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The dissipative and Hall components of the electric current due to the motion of quasi-two- 
dimensional electrons in a quantizing magnetic field and in the smooth potential of a one- 
dimensional superlattice are calculated as functions of the Landau-level population for a broad 
range of electric field strengths by means of the quantum-kinetic-equation method. The effect 
of the electric field and lattice temperature on the parameters of the plateau in the dependence 
of the Hall conductivity on the occupancy of the Landau level is determined, together with the 
current-voltage characteristic of the system. It is demonstrated that the interesting nonlinear 
regimes occur in the experimentally accessible region of parameter values. The effect of the 
electron-electron interaction on the results obtained is discussed, and it is shown that the 
electron-temperature approximation is inapplicable in a number of important cases. 

5 1. INTRODUCTION 

The quantum Hall effect' is at present a subject of great 
interest, but no complete theory has as yet been constructed 
for this phenomenon. There is the conductivity-quantization 
problem proper, i.e., the question of why the isolated Lan- 
dau level, the overwhelming majority of the states of which 
may be localized, makes the ideal contribution to the Hall 
current even though it is occupied. It is precisely this prob- 
lem that has been given the main attention in the last few 
years, and it has been explained qualitatively2-s and, under 
certain assumptions about the form of the single-electron 
spectrum, quantitatively."' At the same time there is a sec- 
ond aspect to the problem-the question of the nature of, 
and the mechanisms underlying, the conductivity of a par- 
tially occupied Landau level. A clear understanding of the 
processes that occur here is necessary for the determination 
of the plateau parameters in the quantum Hall effect, the 
dependence of these parameters on the amount of impurities 
in the sample, the temperature, the electric field intensity, 
etc. The possible thermal and other corrections to the ideal 
value of the Hall resistance in the region of the plateau deter- 
mine the accuracy and reproducibility of the quantum resis- 
tance standard and the accuracy of measurement of the fun- 
damental constant e2/fi (Ref. 9 ) .  

The basic difficulty in the problem of computing the 
conductivity of a partially occupied Landau level lies in the 
macroscopic degeneracy of the single-electron states of the 
level in the absence of perturbations. Apparently, this diffi- 
culty was first fully recognized by Baskin et al.," who have 
shown that the use of the so-called self-consistent Born ap- 
proximation in earlier papers devoted to the computation of 
the conductivity tensor for a two-dimensional electron gas 
located in a quantizing magnetic field (see a review of these 
papers in Ref. 11 ) cannot be rigorously justified. It has be- 
come clear that we should, in constructing a consistent the- 
ory, make allowance from the very beginning for the lifting 
of the degeneracy of the states of the ideal Landau level by a 
perturbing potential. One of the first attempts in this direc- 
tion was made by the present authors in Ref. 12 (see also 
Ref. 13). We constructed a theory of hopping conductivity 
in the Landau level's impurity band formed by those states of 

this level which are split off by the Coulomb impurity centers 
randomly distributed in the insulator in the vicinity of the 
inversion layer. But such a theory can qualitatively describe 
the situation only in the limit of low or high occupancy of the 
Landau level, i.e., in the v< 1 or 1 - v< 1 limit, and not too 
high impurity-center concentrations. For the case of arbi- 
trary level of occupancy of the Landau level the analysis of 
the experimental data is often carried out with the use (see, 
for example, Ref. 14) of the smooth-potential model pro- 
posed in Refs. 3-5, 15. Specifically, it is assumed that the 
self-consistent potential acting on the electrons in the inver- 
sion layer and due, as a rule, to the fluctuations of the density 
of the charged impurity centers in the insulator can be split 
up into a long-wave regular part, which can, in a sense, be 
taken into account in the equations of motion of the electron 
exactly, and a scattering short-range component. An elec- 
tron, drifting along smooth quasiclassical trajectories, hops 
from one to another as a result of collisions with the short- 
range scattering centers, the phonons, and other electrons. 
But the topological structure of the two-dimensional 
network of quasiclassical trajectories in an arbitrary smooth 
potential remains fairly complicated, and consistent compu- 
tations have thus far not been carried out in this model. 

