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A theory of low-temperature tunnelling recombination in amorphous undoped semiconductors 
under steady-state illumination is developed and the various regimes in which nonequilibrium 
populations form in the localized states (observed, e.g., using EPR) are analyzed. We discuss 
two limiting cases, where the mean distance 2 between geminate photoelectrons and 
photoholes is either larger or smaller than the mean spacing N - ' I 3  between localized 
photocarriers. We show that for 2 < N - ' I3  the often-discussed geminate recombination regime 
is replaced by a new regime due to photo-induced diffusion. This replacement occurs even in 
the absence of intrinsic diffusion; we refer to the new regime as "diffusive." In this regime the 
steady-state concentration N is due to widely-spaced pairs whose components are able to 
disperse over large distances by diffusion without recombining with each other, thereby 
forming a rarefied gas; these components only recombine after encountering a random particle 
of the other kind. The interpair recombination regime 2 > N - ' I 3  was modelled numerically; 
we found that in this regime partial spatial clustering of particles of the same kind can occur. 
We have established that some properties of the steady state can be investigated by non-steady- 
state methods. The theoretical results are compared to experimental data for a-Si:H. 

I. INTRODUCTION 

At present, the following picture is used to describe the 
generation of low-temperature photoluminescence in un- 
doped amorphous hydrogenated silicon (see, e.g., Refs. 1 
and 2): under optical excitation above the absorption edge, 
electrons and holes which are created in regions of high den- 
sity of states are rapidly thermalized by phonon emission 
and come to occupy localized states in the "tails" of the con- 
duction and valence band densities of states, respectively. In 
samples of a-Si:H with a low density of broken bonds, the 
basic recombination channel for localized photoelectrons 
and photoholes is tunnelling radiative recombination, which 
corresponds to the luminescence band at 1.2 to 1.4 eV. In 
this case it is assumed that at low temperature T <  20-30 K, 
diffusion of the localized photocarriers (thermally-activated 
or tunnelling) can be neglected during the short-time ther- 
malization processes. 

Usually it is assumed that a localized electron recom- 
bines with a localized hole separated by a distance R with a 
recombination time which depends exponentially on R: 

r  ( R ) = r o  e s p  (2RIRo).  (1)  

According to the estimates given in Refs. 1 and 3, we have 
r, = 10W8, R, = 11-12 A in a-Si:H. The probability Po(R) 
for creation of an electron-hole (geminate) pair with a sepa- 
ration R between the electron and hole (at the time when 
thermalization ends) is assumed to be Gaussian4s5: 

In this case, the spatial correlation of geminate electrons and 
holes at the moment of their attachment to localized states is 
characterized by a single parameter, the length i?. The prob- 
lem of determining the magnitude of R ,  like the problem of 
calculating the function Po(R) from first principles, remains 
open; in analyzing the low-temperature experiments on a- 

Si:H one usually uses values ofi? - 50-100 A (55 A in Ref. 3, 
87 A in Ref. 5).  

The goal of this paper is to calculate the dependence of 
the steady-state concentration of localized electrons (or 
holes) N(g) on the generation rate of electron-hole pairs per 
unit volume g = K(I / . f iw) ,  where w is the frequency, I the 
intensity and K the absorption coefficient of the excitation 
light, According to ( I ) ,  (2 ) ,  the function N(g)  is deter- 
mined by three parameters: R,, and r,, on which we place 
no a priori limitations except that the inequality 

should hold. Therefore, the discussion given below is appli- 
cable to a larger group of problems than those which are 
specific to a-Si:H alone. We note that the value of N can be 
determined experimentally from the photo-induced EPR 

Two models are used to describe photoluminescence in 
undoped a-Si:H: the model of geminate, or single-pair, re- 
c~mbinat ion, ' .~ .~ and the distant-pair recombination mod- 
el.2*s97 In these models it is assumed that the primary contri- 
bution to the photoluminescence comes from recombination 
of pairs generated by the absorption of the same or of differ- 
ent photons, respectively. Obiously these two recombination 
models correspond to two different ranges of steady-states 
occupation of the density-of-states tails by photoelectrons 
and photoholes. Below, we will show that there is a third 
"diffusive" regime in which the photoluminescence is gener- 
ated primarily by geminate recombination while the quanti- 
ty N(g)  is determined by interpair recombination. Our anal- 
ysis shows that this third regime applies to a large percentage 
of the experimental situations encountered in practice. 

