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The theory of low-temperature thermal expansion of glasses is discussed. It is demonstrated 
that the expression for the thermal expansion coefficient is sensitive to the model of two-level 
systems. In particular, from the time dependence of the thermal expansion coefficient one can 
obtain information on the distribution function of the two-level system parameters. 

1. Most of the low-temperature properties of glasses are 
well described within the framework of the Anderson-Hal- 
perin-Varma-Phillips two-level-system (TLS) model.192 At 
the same time, as the present authors have demon~trated,~.~ 
the AHVP model in its original form is insufficient to ex- 
plain such important properties as the thermal expansion of 
glasses. 

In Refs. 3 and 4, a theory of the coefficient of thermal 
expansion was constructed, based on the model of two-level 
systems proposed by Karpov, Klinger and Ignat'ev5 (the 
KKI model). It includes the TLS concept in the form of an 
anharmonic oscillator with two stochastic parameters, plus 
an assumed distribution of these parameters. The KKI mod- 
el is a more concrete approach than the AHVF model, and it 
gives a well-defined correlation between the deformation po- 
tential and the other TLS parameters. The t h e ~ r y ~ . ~  allows 
one to explain the large value of the Griineisen parameter 
and predicts the observed dependence of the thermal expan- 
sion on the time re,, . However, the question remains open as 
to how model-dependent these results are. Specifically, to 
what degree are they sensitive to the distribution of TLS 
parameters? 

With this goal, we have calculated the coefficient of 
thermal expansion for another distribution of these param- 
eters, proposed by Il'in, Karpov and Parshim6 We shall see 
that from this there arises a different time-dependence. 
Thus, looking at experimental results for the thermal expan- 
sion, we can judge the form this distribution has in reality. 

2. We shall begin with an illustrative example. We take 
as our illustration the concrete example of a TLS composed 
of three atoms linearly arranged and interacting by means of 
a Lennard-Jones potential. To model the asymmetry, we will 
consider the force constants for both pairs of atoms to be 
somewhat different. We have 

A I B ,  A B2 U ( r ) =  +Am- 
(r-a) " ( r -a)  ( r+a)  " (r+a)' (1 )  

We shall be interested in weak potentials, i.e., potentials 
near the critical value.5 The critical potential is determined 
from the existence of an inflection point at x = 0, that is, by 
equating to zero the coefficient of x2: 

Then the coefficient ofx4 is 1694A = $7, ; we neglect fluctu- 
ations of this value and move it outside the average. We have 

The fluctuating coefficients for the linear, quadratic and cu- 
bic terms are determined by the expressions 

.h'= (6P-12a) 116948, q'= (T8A-21B) /847A, 
t'= (-182a+28P) 18474. ( 5  

The root-mean-square fluctuation in bond lengths in a 
glass is of the order of 10%. In this case, the corresponding 
fluctuations of the coefficients A and B are of the same order. 
Then the typical fluctuations of the coefficients h ' and t ' are, 
correspondingly, and lop2. We emphasize that for our 
use of x, the coefficient of the quadratic term, v', can have 
either sign. 

We are interested in only those cases when the potential 
U ( x )  is weak, that is, corresponds to the TLS with not-too- 
high barriers, which a particle can pass over in a time less 
than that of experiment. The conditions on the weakness of 
the potential have the form 

where 

q ~ =  (h2/2Ma28,) '", 

and M is the mass of the central atom. 
The characteristic energy scale W, given by the poten- 

tial (4), for which the conditions (6)  are fulfilled is of the 
order of " 

(2a is the distance between the atoms on the ends); r is the 
W=8,qL"<8,. 

coordinate of the central atom (see Fig. 1 ). We take 
(7 )  

)A,-AzI <Ai,z, IBi-Bz) KBI.2. An estimate for the triatomic molecule with a 2 eV bond 
energy, a = 2 b; and M that of oxygen gives TL = 2X 

Expanding around r = 0, we have (x  = r/a ) Thus we see that in the case considered, of fluctuations in h ' 

U ( X ) = ~  (A-B)  + (6$-12a)x+ (156A-42B)xZ 
+ (-364u+56p) x3+ (2630A-252B) xC. (2)  

2 
Here 1 a 

0 
- 
r -a a 

A=(' /2a '2)  ( A , + A 2 ) ,  u=(Al-Az) /a" ,  
B= ('/ ,a6) (B ,+B , ) ,  P=(B,--B2)/a8. ( 3 )  FIG.l. 
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(due to fluctuations in atomic bond lengths) greater than 
7L 3/2,  and fluctuations in t ' less than 72"', there are no great 
disparities. 

