2 J du uV2 exp (-a-av2eAv2). 
o (A3.4) 

2 

Since this integral converges for u - 1, we can replace uv in 
the integrand by 1 when v (< 1, and Eq. ( 53) follows immedi- 
ately. 

"This quantity is calculated more rigorously in Ref. 10 for the model in 
Ref. 1. The mesoscopic behavior of the temperature dependence of the 
transparency logarithm for this model was pointed out in Ref. 11. 
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