2. GEMINATE AND INTERPAIR RECOMBINATION REGIMES 

It is clear that for weak steady-state illumination, the 
electron-hole pairs which are generated find themselves far 
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from each other; consequently, they recombine indepen- 
dently, i.e., the recombination is geminate. In this case, obvi- 
ously, 

c% 

The basic contribution to ( 4 )  comes from pairs with large 
mutual separation lengthsR = R 2/Ro.  Therefore, Eq. ( 4 )  is 
correct only for very small values of g, when these pairs do 
not overlap each other, i.e., for N ( ~ ) E  g 1 .  

In the high-light-intensity limit, when 

so that the mean spacing between geminate electrons and 
holes exceeds the mean distance between photocarriers in 
steady state, the correlations in spatial location of geminate 
electrons and holes obviously can be neglected. Then we can 
set P , ( R )  = constant and use the interpair recombination 
model.2 In Ref. 2, a calculation of the function N ( g )  was 
carried out numerically, including a number of simplifying 
assumptions. To exponential accuracy, the steady-state con- 
centration N  for Po(R ) = constant satisfies the equation 

where R ,  = bN - ' I 3  and b is a constant. Therefore, the re- 
gime discussed in Ref. 2 may be referred to as the interpair 
recombination regime with one spatial scale. 

In the large intermediate region 

the results for large and small concentrations N  can be 
"spliced together," using either an equation analogous to 
( 6 ) :  

rn 

or one analogous to ( 4 )  : 

These equations lead to the same estimate o f N ( g )  in order of 
magnitude. Therefore, it would appear that a complete 
qualitative picture of the steady-state occupation of local- 
ized states has been created. For small g, its most important 
feature is the anomalously long lifetime of pairs with R  $1, 
which leads to a rather large value of N ( g ) .  In the following 
section we will show that by virtue of this long lifetime, even 
very weak diffusion destroys the picture described above. 

3. DIFFUSIVE REGIME 

The diffusion of electrons and holes can be related both 
to the finite temperature T # O  of the sample (intrinsic diffu- 
sion) and to the very interesting phenomenon of effective 
photo-induced diffusion, which exists even at T = 0. The 
mechanism of effective photodiffusion was first proposed by 
Kastner8 to describe photo-induced bimolecular recombina- 
tion of carriers localized on defects. As applied to undoped 
a-Si:H, this phenomenon can be described as follows: in the 
vicinity of, e.g., a solitary localized electron which belongs to 

a pair with an anomalously large mutual separation, an ordi- 
nary pair with separation R  - A  is generated whose hole re- 
combines not with its partner but with the solitary electron. 
The electron left behind from the typical pair is found to be 
shifted in space by a distance 1 on the order of 2 relative to 
the electron that recombined. Since the frequency for such a 
shift is T-' -gR 3, the result is diffusion of solitary carriers 
with a diffusion coefficient of D - ~ R  '. More accurate esti- 
mates (see Appendix 1 ) give 

Diffusion of carriers, both intrinsic and photo-induced, 
makes it possible for carrier pairs with mutual separations 
larger than some length R,, to continue to separate with 
appreciable probability without undergoing recombination. 
If diffusion occurs by hopping with 1% R ,  and with a charac- 
teristic time ?, then R,, is determined by 

In the case of photo-induced diffusion, ; = 7/2, where T is 
defined according to ( l o ) ,  since in this case both the hop- 
ping lengths and hopping times of electrons are the same. 
The meaning of estimate ( 11 ) can be interpreted as follows: 
if a pair succeeds in making one hop before recombination, 
thereby increasing R  to I ,  then by virtue of the exponential 
dependence ( I )  the time for tunnelling recombination r ( R  ) 
must rise rapidly, and the carriers are able to separate 
further. From here one, we will assume that in our discus- 
sion of the diffusive regime the following inequality holds: 

