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A self-similar solution is found of a time-dependent spatially homogeneous transport equation 
describing a linear atomic collision cascade. This solution is used to provide a physical 
description of the development of a cascade as a pattern of consecutive generations of knocked- 
out atoms and to obtain a system of quasihydrodynamic equations describing the evolution of 
the cascade in space and time. 

INTRODUCTION 

The well-known 1955 paper of Kinchin and Pease' was 
the starting point of the theory of atomic collision cascades. 
Many theoretical papers have since been published (the 
most recent review can be found in Ref. 2 ) .  However, we 
must admit that the progress has been mainly due to numeri- 
cal solution of transport equations or computational model- 
ing of the relevant processes,3 whereas the number of analy- 
tical results is small (see, for example, Refs. 4-12) and most 
of them have been obtained for the spatially homogeneous 
steady-state case. Therefore, we are still facing the problem 
of developing an analytical theory of cascades. 

Our aim will be to show that the theory of linear cas- 
cades has self-similar solutions which make it possible, first- 
ly, to provide a clear physical description of the development 
of a cascade as a pattern of consecutive generations of 
knocked-out atoms and, secondly, can be used as the basis of 
a quasihydrodynamic description of a cascade. In dealing 
with quasihydrodynamics we must stress that, in contrast to 
ordinary hydrodynamics, where a system is described by a 
local Maxwellian distribution, in the case of a linear cascade 
the local description is different and it is given by the self- 
similar solution mentioned above. 

FORMULATION OF THE PROBLEM 

A solid consisting of A atoms is bombarded with B 
atoms or ions which knock out A atoms from their equilibri- 
um positions. Each primary knocked-out A atom is a source 
of a collision cascade knocking out other A atoms from their 
equilibrium positions. 

It is assumed that the density of the bombarding parti- 
cles is low, so that the number of moving atoms is small and 
we have to allow only for collisions of moving atoms with 
those at rest, whereas collisions between moving atoms can 
be ignored (linear cascade case2). We shall also assume that 
collisions between atoms can be regarded as occurring in 
pairs. Let f, be the distribution function of the momenta ofB 
atoms and fp be the distribution function of moving A atoms. 
Then, the situation under discussion is described by the fol- 
lowing system of transport equations. For the B atoms we 
have 

Here w,,,, , is the probability that a B atom moving in a 
medium ofA atoms at rest is scattered from k to k' giving rise 
to a moving A atom with a momentum p .  For the A atoms we 
have 

Here w,,,.,~- is the probability that after a collision between 
an A atom characterized by a momentum p and an A atom at 
rest the momentum of the latter is p" and the former atom 
has a momentum p' .  Next, lo,,,. is the scattering probability 
of an A atom in an undisturbed medium, whereas w,,,. is the 
probability that after the scattering of an A atom with a mo- 
mentum p a new moving A atom with a momentum p' ap- 
pears in the undisturbed medium. 

kquation ( 1 ) for fk can be solved independently and 
then C in Eq. (3 )  becomes a known source for fp aqd the 
solution of Eq. ( 3 )  reduces to finding the Green's function 
G ( p , p , ; r , r , , t ) ,  which satisfies the equation 

The function G is the distribution function in the case when 
one primary knocked-out A atom with a momentum p ,  ap- 
pears at time t = 0 at a point r, in a normalization volume L '. 
Our aim will be to find this function. 

We shall ignore the crystal structure of the medium and 
the anisotropy of the probability w relative to the crystallo- 
graphic axes. We shall write down the transport equations 
ignoring electron deceleration, i.e., neglecting excitation and 
ionization of atoms as a result of collisions. We shall regard 
the motion of atoms as classical. 

