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We have calculated the transverse dynamic conductivity of metals with magneto-impurity 
electronic states, and have investigated the influence of these states on the spectrum and decay 
of electromagnetic waves. We predict a new class of waves, which we call "magneto-impurity" 
waves, and show that localization of electrons on impurities in a magnetic field makes possible 
the propagation of low-frequency helicon waves with left-handed polarization (antihelicon 
waves), which in pure samples cannot propagate. This gives rise to new branches of the high- 
frequency electromagnetic excitation spectrum, whose frequencies lie in narrow transmission 
bands around the frequencies of resonance transitions from localized levels of the electrons to 
Landau levels. We calculate the surface impedance of a metal with magnetic impurity states, 
and analyze its dependence on frequency. The field distribution of magneto-impurity waves in 
metals is discussed. 

I. INTRODUCTION 

The basic reason for the existence of various types of 
weakly decaying electromagnetic waves in metals subjected 
to an external magnetic field H (Refs. 1, 2) is collective 
motion of the conduction electrons. This motion occurs in 
two forms. We will refer to the first of these as "collective 
drift" (either Hall or polarization) of the electrons in planes 
perpendicular to the magnetic field. In uncompensated met- 
als (i.e., with different concentrations of electrons N, and 
holes N, ), Hall drift gives rise to helicon waves,3 while in 
semimetals (Bi, Sb, etc. ), collective polarization drift, which 
arises because of the temporal dispersion of the electromag- 
netic field, leads to the appearance of magneto-plasma waves 
( AlfvCn and fast magnetosonic  wave^).^ The longitudinal 
drift motion of the electrons (parallel to H )  in quantizing 
magnetic fields can lead to collective oscillations with linear 
dispersion laws (quantum electromagnetic waves; see, e.g., 
Ref. 2) .  

Another type of collective motion which can give rise to 
weakly damped electromagnetic excitations is related to var- 
ious resonances in the electron-hole system. Thus, near the 
cyclotron resonance frequency in metals we find cyclotron 
waveP;  Doppler-shifted cyclotron resonance leads to var- 
ious "dopplerons" (see, e.g., Ref. 7); near resonance fre- 
quencies corresponding to transitions between magnetic sur- 
face levels, we find specific surface waves,8 etc. 

It can be proved in general that near any resonance 
there must exist a concomitant electromagnetic ~ a v e , ~ . ~  and 
that the frequency of any such resonance coincides with ' 

some limiting frequency in the spectrum of this kind of col- 
lective oscillations. 

In this paper, we predict a new class of weakly damped 
electromagnetic waves in metals which arise because of scat- 
tering resonances of the electrons, and investigate their 
properties theoretically. In particular, we will discuss collec- 
tive oscillations caused by resonant transitions of electrons 
from localized magneto-impurity states to Landau levels. 

Impurities play a dual role in a metal. lo.'' On the one 
hand, they limit the mean free path of conduction electrons, 

and determine the collision-induced damping of the electro- 
magnetic waves. On the other hand, impurity atoms can 
radically change the structure of the electronic energy spec- 
trum of a metal, leading to the appearance of localized and 
quasilocalized states." Such states, which consist of elec- 
trons trapped on attractive impurities, can exist in the ab- 
sence of a magnetic field only when the strength of the impu- 
rity potential exceeds some critical value.'' In a quantizing 
magnetic field, due to the quasi-one-dimensional character 
of the electronic motion, states of an electron bound to an 
attractive impurity can appear for any value of the impurity 
potential.I3.l4 These states of electrons localized on impuri- 
ties in a magnetic field (both l ~ c a l ' ~ . ' ~  and qua~i loca l '~ . '~ )  
are called "magneto-impurity" states. Resonance transi- 
tions from various occupied magneto-impurity states to 
Landau levels lying above the Fermi energy can also give rise 
to a new class of electromagnetic wave, which we will also 
refer to as "magneto-impurity."'' A distinctive feature of 
these waves is the absence of an'y spatial-dispersion effects in 
that part of the high-frequency conductivity which describes 
the resonance transitions. In addition, magneto-impurity 
waves can exist only in the absence of collisionless (i.e., Lan- 
dau) damping. 