Let us introduce the probability p,,, ( R )  that an elec- 
tron-hole pair created with a separation R  can migrate to 
infinity. Then the number of pairs broken by diffusion per 
unit time can be written in the form 

Electrons and holes from broken pairs form a rarefied gas of 
randomly-moving particles. A steady-state concentration of 
gas is established by virtue of the random encounters of the 
carriers around R, , ,  which thus plays the role of the radius 
of a Smoluchowskii "black sphere."" In order to determine 
the concentration N ( g ) ,  we must set go,, equal to the num- 
ber of such encounters per unit time: 

where D is the total diffusion coefficient for electrons and 
holes; in the case of photo-induced diffusion, h = 2 0 ,  where 
the coefficient D is defined according to ( 10) .  Relation ( 15) 
is the basic equation for the diffusive regime; from it we find 
that 

Hence, the problem reduces to finding the functionp,,, ( R  ). 
Solving the diffusion equation, we can easily show that for 
R -R,1%1, 
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pout ( R )  =I--RII'R. 

For R < R,, , the probability pout (R ) of breaking a pair is 
extremely small, whereas at the boundary of a sphere of radi- 
us R,, when the inequality ( 13) holds this probability equals 

pout (RbI )  =aliRb , (18) 

where the numerical coefficient satisfies a z 0 . 4  (See Appen- 
dix 2 ) .  

In the low-intensity regions of optical excitation, i.e., 
those for which R,, > R = R 2/Ro, we can bound gout from 
below; note that these intensities are less relevant from an 
experimental point of view. To make this estimate we need to 
substituteforpou, ( R )  the function (17) forR > R,, and zero 
for R < R,, , thereby increasing the value of R,, compared to 
( 12) by R,. In the region of moderate intensities, for which 
R>R,, > l ,wecansetpou,(R) =Oin (14) forR<R,, ,and 
in integrating over the region R > R,, the functionp,,, ( R )  
can be replaced by its value at R = R,, . As a result of this we 
obtain for R,, > R 

1 e- 2 2  

g o u t  >---gl 
n'" !j 

wherex = R,,/ji, = (R,, + R,)/R. 
Let us compare (20) with expression (4) for the con- 

centration N in the geminate recombination regime, which 
can be recast in the form 

Let us neglect intrinsic diffusion here and set D = 20 ,  so that 
the ratio g / ~  does not depend on the generation rate g [see 
( 10) 1. The exponents in (20) and (23) are comparable for 
x z  (2  + 2'") ( R  /R,). ~ s t i m a t e s s h o w t h a t f o r R > 5 0 ~ , ~  / 
R,>4, T ,  = lO--'sec, the values of (23) exceed those of (20) 
even at g >  1 ~ rn -~sec - ' .  From this it follows that in fact 
there is no steady-state geminate recombination region. 

Hence, in the region N < R - 3  we are in the diffusion 
regime. If the diffusion is intrinsic, i.e., if 5 and R,, do not 
depend on g, then it follows from (22) that N(g)  ocg1I2. In 
the case of photo-induced diffusion 

where the numerical coefficient Cz0 .9 .  As g increases up to 
the value where x = R,, /R - 1, we obtain from ( 1 ) 
N- ( 4 d  ? / e l l 2 )  -', i.e., it joins with the solution (6) .  Ac- 
cording to (24) 

Specifically, for R /Ro = 5, x - 1 we obtain p- 0.15. 
Up until now we have discussed steady-state condi- 

tions. We now show that some properties of the stationary 
state can be investigated via nonstationary methods. Let us 
discuss two such methods: the first one consists of varying 
the generation rate g over a characteristic time which ex- 
ceeds the elementary time ?. In this case, in place of equation 
(15) we obtain for the concentration N ( t )  the equation. 