POTENTIALS AND CROSS SECTIONS 

The decisive stage in the solution of Eq. ( 7 )  is the selec- 
tion of the scattering probability w, i.e., the selection of the 
interatomic interaction potential U ( r ) .  In a rough approxi- 
mation we can use an interaction potential characterized by 
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certain amplitude IJ, and a radius of action a. The character- 
istic energy transfer w as a result of a collision of a moving 
atom of energy E with an atom at rest can be estimated to be 
w-E, i f&& UO, and w- U ~ / E ,  if&% Uo (it is asumed that the 
masses of atoms are of the same order of magnitude). If we 
exclude the situation when E - U,, we find that we always 
have w & U,. Therefore, irrespective of the energy of the 
bombarding B atoms, the energy of the primary knocked-out 
A atoms (and all the atoms in later generations or stages of 
the cascade) will almost always be small compared with 
UiB.  If Uf 2 U f B ,  then all the conditions in a cascade oc- 
cur in the energy range E & U and the characteristic energy 
transfer is w - E .  In this range of energies the important fea- 
ture is the behavior of the potential in the spatial region r 2 a, 
where the potentiai can be approximated by a power-law 
dependence on r: U(r)  ccr--" (Ref. 13). The power expo- 
nent is n > 1, which reflects the screening of the Coulomb 
interaction of the nuclei of atoms at large distances from one 
another. 

If the problem is regarded as isotropic relative to the 
crystallographic axes, the probability w,-,,,,.. can be ex- 
pressed in terms of the scattering cross section differentiated 
with respect to energy transfer da(a,w)/dw. In the case of a 
power-law potential,'4 we find that 

whereas in the case of low-angle scattering if x & 1, then 

[in the case of the Coulomb potential when n = 1 the asymp- 
tote of Eq. ( 9 )  is identical with the exact form of @ ( x ) ] ,  
whereas for any form of scattering if x -  1, then 

0 (x) +const. (10) 

The scattering of identical particles can be normalized using 
the condition 

0 

The energy range I(£) and the energy relaxation time T(E) 
are described by 

Here, N is the number of target atoms per 1 cm' and 
U ( E )  = (2&/M) ' I 2  is the velocity of an atom. 

I t  is clear from Eqs. (9)-(12) that, as expected, the 
stopping power is dominated by the processes characterized 
by w-E. Using Eqs. (8) ,  (12), and (13), we find that 

The value of 7 ( ~ )  increases with E for soft (weakly 
screened) potentials ( 1 < n < 4, $ < m < 1 ), whereas for hard 
(strongly screened) potentials ( n  > 4,m < d ) ,  we find that 
T(E) decreases with E. I t  should be noted that I(&) always 
increases as a function of E .  

GENERATIONS OF KNOCKED-OUT ATOMS 

In the high-energy range E$E,, where E, is the binding 
energy of an atom at an equilibrium position, the probability 
w satisfies the laws of conservation of energy and momen- 
tum: 

Therefore, the knocking out of an atom from its equilibrium 
position is formally equivalent to "decay" of a moving atom 
with a momentum p into two atoms with momenta p' and p". 
Consequently, in the description of a cascade we can use the 
concept of generations or stages developed in Ref. i 5  for 
phonon decay. As pointed out already, a typical energy 
transfer amounts to w - E .  Therefore, when a new moving 
atom appears the dominant processes are those character- 
ized by &,. -&,,, WE,.  I t  therefore follows that the energy E,  

is shared approximately equally between the scattering and 
knocked-out atoms. Therefore, a cascade can be regarded 
qualitatively as a sequence of generation of atoms, and the 
energy of atoms in each succeeding generation is half the 
energy of atoms in the preceding one. The lifetime of a gener- 
ation characterized by an energy E is T ( E ) ,  SO that the dura- 
tion of a cascade initiated by an atom of energy E,, is given by 

eo 

It is clear from Eq. ( 16) :hat in the case of soft poten- 
tials the main contribution tc  the sum comes from the first 
generation or the lifetime of this generation, i.e., t, - T ( E ~ ) ;  
in the case of hard potentials the sum diverges, i.e., a cascade 
is "infinitely long." In fact, the concept of generations ceases 
to be valid when the energy of the atoms becomes compara- 
ble with the binding energy E, . Therefore, in the case of hard 
potentials the integral of Eq. ( 16) should be truncated at the 
lower limit EZE,, which gives t, -T(E, ). This means that in 
the case of hard potentials the duration of a cascade is deter- 
mined by the lifetime of the last generation and is indepen- 
dent of the energy E, of the primary atom. 

During its lifetime a generation with an energy E travels 
in space a distance I (&)  and the whole cascade traverses a 
distance 

In  other words, the spatial extent of a cascade is always gov- 
erned by the first generation. 

The range of atoms in later generations characterized 
by energies E&E, is short: I(&) &I(£,). This means that evo- 
lution of a cascade near its end occurs under conditions of a 
weak spatial inhomogeneity, i.e., it occurs in a quasihydro- 
dynamic regime. We shall therefore initially study a cascade 
in the spatially homogeneous case and then deduce quasihy- 
drodynamic equations. 