Recently, Aizin and V ~ l k o v ' ~ ~ "  showed that the degen- 
eracy of the states of the Landau level can also be lifted by the 
periodic potential of a one-dimensional superlattice, and 
computed in the linear response approximation the compo- 
nents of the system's conductivity tensor for the case A2 A,  
where R = ( ~ f i / e B ) ~  is the magnetic length and A is the su- 
perlattice constant. Such a method of lifting the degeneracy 
of the Landau level seems to us to be fruitful. Since a bare 
single-electron spectrum arises in the problem, we can con- 
struct a theory in terms of the quantum kinetic equation. 
This, in principle, allows us to carry over the results of the 
fairly complete three-dimensional theory (see, for example, 
Ref. 18) to the present case and take into consideration in a 
unified fashion the phonons, the impurities, the residual 
electric fields, the interelectron Coulomb interaction, etc. 
We emphasize that the case of the residual electric fields is of 
special interest at present in connection with experi- 
m e n t ~ ' ~ ~ ~ ~  on the destruction of the plateau in the quantum 
Hall effect in strong electric fields. 
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The experimental study of the properties of one-dimen- 
sional superlattices in a quantizing magnetic field is only 
beginning.21 In view of this in the present paper we consider 
the relatively simple case of the one-dimensional smooth 
(A <A) potential with the aid of the quantum-kinetic-equa- 
tion method. Our analysis of the joint action of the elastic 
and phonon mechanisms of scattering in the residual electric 
fields reveals a fair degree of complexity and a wealth of 
galvanomagnetic phenomena in the system in question, and 
this, we hope, will stimulate experimental investigations. 
The case of the two-dimensional smooth periodic potential 
can also be studied in this formalism, which will be done in a 
separate paper. In this connection let us note that the two- 
dimensional quasiclassical trajectories in an arbitrary 
smooth potential are actually quasi-one-dimensional. 
Therefore, the study of the phenomena in the one-dimen- 
sional potential of a superlattice is, in our opinion, an impor- 
tant first step in the investigation of the general case. 

We shall assume that the amplitude V, of the superlat- 
tice potential is small in comparison with the Landau-level 
spacing fiwr, and that the scattering impurity centers are 
short-range centers. It is assumed that the electrons interact 
only with longitudinal acoustic phonons, since the optical- 
phonon energy satisfies fiw, > Vo . The phonons are consid- 
ered to be an equilibrium subsystem. (As has been shown in 
e ~ ~ e r i m e n t s , ' ~ , ~ ~  lattice overheating does not occur in elec- 
tric fields with intensities of up to F=: 100 V/cm.) We shall 
study the dynamics of the electrons of a given, partially oc- 
cupied Landau level, neglecting the electron transitions 
from the level in question to the other Landau levels. 

In $ 2 we construct and solve the quantum kinetic 
equation with allowance for the scattering of the electrons by 
the impurities and phonons. We consider the regimes of 
weak, medium (warming), and strong electric fields. In $ 3 
we compute the dissipative and Hall currents as functions of 
the field intensity Fand occupancy of the Landau level. In § 
4 we carry out estimates, which show that the occupancy of 
the upper (initially empty) Landau levels is exponentially 
small in a wide range of electric field intensities. There we 
also discuss the effect of the interelectron collisions on the 
results obtained. 

9 2. SOLUTION OF THE QUANTUM KINETIC EQUATION 

The Hamiltonian of the system under consideration 
consists of the unperturbed Hamiltonian 

( Vo ( X  is a one-dimensional superlattice potential with pe- 
riod A and amplitude Vo, Fis the external electric field inten- 
sity, and A = (0, Bx, 0) is the vector potential of a homogen- 
eous magnetic field B) and perturbation operators. Thzse 
operators are the electron-impurity interaction operator V, , 
averaged over the z motion of the electrons in the ground 
subband of the dimensional quantization with the Stern- 
Howard wave function22 Yo = (b  3/2) '"z exp{ - 62/21: 

Nlm 

P i ( r ) = V i  z v ( r - ~ , )  (2)  
?= 1 

(here b- ' is the effect,ive thickness of the layer; r and Rj are 
two-dimensional vectors in the plane of the electron layer) 
and the operator describing the deformation interaction of 
the electrons with the longitudinal mode of the three-dimen- 
sional acoustic phonons: 

where q = (q, , q, ) is the wave vector of the phonons, s is the 
velocity of sound, p a  is the crystal mass, and xo is the elec- 
tron-phonon interaction constant. 