d*(t)ldt=g,,, ( t )  -4nDR5,NZ(t). (26) 

Let g = go + Sg(t ) ,  where ISg(t) I <go. Then in linear ap- 
proximation for Sg we obtain the following equation for the 
fluctuating component SN(t)  = N ( t )  - No: 

with characteristic time 

where No = N(go) is determined by Eq. (24). 
A second method, used, e.g., in Ref. 4, consists of mea- 

suring the time-dependent kinetics of N ( t )  after the light is 
fully extinguished. Taking into account the pairwise charac- 
ter of tunnelling recombination, we obtain at t = 0 the fol- 
lowing decay time for N ( t )  : 

If the basic contribution to N(g)  comes from isolated photo- 
carriers, then the quantity d N  /dt at t = 0, as well as the pho- 
toluminescence intensity, is determined by the contribution 
from geminate pairs. The rapid deexcitation of the latter, 
along with pairs with separation R < R,, which form as a 
result of random encounters of isolated photocarriers, does 
not give rise to a noticeable change in N. Therefore it is of 
interest to investigate the kinetics o fN( t )  for t  2 r (Rh l  ) = ?, 
during which pairs with separation R 2 R,, begin to recom- 
bine and N ( t )  begins to change appreciably. 

Let us introduce the function M ( R  ), such that the val- 
ue of,Y(R)dR determines the concentation of pairs which 
recombine with separations in the range (R,R + dR ). By 
using the function , N ( R  ) we can write the time-dependent 
kinetics of N ( t )  for t>? in the form 

w c4 

N ( t )  = J d~ X ( R )  exp[-t/r ( R )  ] 1 ~ R X ( R )  (30) 
Rn1 R' 

or 
N ( t )  - = I -  -f(Rbl)Ro t 

ln-, 
A% 2No T 

whereR, = (R,/2)ln(t/r,),N0--N(t = 0 )  = N(g) .  Let us 
note that for the conditions under which ( 3  1 ) was derived, 
the second term on the right side of this approximate equa- 
tion is small compared to unity. The quantity N ( R , ,  ) coin- 
cides with the value of the density distribution of electron- 
hole pairs with R = R,, under steady-state conditions 
preceding the switching off of the illumination. In calculat- 
ingM(R, ,  ) it is necessary to include not only the contribu- 
tion of isolated photocarriers which encounter each other 
due to diffusion, but also the contribution of pairs generated 
with separation R zR, ,  which do not suceed in separating 
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To conclude our discussion of the nonsteady condi- 
tions, let us note that the time it takes to establish a station- 
ary regime when the illumination is suddenly switched off is 
determined the time T- . 

Let us briefly consider the problem of spin effects. 
When spin is included, a localized electron-hole pair can 
exist in four different states. In the case when the spin relaxa- 
tion times of electrons and holes are comparable to or exceed 
the characteristic lifetime, spin effects related to the appear- 
ance of spatial correlations between electrons and holes are 
possible.1° If, however, only one of the spin relaxation times 
is smaller than the elementary hopping time ? (in a-Si:H, the 
spin relaxation time for holes is the small one"), then spin 
effects in undoped amorphous material are unimportant, 
and the results of this section hold. 

In Table I we present a comparison of theoretical re- 
sults with the experimental data from Ref. 4. The values ofg 
and Ne,, were obtained by taking the values of the optical 
power and number of photoinduced spins in a-Si:H present- 
ed in Table I of Ref. 4 and dividing them by the effective 
volume of the illuminated region, i.e., 5~ lop4 ~ m - ~ .  In 
calculatingg we also took into account the reflection of light 
at the sample boundary, assuming a reflection coefficient of 
50% (see Ref. 4). The values of Nth,,, , T,, and ? were cou- 
pled using Eqs. (24), (29) and ;i = ~ / 2 ,  where the time T 

was determined from (10). In the calculation we used the 
following parameter values: i? = 60 A, R,= 12 A, 
r0 = 0.5. lo-' sec. As is clear from Table I, we were able to 
get good agreement between the theoretical and experimen- 
tal values of N(g) . This agreement is further reflected in the 
fact that the value o fp  = d lnN/d l n g ~ 0 . 2  observed in ex- 
periment is close to the theoretical value 0 ~ 0 . 1 5  obtained 
from (25) within the region of interest x k 1. We note that 
while the experimental valuep--0.2 can be explained within 
the framework of photo-induced diffusion presented here, it 
disagrees completely with the dependence N(g)  ccg'l2 ob- 
tained from (22) for the case of intrinsic diffusion. 