In the next section we will calculate the transverse high- 
frequency conductivity (including the resonance transi- 
tions) of a metal with a spherical Fermi surface, in the Fara- 
day geometry q((H((z (q is the wave vector). In Section 3 we 
will find the spectrum, damping and polarization of low- 
frequency magneto-impurity waves which are similar to he- 
licon and magnetoplasma waves; in particular, we show that 
it is possible to propagate helicon waves with left-hand po- 
larization (antihelicon waves) in metals with magneto-im- 
purity electronic states. It is well known that such waves 
cannot propagate in a pure electronic cond~ctor. ' .~ In the 
fourth section, we will discuss high-frequency magneto-im- 
purity waves which appear near the frequencies of resonance 
transitions between magneto-impurity states and Landau 
levels. The fifth section is devoted to calculating the surface 
impedence and field distribution of a magneto-impurity 
wave in a semi-infinite sample. 
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2. CONTRIBUTIONS OF MAGNETO-IMPURITY STATES TO 
THE TRANSVERSE DYNAMIC CONDUCTIVITY OF METALS 

According to the Kubo formula,lg the dissipative part 
of the dynamic conductivity tensor Re u4 (w) can be ex- 
pressed as a configuration average over the two-particle re- 
tarded Green's function. For the case of impurities with 
short effective ranges, it is well knownI9 that this average can 
be, replaced by the product of two averaged one-particle 
Green's functions. Then the expression for the dissipative 
part of the conductivity can be cast in the following form: 

Here, e is the magnitude of the electron charge, w is the 
frequency, x = (n, k, , k, ) is the set ofquantum numbers for 
electrons in the Landau representation, v,,,~ is the matrix 
element of the velocity operator, p, (E) is the spectral den- 
sity of the one-particle Green's function averaged over the 
impurity positions,I8 and f ( ~ )  is the Fermi distribution. 
Planck's constant f i  is taken to be unity. For small impurity 
concentrations ni and frequencies far from the cyclotron fre- 
quency R = eH/mc (i.e., for Iw - %Y, where vis a colli- 
sion frequency) we can limit ourselves to terms linear in the 
impurity concentration in calculating the spectral density 
p, (E)  ." AS a result of these calculations we obtain 

where g, (E)  is the partial density of electronic states at the 
nth Landau level; the summation over n in ( 1) is limited to 
the largest value of N(E)  for which the radical contained in 
g, is still real; the frequency of electron-impurity collisions 
equals13 

In this equation the scattering of electrons by an isolated 
impurity is taken into account exactly. The quantity 
g = Z,g, is the total density of states, while the function 
F(E) is proportional to the trace of the real part of the 
Green's function of the impurity-free metal. It appears in I. 
Lifshitz"' equation for the localized and quasilocalized en- 
ergy levels 

From now on, the scattering potential Uo ( Uo > 0)  will be 
expressed in terms of the scattering length a ( Uo = - 2ra/  
m 1. 

In calculating the dissipative part of the conductivity 
( 1 ) it is necessary to take into account the resonance charac- 
ter of the electron-impurity scattering amplitude. In the case 
of an impurity which attracts electrons, a quasilocalized lev- 
el is located beneath every Landau level and a localized level 
lies beneath the lowest Landau level (with n = 0) .I3-l6 A 
conduction electron whose energy is close to the energy of a 
quasilocalized level E, undergoes resonant scattering with a 
probability which is described by the Breit-Wigner formula. 

The collision frequency takes the form 

The positions of the quasilocalized (or localized) levels are 
given by the equation 

where A is the binding energy of an electron and I ,  = (c/ 
eH) 'I2 is the magnetic length. The half-width of the jth qua- 
silocalized level r, depends weakly on the index jI53l6; the 
prime on Fin (2)  implies a derivative with respect to energy. 
The sum on j includes contributions from all the resonances, 
while the quantity v represents the contribution from poten- 
tial scattering by impurities in the Born appr~ximation. '~~ 