SPATIALLY HOMOGENEOUS CASE 

The development of a cascade in the spatially homoge- 
neous case corresponds to the situation when no atoms with a 
momentum p, and an energy E,, are created at : = 0 per 
1 cm3. The Green's functiong, ( t )  then satisfies the equation 

d g p / d t = ~  {g,) +6,,, .6 ( t )  n,L3. ( 18 )  
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In view of the isotropy of the model, the function g, 
depends only on E E ,  and on the angle 6 between p and the z 
axis selected along p,. We shall introduce 

ec 

p ( e )  gr ( t )  = C (21+1)17, (8 ,  t ) 9 1  (cos 0),  (19) 
1=0  

wherep (~ )  is the density of states per 1 cm3 and 9, ( x )  is a 
Legendre polynomial. Then, the equations for F, (E,?) with 
different values of I can be separated and for t > 0 they be- 
come 

eo 

x {a (& ' ,  E ) + ~ ( E ' ,  E ' - ~ ) ) - N u ( e ) F ~ ( e ,  t )  j de' a ( & ,  E-E ' ) .  
0 

(20) 
where 

It should be pointed out that, on the basis of Eq. (9),  in 
the case of power-law potentials the integral with respect to 
E' in the last ("outgoing") term diverges for E' Z E .  However, 
we can see that this divergence is cancelled by exactly the 
same divergence in the second term. The physical reason for 
this cancellation is the circumstance that the transport pro- 
cesses are in fact governed by the energy transfer cross sec- 
tion, whereas the usual total cross section occurring in the 
"outgoing" term has no specific meaning. 

The functions F/ with I = 0 or 1 should satisfy the laws 
of conservation of atomic energy per cm3 

E ( t )  = j d ~  eFo ( E ,  t )  =noeo=E0 
0 

and of the projection along the z axis of the atomic momen- 
tum per cm3 

e, 

p ( t )  = I d e  M U  ( e )  F ,  ( E ,  t )  =n,po=Po. 
o (23) 

In the case of power-law potentials a solution of the 
system (20) in the E < E, case can be found in the self-similar 
form: 

where A , ,  a , ,  and t, are certain constants. Substituting Eq. 
(24) into Eq. (201, and using Eq. ( 8), we obtain the follow- 
ing equations for p, : 

Hence, we can see that the self-similar solution is obtained 
only for E<E,, when the lower limit of the integral can be 
replaced with 0. 

We shall now consider the energy E( t ) .  Substituting F, 
from Eq. (24) into Eq. (22) and going over from integration 
with respect to E to that with respect to 6, we obtain 

The lower limit in the integral is 0 form < j and m for m > a. 
The energy E ( t )  is independent o f t  and, firstly, we have 
B = 0, i.e., a, = - 2. Secondly, it should be possible to re- 
place the integration limit {,(?) with infinity if m < 4 and 
with 0 if m > a. A similar analysis of P ( t )  gives a ,  = - 4. 

The normalization constants A, and A, are defined, in 
accordance with Eqs. (22) and (23), using the energy Eo 
and momentum P, per cm3. The sign in front o f t  in the self- 
similar variable { is found by considering the number of 
atoms in 1 cm3: 

which in the case of the self-similar solution subject to 
a, = - 2 behaves as follows: 

The number of atoms should increase. This condition can be 
satisfied if we select the plus sign form < a and the minus sign 
form >j.  

We shall now go back to the equations for po and p, 
using the values a, = - 2 and a ,  = - 4 found above. Not- 
ing that Y, (X"~)  = 1 and 9, (x'12) = x1l2, we find that p, 
and rp, are described by the same equations: 

where the upper sign applies if m > j and the lower if m < 1, 
and we also have 

We shall assume that rp, = p, = e, and select the normaliza- 
tion condition in the form 

We can then calculate A, and A ,, and find finally that 

Hence, we can determine the constant to. This can be 
done by calculating again n ( t )  using F, from Eq. (32). This 
gives " 
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where m 

Recalling the conditions which are imposed on go(t) as the 
upper limit of the integral (26), we can see that the self- 
similar solution is valid for times t such that n( t )  )no, i.e., 
when the cascade heated by each initial atom consists of a 
large number of particles. It is also clear that at t = 0 the 
value of n ( t )  found in this way cannot be exact, but we can 
expect a correct order of magnitude of this number. Assum- 
ing that n(0) -no in Eq. (33), we find that 

We shall now summarize the results. The self-similar 
solution for the first two angular moments of the Green's 
function is given by Eq. (32); the function p is then normal- 
ized by the condition ( 3 1 ). The self-similar variable { and 
the conditions under which the self-similar solution is valid 
are different for soft and hard potentials. 