The minimum value r,,, was found in Ref. 4 by using a 
fit-to the empirical formula N(t)/N, = A - B lgt, which co- 
incides with (31), starting from the definition A- 
B lg~,,, = 1. According to (3  1 ), the time rm, must be com- 
pared with the time B. It is clear that these times do not differ 
by more than a factor of 2. 

It must be emphasized that the basic theoretical for- 
mula (24) was derived under the assumption that 1 < R,, , 
while the values of g given in the Table correspond to the 
case R,, - 1, which generally speaking requires a separate 
quantitative analysis. Nevertheless, we may expect that (24) 
admits extrapolarion to the case R,, - 1. Because the in- 
equality 4NR :, 4 1 holds for all four values ofg, we can infer 
that the experimental situation described in Ref. 4 is in fact 
one where the diffusion regime obtains (although the system 
is also not far from the transition to the interpair regime). 

TABLE I. A comparison of the theoretical results with experimental results4 

4. INTERPAIR RECOMWNATION REGIME 

The diffusion regime described in the previous section 
determines the function N(g)  for a wide range of values ofg 
in the region N <i? -3 .  AS is clear from ( lo ) ,  ( 12) and (24), 
N becomes of order R -"or g~ (i? )R  - 1. As g is increased 
further, the mean spacing between geminate electrons and 
holes 2 eventually exceeds the mean distance between neigh- 
boring photocarriers of either kind, i.e., N - ' I3. In this case, 
the function N(g)  is determined by the interpair recombina- 
tion regime. The steady-state concentration N in this regime 
satisfies equation (6)  to exponential accuracy. As an esti- 
mate, we can use the solution to this equation in the form 

Below we will determine the numerical constant b which 
relates RN and N -'I3. The value of b we find attests to non- 
trivial correlations in the spacings between electrons and 
holes in steady state. 

The physical meaning of the quantity R, is that there 
are practically no electron-hole pairs with spacings R < RN 
by virtue of the exponential dependence of the function r (R  ) 
in the stationary state. In other words, the distribution func- 
tion versus distance R of neighboring carriers of one sort 
relative to carriers of the other sort is sharply cut off on the 
small-R side at R = R,; this dropoff occurs at a distance of 
order R,. On the large-R side, for R > R, this function also 
falls off, although much more slowly, with a characteristic 
scale on the order of N -Ii3. 

It is not possible to determine the distribution function 
analytically for all ranges ofR or to calculate analytically the 
constant b. Therefore, in order to determine b we have un- 
dertaken to model the process of interpair recombination 
numerically, using the Monte-Carlo method. The modelling 
algorithm consists of the following: in a unit cube, particles 
of two kinds-"electrons" and "holes"-are "tossed in" one 
by one. The process of "tossing in," i.e., injection, of parti- 
cles is implemented by generating three cartesian coordi- 
nates of a particle on the interval (0, l )  using a random num- 
ber generator. After being injected each particle undergoes a 
"survival check" as follows; whenever an electron (hole) is 
injected, the system is checked to see if it already has a hole 
(electron) at a distance R < 9 from the injected particle, 
where ,@ is some previously-defined number. If such parti- 
cles are present, then the one closest to the injected particle is 
chosen and its coordinates are erased from the computer 
memory while the coordinates of the injected particle are not 
stored in the computer memory. Hence, an injected particle 
of one kind "recombines" with a neighboring particle of the 
other kind, if it lies at a distance R < 5?. If, however, there 
are no particle of the other kind in a sphere of radius 9' 
around the injected particle, then its coordinates are stored 
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1.6.10L9 
9.8.10'~ 