The quantum kinetic equation can be constructed by 
means of the well-known procedure (see, for example, Ref. 
18) for determining the diagonal elements of the density ma- 
trix of the system described by the Hamiltonian ( 1 )-(3 ) in 
the basis of the wave knctions of the unperturned single- 
electron Hamiltonian Hoe. On account of thz one-dimen- 
sional nature of the interactions entering into Hoe, the wave 
functions of this Hamiltonian are characterized by the Lan- 
dau quantum number N and the x coordinatexof the center 
of the oscillator. In the lowest order in the interaction with 
the scatterers the collision integral in the quantum kinetic 
equation is equal to the sum of the electron-phonon and elec- 
tron-impurity collision integrals (St,, and St,, , respective- 
ly): 

The distribution function f, (X) has the meaning of the 
probability fo~occupation of the single-electron states of the 
Hamiltonian Hoe. 

Further, we consider only the case of sufficiently slowly 
varying superlattice potentials, i.e., the case in which A <A, 
so that the distribution function f(X) is a smooth function of 
the quasicontinuous quantum number X. Since in an elec- 
tron-phonon collision the characteristic electron displace- 
ment AXph 4A, the corresponding collision integral can be 
written in the Fokker-Planck approximation: 

In (5)  we went over to the energy representation of the dis- 
tribution function f ( X )  = f (E) by expressing the coordinate 
X in terms of the energy with the aid of the dispersion law, 
which for a slowly varying potential in first order perturba- 
tion theory in terms of the small parameter V0/hf  1 is 
given by the expression 

Furthermore, in (5)  we define the bare electron-phonon 
scattering time, T ~ ,  = 2?TZ@s2il 3 / ~ i ,  and the modulus of 
the local electron drift velocity normalized to the velocity of 
sound, u (E) = IA (djS(x)/dx)+i~ir~. The dimensionless co- 
efficient K(E)  can be expressed in terms of the probabilities 
for local electron hops along the "slope" of the superlattice 
potential (the rate of similar jumps between slopes is negligi- 
ble): 
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I ( t )  = d x  exp { t 2 x 2 / 2 )  ( I - r 2 )  - " [ l + x 2 ( f / h b )  'l' 
0 

In deriving (5)  we assumed the phonon system to be an 
equilibrium one, and used for the phonon occupation 
numbers the limiting value N ( h )  = T / h ,  assuming the 
lattice temperature T to be high. These assumptions are not 
needed for the purpose of writing down the electron-phonon 
collision integral in the form (5),  and do not lead to any 
qualitative changes in the results obtained below. Of impor- 
tance, however, is the fact that the collision integral (5) is 
nonzero only when the condition u (E) > 1 is fulfilled. In 
those energy (coordinate) regions where the local slopes are 
small, i.e., where u(E) < 1, the electrons cannot, on the basis 
of the energy and momentum conservation laws, emit or ab- 
sorp phonons, and the collision integral (5 ) is equal to zero. 
This circumstance can be taken into account by assuming 
that K(E)  = 0 in these regions. In the vicinity of the points 
u (E)  = 1 the electron-phonon collision integral cannot be 
written in the form (5)  and has a complicated form, but the 
total length of these regions is small in comparison with the 
superlattice constant. In the absence of an external electric 
field the collision integral (5)  describes the relaxation of the 
nonequilibrium distribution function to the Fermi function 
f, (E), which satisfies the integral identically. 

The electron-elastic-impurity collision integral in (4)  
describes the hopping of electrons from one slope of the su- 
perlattice potential to other slopes under conditions when 
the electron energy is conserved. Let us denote in terms ofX, 
the roots of the equation E(X) = E. Then 

In (8) we have introduced the bare time 

characterizing the scattering of the electrons by short-range 
impurity centers (with amplitude V, and range a4A)  uni- 
formly distributed in the plane of the electron layer with 
concentration n,, , and have explicitly separated out the ex- 
ponential dependence of the probability for electron scatter- 
ing by the impurities on the distance IX, - X I between the 
initial and final jump points. The dimensionless function 
e, '(X /A) =: 1, which depends on the shape of the impurity 
potential and the Landau-level number, is a slowly varying 
function of its argument. The quantity 
m, = [A (dE(X, )/dX)/V,I is equal to the normalized elec- 
tron density of states at the final jump points. 