In the case of soft potentials (m > b ) ,  we have 

The time to - T ( E ~ )  is the "duration" of a cascade. The self- 
similar solution is valid if 

i.e., near the end of a cascade. In the case of hard potentials 
(m < A )  the condition for validity of the self-similar solution 
can be reduced to 

so that the self-similar variable is 

and the time to drops out from the equations. The full devel- 
opment of a cascade then requires an "infinite" time. 

We now have to consider also the role of the higher 
angular momenta ofF, characterized by 122. It is clear from 
Eq. (32) that 

i.e., under the conditions when the self-similar solution is 
valid, we have F, <Fo. This means that the process by which 
the self-similar solution is established is accompanied by si- 
multaneous isotropization of the distribution. Therefore, it 
is natural to assume that in the self-similar solution the mo- 
ments F, with 1>2 can be ignored, especially as their vanish- 
ing is not in conflict with any conservation laws. 

It therefore follows that the self-similar Green's func- 
tion for the spatially homogeneous problem is 

where Eo and Po are the total energy and momentum of parti- 
cles in 1 cm7 and B is the angle between p and Po. This form of 
the Green's function is obtained when each cascade initiated 
by a single initial atom already contains many atoms. 

In the case of a steady-state source, Eq, (41) is identical 
with the distribution functions of the stationary problem, 

obtained in Ref. 8. The energy spectrum of atoms then has 
the familiar form F(E) - EO/~2 (Ref. 6). 

It should also be noted that the difference between the 
soft and hard potentials in the case of the self-similar solu- 
tion is in full agreement with the qualitative concept of gen- 
erations. The Maxwellian potential (m = a )  does not admit 
the self-similar solution when T(E)  = const, since in this 
case n ( t )  in Eq. (33) is meaningless. 

It was shown in Ref. 7 that in the case of the Maxwellian 
potential the number of atoms in a cascade rises exponential- 
ly: n ( t )  a exp[t /?.(&,) ]. Theexponentialrise is intermediate 
between the t '/" law (hard potentials) and the (to - t )  - '/" 
law (soft potentials). 

The existence of the self-similar solutions of the system 
(20) in the case when 1 = 0 or 1 is influenced only by the 
general form of the cross section (8 )  and not by the specific 
properties of the function (x)  [subject to the condition for 
the existence of the normalization integral of Eq. (31), 
whose convergence in the final analysis depends on the limit- 
ing form of @ for x 4 1 and x + 1 ]. Therefore, the selection of 
the potential of the interaction between atoms in the form of 
a power law is not essential. Another example of potentials 
admitting the existence of self-similar solutions is the hard- 
sphere potential when the scattering cross section can be 
deduced from Eq. (8)  by the formal substitution m = 0 and 
@ (x)  = const. Then, N(t)  becomes2' 

The exact expression for N (  t )  was obtained in Ref. 7 for the 
hard-sphere potential: 

A comparison of Eqs. (42) and (43) shows that the exact 
solution reduces asymptotically to the self-similar solution 
for t >) T ( E ~ ) .  

QUASIHYDRODYNAMIC EQUATIONS 

We shall now investigate the spatial evolution of a cas- 
cade initiated by an atom created at time t = 0 at a point 
r = ro with a momentum p,. The Green's function then satis- 
fies Eq. (7) .  It follows from the above that if we are interest- 
ed in time intervals such that the number of atoms in a cas- 
cade is large, the atomic mean free paths are much less than 
'the dimensions of a cascade. Therefore, following the usual 
approach to a hydrodynamic description, we shall obtain a 
Green's function of a cascade in the form3' 

i.e., we shall replace the constants Eo and Po in Eq. (4 1 ) with 
the values of E and P that vary slowly with r and t and 
represent, respectively, the density of the energy and mo- 
mentum of particles in this cascade. A characteristic scale of 
these quantities along r is the size of the cascade 1,. The 
equations for E and P are obtained as usual from the balance 
of energy and momentum. Substituting Eq. (44) into Eq. 
(7),  multiplying the equation by E, , and summing over p, we 
find that 
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Here, 