Let us substitute (2)  into ( 1) anc calculate the contri- 
bution to the conductivity from resonance scattering. We 
will assume that the temperature satisfies T )  T,. Then the 
difference in the Fermi functions in ( 1 ) can be considered 
slowly varying and can be taken outside the integral over 
energy. The contribution of resonant scattering to the trans- 
verse conductivity is found to equal 

where 

The radical in (3)  is defined so that its real part is positive; 
this ensures that the dissipative part of a, (w ) is positive. The 
contribution to the complex conductivity from potential 
scattering [the term Y in (2) ] under conditions of quasiclas- 
sical quantization 0 < E ~  ( E ~  is the Fermi energy) can be 
found from classical scattering theory2; the approximation 
implies neglect of quantum oscillations of the Shubnikov-de 
Haas type arising from modulation of the electronic density 
of states. These oscillations have small amplitudes, scaling 
with the parameter ) ' I2 which measures the validity 
of the quasiclassical approximation. For the localized level 
j = 0, the width I?, in (3 ) must be set equal to zero. 

The sum (3)  will contain one (for w < a )  or several 
(for w > R )  special terms due to transitions from the mag- 
neto-impurity levels to their corresponding Landau levels. 
For these special terms the energy difference E, + w - R 
(n + 1/2) is as small as possible, implying that there is a 
group of special terms in expression (3) for the conductivity 
which possess singularities in frequency of 'the form 
(w - w,, )-'I2, along with a collection of terms which are 
regular in w. We can replace the nonsingular part of the 
electron-impurity scattering by an integral and include it in 
Y; the corresponding contribution to the conductivity in the 
absence of a magnetic field was discussed earlier." 

By making use of the fact that the quasilocalized levels 
practically coincide in energy with the cyclotron frequency 
a, we can express all the singular terms of the conductivity 
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in the form 

Here, w, is the electron plasma frequency; w, = A + sfl 
(s = 0, 1, ...) are the resonance frequencies for transitions 
from magneto-impurity levels to Landau levels; T is a char- 
acteristic value of the half-width of that quasilocalized state 
which corresponds to the Fermi energy. The dimensionless 
parameter a, equals 

The quantity a, can be interpreted as a kind of effective 
oscillator strength of the resonance transition with frequen- 
cy w, . It differs from the usual oscillator strength9 in that the 
singularity in the conductivity (4)  is square-root-like rather 
than a first-order pole. The effective oscillator strength a, 
incorporates the Pauli principle, which is introduced 
through the difference of Fermi functions in (5);  this implies 
that the quantity a, will exhibit quantum oscillations with 
magnetic field as successive quasilocalized levels E, pass 
through the Fermi surface. While this transition is taking 
place, a, exhibits a strong dependence on temperature. For 
the case of the transition from the localized level j = 0 to its 
respective Landau level, only one term need be retained in 
the sum (5).  

3. THE EFFECT OF MAGNETO-IMPURITY STATES ON LOW- 
FREQUENCY WAVES 

In this section we will discuss the effect of electronic 
magneto-impurity states on the spectrum and damping of 
low-frequency waves. Assume the wave frequency is much 
lower than the cyclotron frequency, while the wavelength is 
much longer than the Larmor radius r. Then in the low- 
frequency region there can be only one resonance transition 
from a quasilocalized level to its Landau level for those inter- 
vals of magnetic field where the Fermi surface is located 
between these two levels, E, < cF < 0 (i + 1/2) (Fig. 1 ) . In 
this case the resonance frequency w, = A coincides with the 
electron binding energy. Let us consider separately the heli- 
con and magneto-plasma waves. 

FIG. 1. Diagram of resonance transitions between magneto-impurity lev- 
els (the horizontal dashed lines) and Landau levels (the continuous 
lines). 

lower sign in front of the second term in (6)  1, and damped 
antihelicon waves of the opposite circular polarization [the 
upper sign in (6)  ] in the local regime. According to ( 5), the 
quantity a, in the case under discussion is 

where NF is the integer part of E ~ / R .  
Let us first analyze the spectrum and damping of anti- 

helicon waves. Due to the appearance of the additional term 
(4)  in the conductivity, a transmission window for antiheli- 
con waves appears in the phase space (q, w )  as v ,  T-0. It 
follows from (6)  that the character of the dispersion curves 
is determined by the parameter 