To determine the stationary distribution function, we 
must solve Eq. (4) with the condition af /at = 0. It is clear 
that, in the stationary regime, the distribution function f(X) 
is a periodic function of the coordinate X, with period equal 
to the superlattice constant: f(X + A ) = f (X). Consequent- 
ly, it is sufficient to consider the steady-state kinetic equa- 

FIG. l. 

tion over a period, which we shall take to be the interval 
between consecutive maxima of the dispersion curve ( 6 ) ,  
e.g., between the maxima at the points X = - A  and 
X =  A -A, in Fig. 1. Let us set E( -A, ) = E,; then from 
( 6 )  it follows that E(A - A ,  ) = E, + A, where A = eFA. 
Since the inverse function X = X(E) is multiple-valued, let 
us, going over to the energy variable in the collision integral 
(8),  set ( 1  = 0, + 1, .  . . ) 

where, as can be seen from Fig. 1, the function f, (E) ,  which 
is prescribed on the left slope of the fundamental ( I  = 0) 
period, is defined in the energy interval [0, E , ] ,  while the 
function f2 (E) ,  which is prescribed on the right slope of this 
period, is defined in the energy interval [0, E, + A]. 

The electron-impurity collision integral (8)  relates the 
value of the function f, (E) at the point X, (see Fig. 1 ) lying 
in the fundamental period with the values of f2 (E + A )  and 
f, ( E )  at the points Xu and X, (nearest neighbors) respec- 
tively, as well as with the values off, ( E  - A) and f(E + A )  
in the neighboring wells, etc. Taking account of the fact that 
the probability for electron scattering by the impurities de- 
creases exponentially with increasing jum distance, we P shall, in the case (of interest to us here) o slowly varying 
superlattice potentials, i.e., for A <A, limit ourselves in (8)  
to only the contribution of the nearest neighbors. The densi- 
ties of states on the slopes of the fundamental period are in 
fact functions of the energy: m (X, ) = m, (E) ,  m (X, ) 
= m2(E). On account of the periodicity ofdE /dX, the den- 

sity of states at the point X, will be m (X, ) = m, (E + A). 
Let us again set w(Xb - X, ) = w, (E),  w(X, - X, ) = w, 
(E)  and 

Then from (4) ,  (5) ,  and ( 8) it follows that the distribution 
function f, (E) satisfies the equation 

where we have taken account of the fact that, in our nota- 
tion, u(X,)Wil V,m,(E), and have set K[u(X,)] 
= K, (E). The function f, (E) in the energy interval [A, E,]  

satisfies a similar equation: 
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=g, (E-A) [f,  (E-A) -f?(E) ]+gz(E) [fi (E) -fz(E) 1, (1 lb)  

where we have set 

K[u(X,) ] =K, (E), u(X,)fislh=Vom2(E) 

and have taken account of the fact that m(X,) 
= m,(E - A) and w(Xd - X,) = w,(E - A), since 

Xd (E) - X, (E)  = X, (E - A) - X, (E - A). In the ener- 
gy interval [0, A] we should discard the first term on the 
right-hand side of Eq. ( l l b ) ,  and in the interval [E,, E, 
+ A], the second term on the same side of the equation, 

since in these energy intervals the electron at X, does not 
have neighbors to the right and left, respectively, of it. 

Equations ( 1 1 ) for the determination of the functions 
fl (E) constitute a complicated nonlinear system of second- 
order differential-difference equations. We shall formulate 
the boundary conditions to this system as the need arises. 