3.6. loi6 
4.8.10'6 
8.2.20'' 
1.1. 10" 

3.8.lti16 
5.5. 1016 

1.1 
( 1.2 
0.015 
0.0025 

0.16 
0.04 

2 
0.4 
0.03 
0.004 

8.9.10'6 0.005 
1.2. 1OI7  1 0.001 



in the computer memory. Let us note that the quantity 9 
introduced into the model corresponds to the physical quan- 
tity R, in (6) .  

We studied the dependence of the steady-state concen- 
tration of particles of one kind of Non 9. In the simulation, 
the value ofN rapidly attains its steady-state value. In Figure 
1 we show the dependence of N on the number of injected 
particles M (which plays the role of time) for 9 = 0.08 and 
0.1. It is clear that a steady state is attained after injecting - 
4000 particles; as 9 increases, this state is reached more 
rapidly. In the simulation, the values 9 = 0.1; 0.09; 0.08, 
0.07 were chosen. In all cases, the number of injected parti- 
cles was no more than lo4. For each 9, the values of N was 
averaged over the states of the system with M )  8 X lo3, and 
they were found to satisfy the relation N = ~ / 9 ~ ,  where 
,u-b 3--,0.25. 

For comparison with the computer model, we also 
solved a simpler problem, in which the particles that were 
injected into the system and recombined among themselves 
were all of one kind. In this case, it was found that the sta- 
tionary concentration satisfies the relation N = v / g 3  with 
~ ~ 0 . 1 7 .  This result can be interpreted in an approximately 
analytic way: in the stationary state, the probability that an 
injected particle will not recombine immediately after injec- 
tion equals 1/2, On the other hand, this probability coin- 
cides with the probability that there are no particles within 
an arbitrarily chosen sphere of radius 9 .  If we assume that 
the particles of the system are located randomly in space, 
then it is easy to estimate this probability by using a Poisson 
distribution. As a result, we obtain 

exp ( -'13nNg3) ='I,, (33) 

from which it follows that 

in agreement with the computer simulation. 
A comparison of the numerical values of the coeffi- 

c i e n t s ~  and v shows that in the case of recombination of two 
kinds of particles, the steady-state particle concentration of 
each kind is approximately 1.5 times larger than the concen- 
tration for a single type of particle. This attests to the pres- 
ence of correlations in the positions of the particles, i.e., spa- 
tial clustering of particles of each kind individually. 

We also studied two- and one-dimensional systems with 
this kind of modelling. In these systems the clustering was 
still more marked. Thus, in the two-dimensional system p/ 
Y --, 3, and for one dimension P/VZ 6. 

FIG. 1. Dependence of the concentration of one kind of particle on the 
number M of injected particles for 2%' = 0.1 (0) and 2%' = 0.8 (0 ) .  

5. CONCLUSION 

In this paper, the dependence of the steady-state con- 
centration of localized photocarriers on the intensity of exci- 
tation light was calculated neglecting nonradiative recom- 
bination. However, it is clear that the discussion given here 
of the diffusion regime admits a simple generalization taking 
nonradiative recombination into account. In order to deter- 
mine the values of such parameters as R ,  R, and T ,  more 
precisely, in comparing theory with experiment it is neces- 
sary to analyze the experimental conditions carefully so as to 
clarify the photoluminescent quantum yield. It would be in- 
teresting to generalize the theory developed here by taking 
into account dispersion in the localization radius R,, possi- 
ble spin effects, Coulomb interactions between photocar- 
riers, and also a more detailed analysis of the nonstationary 
problem under conditions of long-term stationary preillu- 
mination or periodic strongly-modulated illumination. 

The authors are grateful to A. L. Efros for extremely 
interesting discussions, in the course of which he called to 
their attention the phenomenon of photo-stimulated diffu- 
sion. 