E=aoS?/200, 

which depends on the impurity concentration, magnetic 
field and temperature. In Fig. 2 we illustrate the antihelicon 
wave dispersion curves for various values of [. For small [ 
( f  < 3-''2--0.19) there are two antihelicon branches with 
normal and anomalous dispersion. As [ increases, the limit- 
ing frequencies (on the long-wavelength side) 
w, = w + (q = 0)  approach each other and reduce to 
w, = 2w,/3 as [--3Y3I2. For larger values of [ ( > 3T3'*), 
both branches coalesce into one dispersion curve. The coor- 
dinate minimum of the curve q(w) equals 

- 

a) Magneto-impurity helicon and antihelicon waves 3i"-1)]" . o,,,=oo(f-~213). 

(Ne #Nh) 

The dispersion relation which determines the spectrum 
and damping of circularly polarized waves ( E ,  - = Ex 

c, q /wpm$ 
f iEy ) has the form 

2.Y r , 
c2q2 00 ivo 
-= ao( r-+-. 
0 02 0,-o-ir 

The first term on the right-hand side of (6) arises from the 
special term (4); the second is connected with the Hall con- 
ductivity (for simplicity we set N,, = 0) while the last term 
is caused by the dissipative conductivity 

In the absence of magneto-impurity states (a, = 01, Eq. ( 6 )  FIG. 2. Dispersion curves for antihelicons ( 1 - g = 0.15, 
determines the spectrum and damping of helicon waves [the 2 - 8 = 5, = 3-"', 3 - 5 = 0.5,4 - l -  2 and helicons ( 5  - g = 0.2). 
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It is obvious that the minimum exists only for 3-312 <[< 1. 
For {> 1, the.antihelicon dispersion curve becomes mono- 
tonic. The limiting frequency of the antihelicon spectrum as 
q- equals w,. We present here analytic expressions for 
the dispersion functions w * (q) for { < 3-312: 

where 

In particular, for [ 4 1 the limiting frequencies equal 

If 5 > 3-3'2, the dispersion curve of the magneto-impurity 
antihelicon wave is given by Eq. (7 ) .  

The decay of antihelicon waves is determined by the 
same dispersion relation (6).  Assuming that the damping 
rate y(w) is much smaller than w, we obtain 

(10) 
where 

The primes on h denote derivatives with respect to frequen- 
cies. In deriving ( 10) we expanded the right-hand side of (6)  
in the small imaginary part of w through quadratic terms. It 
is necessary to take the quadratic terms into account, be- 
cause for 3-312 <[ < 1 the coefficient of the term which is 
linear in y vanishes at the point w, . 

Let us now turn to an analysis of the magneto-impurity 
helicon waves, corresponding to the + sign in the relation 
(6).  The spectrum begins at a threshold value of 

and increases monotonically, approaching the limiting fre- 
quency w, asymptotically (Fig. 2, curve 5).  The decay of this 
wave for small Y and I? is given by the equation 

When 6-0, the threshold q,-0 and the dispersion and 
damping of helicon waves (12) takes its usual value.'-3 

What distinguishes magneto-impurity waves from 
analogous collective excitations in the absence of bound 
electronic impurity states is the appearance of a new limiting 
frequency w, above which the propagation of these waves is 
found to be impossible because of their strong resonance 
damping. An additional peculiarity is the appearance of the 
unusual antihelicon propagation. 

b) Magneto-plasma waves (N, = N,) 

We will calculate the spectrum and damping of these 
waves within an isotropic two-component model. The dis- 
persion equation for both orthogonal linear polarized oscil- 

lations with qllH are found to be the same, and have the form 

% (,,z ivo 
I--+-, 

va2 u2  

where v, is the AlfvCn velocity and Y is the average relaxa- 
tion frequency."' The second and third terms on the right 
side of ( 13) contain the joint contribution of electrons and 
holes.2 The singular term in the presence of impurities which 
attract electrons is due only to these latter carriers, since 
there are no magneto-impurity hole states in the field of do- 
nors. The region of applicability of Eq. ( 13) is determined by 
the inequality 

where v, is the Fermi velocity of the carriers. The condition 
qv, <w is necessary in order that collisionless Landau 
damping be absent; this damping appears when we take into 
account the anisotropic dispersion relations for electrons 
and holes. The requirement on the average collision frequen- 
cy ensures that the corresponding contribution to the damp- 
ing rate is small. 