For the energy Win Eq. (7)  we find an estimate of 100 
K. This is a comparatively large energy. If we look at other 
TLS models, taking into consideration that they are related 
to, for example, the bending of a certain bond or the rotation 
of some atomic cluster as a whole (for example, the rotation 
of a tetrahedron in melting quartz, which Buchinau7 consid- 
ered) this energy can be smaller. 

We go over now from Eq. (4)  for the potential energy to 
the standard form (not containing the linear term5), by 
shifting the reference origin: 

where 

The relation between the coefficients of the Hamilto- 
nians has the form 

To work with the Hamiltonian of Eq. (8) ,  we need to 
know the distribution function of the parameters 7 and t. We 
will relate it to the distribution of the parameters h ', v', t '. 
Since in our example the t ' distribution is narrow (compared 
to 72") we will set t ' = 0. The Jacobian of the transforma- 
tion is 

Let the distribution of the parameters h ' and 7' have the 
form 

Then, in agreement with Eq. ( lo),  the distribution of the 
parameters 7 and t is 

that is, the new distribution function contains 17 / as a multi- 
plier and for a nonsingular function cP (h ', 7') goes to zero at 
7 = 0. This is a general statement and according to the deri- 
vation does not depend on the choice of the double-well po- 
tential model under c~nsideration.~ The specific example 
given serves only as an illustration. The distribution function 
goes to zero for the parameter 7 = 0 because the form of the 
potential in Eq. (4) with 7' = t ' = 0 is unusually sensitive to 
any exteral influence. The values of the parameters 7 and t 
after the displacement in Eq. (8)  are expressed as nonanaly- 
tic functions of the parameter h ': 7- (h ' ) ' I 3 ,  t -  (h ') ' I3 ,  

3. Thus, from our point of view, there are two types of 
glasses. In glasses of type I there is a broad distribution of 
asymmetry parameters h ' in comparison with the size of vy 
T /  W ( Tis temperature). In these glasses it is natural to take 
the distribution @ to be smooth, and then the distribution 
function is proportional to 171. 

In type I1 glasses cP (h ', 7') is a sharply peaked function 
of the first argument. In this case it is possible to put the 

distribution function in the form given in Ref. 5 and used in 
Refs. 3 and 4. 

Exactly which of these situations is realized in fact de- 
pends on the specific form of the glass. The only way to 
answer this question is to experimentally investigate those 
properties that depend on the detailed behavior of the distri- 
bution function, such as the specific heat, thermal expansion 
and several others (for example, thermal radiation). 

In conclusion we present results for a type I glass which 
was found by the same method as in Refs. 3 and 4. The coeffi- 
cient of thermal expansion is 

1 - 71 
lnV3 (*/PET) [In (Wlk.2') +'i2 ln (r,,ir.,,) 1 " 

Here y and y ,  are dimensionless constants of order unity; y  
may have either sign; K is the modulus of hydrostatic com- 
pression and T,~, is the minimum relaxation time for a TLS 
with a level separation k, T. The specific heat is 

so that the Gruneisen parameter r = aK /C tends to zero for 
re,, - W ,  if there is no cutoff in the 7-distribution function 
for 7 large in absolute value and negative (cf. Ref. 1 ). 

Thus, in the present work and in Refs. 3 and 4 we have 
considered the low-temperature thermal expansion of 
glasses on the basis of two different models. Both models 
yield a large value for the Gruneisen coefficient. This is an 
essential difference between glasses and crystals, which have 
in theory (as in experiment) small values of the Gruneisen 
coefficient. The chief reason for this difference is that in the 
theory of glasses there appear large logarithmic terms as well 
as large values of 7, ', which determine a large Griineisen 
parameter. The physics of this is tied to the weakness of the 
potentials which give rise to a TLS, which inescapably leads 
to a large anharmonicity. 

As Anderson et al.899 correctly note, various values of 
I'-from several tens to unity-are observed in experiment. 
Therefore it is natural to ask the questions: which is more 
surprising, from the theoretical point of view, and which is in 
need of more explanation-large or small values of T? In our 
opinion, on the basis of what has been said, an explanation of 
small values of I' in glasses is needed. 

One possible explanation is the presence in glasses of 
several types of TLS, which could give contributions of dif- 
ferent signs to r, and cancel each other. Another explana- 
tion would be the presence of defects. As shown by a series of 
 experiment^,^ the introduction of defects in a glass reduces 
the value of I?. The physics of this influence of defects is still 
unclear, but there is no doubt as to the facts. In this connec- 
tion, we feel that it would be extremely desirable, in those 
cases when the Gruneisen parameter is small, to indepen- 
dently control the defect concentration. Such experiments 
could then be used to analyze why the low-temperature ther- 
mal expansion of glasses (as opposed to such properties as, 
for instance, the specific heat or sound absorption) is so sen- 
sitive to defect concentration. 
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