APPENDIX 1 

In a homogeneous isotropic material, the probability 
density per unit time of an effective hop from point r to point 
r' by a localized carrier depends only on the distance 
between these points: w,.,, = w( lr' - TI). Invoking the 
mechanism described in Section 3 for photo-induced diffu- 
sion, we have 

w 

1 R 
4nR2w ( R )  =4nRag Po (R ' )  T(  1 - -) dB'. 

R / 2  
2R' ( A l . l )  

Here, R = / r  - r'(; R ' is the electron-hole distance for a 
pair created in the vicinity of an isolated carrier located at 
the point r; the function (2R ' - R)/4R ' in the integrand 
gives the probability that a hole belonging to a pair with 
separation R ' is located at a distance less than R ' from point 

Here, R = I r - r'i; R ' is the electron-hole distance for a 
pair created in the vicinity of an isolated carrier located at 
the point r; the function (2R ' - R)/4R ' in the integrand 
gives the probability that a hole belonging to a pair with 
separation R ' is located at a distance less than R ' from point 
r. For a Gaussian distribution [see (2)  1 we obtain 

where @(x) is the error function. 
The time T for an elementary hop, the elementary 

length I for an effective hop and the diffusion constant D are 
determined from the equations 

l 2 = 7 j  w ( R )  4nR1 dR, (A1.4) 
0 

D = i / 6 2 2 / ~ .  (A1.5) 

Substituting (A1.2) into the integrands of (A1.3) and 
(A1.4) and performing the integrations over R, we obtain 
the estimates for T-', I and D presented in ( 10). 
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APPENDIX 2 

Since R, < I, the diffusion approximation cannot be 
used to calculate the probability p,,, ( R )  of breaking a pair 
for R zR,, , and we must solve the kinetic equation 

1 g r drf [&'..p (r) -~ , . . p  (r') ] + - (r) = - 8 (r-R), 
( r )  4nRZ 

(A2.1) 

where r, r' are the positions of an electron in a pair relative to 
the hole, GZI,.,, is the probability density for a transition r-r' 
(here both the hole and the electron can shift), p (r )  is the 
probability of finding an electron in the vicinity of the point 
r; the function satisfies the boundary condition p ( r )  -0 as 
r - rn . The pair-breaking probability is related top ( r  ) by the 
equation 

Let us writep(r) in the form 

B 
gT(R) 8 (r-R) + 0 (r-RbL) +9 (r) , (A2.3) p(r)=- 4nRZ 

where B is a coefficient independent of r and the function 
9 ( r )  satisfies the condition r P  ( r )  -+O as r- CO. Substitut- 
ing (A2.3) into (A2.1), we obtain an equation for the func- 
tion 9 ( r )  : 

d ( r )  =T (I) d l f  Er,r-C(r')  +f ( r ,  R ) ,  (A2.4) 

where T- ' ( r )  = ?-' + T- '(r)  and the inhomogeneous 
term f includes two components, proportional togT(R ) and 
B respectively. The coefficient B in (A2.3) is found from the 

condition of conservation of particle number 

where Jin (R,, ) is the particle current through a sphere of 
radius R,, from outside to inside (the current through this 
sphere from inside to outside can be neglected for R , g l ) .  
The particles which contribute to Jin (R,, ) are those with 
separations R,, < R < R,, + I .  Equation (A2.4) can be 
solved by the method of successive approximations. It is 
especially easy to perform this calculation in the simplest 
case, when E,.,, cc a( 1 r' - rI2 - 1 2, holds. In this case, the 
coefficient a in ( 18) is found with high accuracy to equal the 
value 0.4. A close value is also obtained for the function E,.,, 
= 2w / r f  - r 1 1, where the function w (R ) is defined in 
(A1.2). 

'"We note that for R,<R,,, the definition of R,, in ( 12) differs insignifi- 
cantly from the black-sphere radius R,, = (R,/2)ln[ ( Y / ~ ) ~ R  ;/.T,$], 
introduced within the diffusion approximation picture 
( y = e x p [ - r ( l ) ] , s e e R e f . 9 ) .  
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