As Y ,  r - -0  the dispersion curve w(q) begins at the 
threshold value ( 1 1 ), and then increases monotonically, ap- 
proaching the limiting frequency w,. Consequently, the dis- 
persion of this wave is normal. 

The damping rate to first order in Y and r equals 

This equation can be used for y<w. The damping ( 14) is a 
nonmonotonic function of frequency. It has a minimum at 
o = 0.4w0, at which 

Note that we can ignore the magneto-impurity resonant 
transitions in analyzing the propagation of weakly damped 
waves if [< 1, since the special terms in the dispersion rela- 
tions ( 6 )  and (13) can be neglected. 

4. HIGH-FREQUENCY MAGNETO-IMPURITY WAVES 

We will now discuss the high-frequency region w > 0. 
Let us first set qllH, qr< 1, o < w, ; this allows us to neglect 
spatial dispersion in calculating the conductivity, and to ne- 
glect the displacement current. The resonance frequencies in 
this region equal w, = A + sfl, where s = 1,2, ...; the corre- 
sponding resonances originate from two sources: transitions 
from quasilocalized levels to Landau levels and transitions 
from localized levels to Landau levels. If {, < EF < f l  
(j + 1/2), the lowest resonance frequency equals w,. Subse- 
quent resonances are located at the frequencies o , ,  o,, ..., 
which lie in the high-frequency region (Fig. 1). For R 
(j - 1/2) < E, < E,, however, transitions at the frequency w, 
are forbidden by the Pauli principle. The first allowed reso- 
nance transition then takes place at frequency w,. In the case 
of transitions between the local level and its Landau level, 
the first absorption maximum is located at the frequency w, 
only in the ultra-quantum limit. If, however, E~ ) fl, the first 
absorption maximum is located at the frequency wNF, where 
N, is the number of occupied Landau levels. Transitions at 
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lower resonance frequencies are forbidden by the Pauli prin- 
ciple. 

In addition to the special term (4), in the dispersion 
relation we will leave the classical expression1.' 

where w % a, Y. Because 

the Hall conductivity can be discarded. As a result, the dis- 
persion relation for linearly-polarized waves has the form 

From this expression, it is clear that as a, -0 the wave vec- 
tor is imaginary, i.e., the wave does not propagate. Inclusion 
of the special term due to resonance scattering of electrons 
by impurity atoms in a magnetic field gives rise to solutions 
of (15) in the form of a series of linearly-polarized electro- 
magnetic waves with frequencies in the vicinity of the reso- 
nance frequencies w,. 

The solutions to Eq. (15) have the form 
w, (9) - iy, (q), where 

is the dispersion law and 

is the damping rate. In Fig. 3 we show the functions (a )  
w, (q)/wl and (b) lo4 y ,  (q)/w, versus cq/wp, calculated for 
the spectral parameters of bismuth22 with donor impurities 
[for example Te or Se (Ref. 23) 1. The magnetic field is par- 
allel to the twofold axis; we took a = lo-' cm, ni/ 
N, = lo-', H = lo4 Oe. We note that in this case the condi- 
tion qr(< 1 is violated only when cq/wp > 30. 

From ( 17) it is clear that for small q the decay of mag- 
neto-impurity waves is determined both by potential scatter- 
ing of electrons from impurity atoms and by the width of the 
quasilocalized level. As q grows, the first term in ( 17) de- 
creases, and y, approaches T. The maximum value of the 
damping rate y, (0) = 2va: + T is small compared to the 

FIG. 3. Dispersion law (a)  and damping rate (b )  of the s = 1 magneto- 
impurity wave. 

wave frequency; hence, we can speak of transmission bands 
in the metal for waves with the dispersion law ( 16). The 
width of the sth band equals Sw, = w, a, 2; it must exceed the 
total width of the Landau level and the quasilocalized level 
which define the transition. For the first band (s = 1 ), 