Before proceeding to solve the system ( 11 ), let us note 
that the collision integrals (5 )  and (8) have completely dif- 
ferent effects on the distribution function. The electron- 
phonon collision integral tends to establish local thermody- 
namic equilibrium on the slopes of the individual wells, 
whereas the electron-impurity collisions lead to the transfer 
of the charge carriers from well to well, and hence to the 
spreading of the distribution function, because of its period- 
icity, over the well. If u, = R 'V,/+isA is the characteristic 
local drift velocity and KO = u; ' is the characteristic value 
of the coefficient K(E),  then the electron-phonon collision 
integral (5)  can be estimated as 

where T$ = T,, u, is the effective electron-phonon collision 
time, which has the meaning of energy relaxation time, and 
%/A is the characteristic energy transfer. Let us, for the pur- 
pose of estimating the collision integral (8),  introduce the 
characteristic probability for the occurrence of a jump dur- 
ing the scattering of an electron by the impurities, 
w, = exp{ - (hX)'/U '1 (AX is the characteristic jump 
distance), and the mean density of states m, = u,+is/R V,. 
Then St,, If] - If- f ]/T%, where T& = ~~,rn,/w, is the 
effective electron-impurity collision time. 

Let us estimate the ratio 

For the case of the inversion layer on the surface of a silicon 
sample located in the typical magnetic field B = 1.5X lo5 
Oe, the time rph z 3 X 10- sec, and it is convenient to ex- 
press the quantity T,, in terms of the time T"' characterizing 
the scattering of an electron by the short-range impurity 
centers in the absence of a magnetic field: 
TI, = (277) "2~'0 '  VJh,*, which can be estimated from the 
low-temperature mobility, T"' -- 2 X 10 - I' sec. " Further, 
setting &/A = 4  K and Iio,*z100 K, we find 
T,*,/T:~ z 10-'w; I .  Thus, the ratio of the effective scatter- 
ing times is a rapidly varying function of the energy. In the 
vicinity of the energy E * at which the above probabilities for 
jumps to the nearest neighbors are equal, i.e., at which 
g, ( E  *) = g2(E * ), the characteristic jump distance satisfies 

AXzA /2. In the region E < E *, the length of the longer 
jump should be taken as the characteristic jump distance, 
since it is precisely the longer jump that corresponds to the 
transfer of the electron from the well in question to the 
neighboring well. In the region E > E * an analogous argu- 
ment applies to the holes. 

Of greatest interest is the case in which the intensity of 
the electron-impurity scattering is high, i.e., in which 
T: g T,*,, in the entire important energy region. The inequal- 
ity T& <T:, holds for not-too-slowly varying superlattice 
potentials, i.e., for the case in which A /A 5 3 or 4. Then the 
current in the system is generated largely as a result of the 
elastic hops of the electrons on the impurities, and the role of 
the phonons reduces to that of determining the principal 
(symmetric) part of the distribution function. In this case 
the time 7% is similar to the usual electron scattering time in 
momentum space, since the ability of an electron to acquire 
energy in an electric field can be expressed in terms of this 
quantity. Indeed, a jump of an electron from a given well to a 
neighboring one is, on account of the periodicity of f (X),  
equivalent to a shift in the electron energy in the well in 
question by an amount A = eFA. Consequently, the rate of 
energy acquisition by an electron in the field is equal to 
(E),,,, = A / T ~ .  On the other hand, the energy loss by the 
electron as a result of the emission of phonons with charac- 
teristic energy +is/R is equal to ( Elinel = */AT;,. Therefore, 
the nature of the solution to the steady-state kinetic equation 
depends essentially on the magnitude of the parameter 
y = (E)~,/(E),, , ,~ = MT:,/&T~*, In the case when 
T& <T& the transition from the y <  1 to the y$1 regime 
occurs in relatively weak electric fields. Increasing F, we 
obtain different characteristic cases, which are analyzed be- 
low in Subsecs. a ) ,  b) ,  and c) .  