where vo = p o / M  is the velocity of an atom initiating the 
cascade and 

Similarly, multiplying Eq. (7)  by p and summing over p, we 
find that 

Equations ( 4 5 )  and ( 4 8 )  resemble the system of equa- 
tions describing second sound, which is to be expected be- 
cause the total energy and momentum ofthe whole system of 
particles are conserved both in an atomic cascade and in 
phonon hydrodynamics. The important difference is that the 
velocity s ( t )  of second sound depends on time. It is of the 
order of the average random velocity of atoms in a cascade at 
time t :  s ( t )  - u ( ( E ) ,  ) .  It follows from Eqs. ( 4 5 )  and ( 4 8 )  
that 

i.e., the equation is of the wave type in which the propagation 
velocity is a given decreasing function of time. 

We shall now go back to the distribution ( 4 4 ) .  The 
quantities E and P  vary at a rate characterized by a time 
constant I, / s ( t ) .  On the other hand, the factor q, (6) changes 
in a time T ( E ) ,  where E is the average energy at a moment t .  
We can easily see that 

Therefore, the main fast process of the change in G is a 
change in the energy distribution of the atoms which does 
not alter the spatial dependence of the energy and momen- 
tum densities. These densities vary much more slowly in 
space. As pointed out above, the anisotropy of the distribu- 
tion ( 4 4 )  is weak. However, the smallness of the anisotropy 
is not related to the relaxation of the momentum of the sys- 
tem. Therefore, both E and P  are described by wave-type 
rather than diffusion-type equations. 

It is also illuminating to compare the problems of atom- 
ic and phonon cascades. For both cascades the spatially ho- 
mogeneous case can be described by a self-similar solution. 
However, in the spatially inhomogeneous case there is a fun- 
damental difference: a phonon cascade again evolves in a 
self-similar manner, whereas an atomic cascade evolves qua- 
sihydrodynamically. This is due to the fact that the range in 
a phonon cascade increases as the new generations appear 
and the size of the region occupied by the particles is gov- 
erned by the last generation, whereas in an atomic cascade 
the range decreases and the size of this region is determined 
by the first generation. 

Equations ( 4 5 )  and ( 4 8 )  are suitable for describing the 
sputtering of atoms, provided we allow for the influence of 
the surface on the development of a cascade. In the most 
widely used variant of sputtering theory, l 7  the problem of a 
cascade is solved as in the case of an unbounded medium and 
the surface simply acts as a virtual plane crossed by a flux of 
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sputtered particles. In fact, the influence of the surface must 
be allowed for more correctly. In our case we would have to 
solve again the transport equation in the surface region and 
derive quasihydrodynamic equations using a new distribu- 
tion function. However, this is a fairly major task. Therefore, 
we shall allow for the influence of the surface by an approxi- 
mate boundary condition applicable to hydrodynamic quan- 
tities E ( r , t )  and P(r , r ) ,  as in the case of the Milne prob- 
lem.'* We shall assume that the surface is totally absorbing. 
This means that the distribution function on the surface 
should vanish for particles with a nonzero component of the 
velocity directed away from the surface. However, this con- 
dition cannot be satisfied by the quasihydrodynamic distri- 
bution function ( 4 4 )  for any value of E or P .  Therefore, we 
can simply require that the boundary condition should be 
satisfied on the average: 

j Y n , O J r E S = O ,  ( 5 1 )  

where j,, ,, is the flux of particles moving from a surface S 
and the direction of the inner normal to S is taken to be 
positive. The condition ( 5  1 ) together with the distribution 
function ( 4 4 )  yields 

where S - 1. The exact value of S can be found only by solving 
the transport equation for the surface layer, so that in our 
approximation the quantity S is an unknown parameter of 
the theory. 

"An analysis of the equation for the self-similar function p(<) of Eq. (29) 
shows that if @(x)  has a small-angle asymptote (9 ) ,  then the integral 
(34) diverges. However, this is not so important, because an analysis 
leading to the selection of the sign of the self-similar variable and an 
estimate oft,, should be carried out not for n ( t ) ,  but for the average 
energy per particle at a time t. 

"In this case the integral of Eq. (34) converges. 
"It should be noted that this form of the distribution function (in the 

steady-state problem) was postulated in Ref. 16. 
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