For the parameter values quoted above, i.e., for Bi-Te, this 
ratio is larger than one if ni > 10" ~ m - ~ .  On the other hand, 
the sample cannot be too highly doped, lest we violate condi- 
tion nial $ < 1, which ensures the existence of the magneto- 
impurity state.14 In the case under discussion here, this is 
equivalent to ni < 10'' ~ m - ~ .  If s% 1 we obtain 

Ass increases, the width of the band decreases and eventual- 
ly becomes comparable to Y + T. In this case, it is no longer 
meaningful to treat the system as if it has transmission 
bands. 

5. SURFACE IMPEDANCE AND FIELD DISTRIBUTION OF 
MAGNETO-IMPURITY WAVES 

Let us discuss the surface impedance and field distribu- 
tion of a metallic half-space when a normally incident exter- 
nal electromagnetic wave excites waves with dispersion laws 
( 6 ) ,  ( 13), and ( 15). In the absence of spatial dispersion, the 
diagonal component of the impedance Z,, = R,, - iX,, 
equals 

where q(w) is a solution to the dispersion equation. In this 
case, we identify the correct square-root branch of q(w ) 
from the condition Imq(w) > 0, which ensures that the wave 
decays into the bulk metal. In discussing helicon waves it is 
convenient to calculate the circular components of the im- 
pedance Z ,  .I.' 

The electric field distribution of the left-handed circu- 
lar component of an antihelicon.wave in the metal takes the 
form 

where q+ (a) corresponds to the upper sign in (6) .  The z- 
axis is directed into the bulk of the metal. The prime denotes 

FIG. 4. Dependence of the real (continuous curve) and imaginary 
(dashed curve) parts of the surface impedance for antihelicon waves ver- 
sus frequency for 6 = 0.15. 
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a derivative with respect to z. It is clear that the field ( 18) in 
the bulk of the sample is exponentially damped. 

If Y, r -* 0, we obtain for the real and imaginary parts of 
the quantity 

cZ+opao'" 
lCi+= 47100 

the following expressions 

wherex = w/wo, C(x)  = 26 1 1 - x 1 - ' I 2 .  A plot of the func- 
tions ( 19) and (20) for 6 = 0.15 is given in Fig. 4. The im- 
pedance has square-root singularities at the points 
x , = w + /wo, which are the limiting frequencies for antihe- 
licon waves. Near w,, the functions (19) and (20) are pro- 
portional to 11 - x )  'I4. When increases until it is close to 
lk = 3V3'*, the limiting frequencies approach xk = 2/3. At 
this point, Re $ + has a Ix - xk I - I  singularity. 

For finite values of Y and I? these singularities are 
washed out. In this case, we obtain from (6)  

where 

The impedance (2 1 ) has asymmetric resonance maxima at 
the points x - + , where 

The width of the resonance curve is 

where 

Since the expansion of q ( x )  near the point x,  starts with a 
quadratic term, the impedance (21 ) has a symmetric maxi- 
mum at this point. The line width of the resonance is now 
determined by the relation 

where as before the primes denote derivatives with respect to 
X .  

The surface impedance for magneto-impurity waves 
can be obtained from ( 13 ) . As w increases, the real part R ,  
of the impedance first grows as w, then reaches a maximum 
which is followed by a minimum located near 01,. As w - cc 

the quantity Rx, saturates at 4 ~ v ,  /c2. Initially the imagi- 
nary part X,, is -w, then it passes through a maximum; as 
w + cc it decreases with a dependence like Xxx = 2 ~ v ,  v/ 
c2w. 

The field distribution of the sth wave solution to the 
dispersion law ( 16) is determined by the expression 

where q, (w) is obtained from ( 15 ) . The impedance for these 
waves equals 

It has asymmetric resonance maxima at the points 
wOs = W, (0)  = ws ( 1 - a:). Near resonance, 

where 

while y, equals (17) for q = 0. Between the impedance 
maxima there is a minimum in the vicinity of the resonance 
frequency w, . If Y, l- - 0, near w, we have 

when Y and l? are included, these singularities are smoothed 
out. 
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