In the opposite limiting case of very slowly varying su- 
perlattice potentials, i.e., for A /A 2 6 or 7, on account of the 
smallness of w, we have T,*, $T&. The electron-impurity 
collision integral will be nonzero only in the vicinity of the 
extrema of the magnetic band (6).  Therefore, the distribu- 
tion function is determined almost everywhere by the elec- 
tron-phonon collision integral, the current in the system is 
generated as a result of the interaction with the phonons, and 
the role of the impurity scattering reduces to the closure of 
the current in those regions around the extrema where the 
collision integral (5)  is equal to zero. This case is analyzed 
below in Subsec. d ) .  Finally, in the region of extremely 
strong electric fields, i.e., in the region A> V, ,  where the 
derivative E ' (x) is ofconstant sign, the collision integral (8)  
is identically equal to zero, and (5 )  leads to a solution simi- 
lar to the one for the homogeneous case, which was analyzed 
earlier by Erukhimov.'' 

a) The linear case 

Let us begin the solution of the system ( 11 ) with the 
simplest linear case, i.e., the case of weak electric fields, in 
which y g l .  Furthermore, we assume A<&,, where E, 

= Vo(R /A) * is the characteristic scale of the variation of the 
functions gi (E)-the coefficients in the equations ( 11 )-- 
whose dependence on energy is the most critical. (The char- 
acteristic energy E, can be found from the estimate for the 
index of the exponential function in the formula ( 8 ) . ) Be- 
sides being energy dependent, the coefficients K ,  (E, F), gi 
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(E, F) also depend on the electric field intensity F as a pa- 
rameter. Let us, using the condition A<&,, expand these 
quantities in power series in F, limiting ourselves to the low- 
est nonvanishing terms. Furthermore, in the linear approxi- 
mation it is natural to seek the distribution function in the 
formA (E)  = f,(E) + f j l)(E) ,  where the small corrections 
f !"(E) are linear in the electric field and f,(E) is the Fermi 
function with lattice temperature T. As the boundary condi- 
tions to the system ( 11 ) in the present case, let us take the 
condition for the vanishing of the corrections f ( I )  at points 
far from the Fermi levelp,, which in turn can be determined 
from the normalization condition, namely, the condition for 
the maintenance of the number of electrons in the well at the 
equilibrium value. 

Linearizing the system ( 11 ) in the usual manner, we 
obtain for the corrections f j" the expressions 

hwere we have set g!" = gi ( p,O). As can be seen from the 
solutions ( 12), the corrections f indeed decrease rapidly 
in the region lE -pol > T. As usual, the dependence of the 
solution on the parameter y manifests itself only in the cor- 
rections that are nonlinear in the electric field. 

b) The warming up of the electron gas 

As the electric field intensity increases, the parameter y 
increases, and in the limit y > the electron acquires energy 
from the electric field faster than it dissipates it through the 
emission of phonons. This leads to the spreading of the dis- 
tribution function along the slopes of the well, so that the 
characteristic energy scale T, of the variation of the func- 
tions f, (E)  is greater than the lattice temperature. There- 
fore, the quantitiesf, (E f A) entering into ( 11 ) can be ex- 
panded in power series in the small parameter A/T, g 1. 
Assuming also that A/&, 4 1, and normalizing the coeffi- 
cientsg, andK, to their characteristic values K, andg, in the 
region of energies far from the magnetic-band edges, i.e., 
setting K,/K, = xi and gi/g, = g,, we can write the system 
(11) in the form 

dg,  A2 d2gl + (-a -- + --) [f1-hl 
d E  2 dE2 

-El 
*' d 2 j l )  +A'==.  dgl d f l  

( 7; 2 dE2 

As can be seen from ( 13), f, - f, - A/T, 4 1. Therefore, let 
us seek the solution to this system in the formf. = @ + f ( I ) ,  

I where the corrections f j" are proportional to the first power 
of the parameter A/T,. Neglecting the left members in ( 13), 
since y> 1 in the present case, we find 

Adding the equations ( 13), and using ( 14), we obtain an 
equation for the determination of the unknown function 

where =glg2/(g, +g2).  Assuming that the function 
@(E)  decreases to zero in the vicinity of the upper magnetic- 
band edge . as E 0  and setting 
Te(E) = T+ ~ A G / ( K ,  + K2), we find from (15) that 

E 

'D ( E )  = [erp { ~ d E f / ~ . ( E f ) }  +I]-: 
L 

where the integration constantp is determined from the con- 
dition for the constancy of the number of particles in the 
well. 

Let us note that the electron temperature Te which we 
have formally introduced is a rapidly varying function of the 
energy - (on account of the critical dependence of the function 
G(E) on the energy ), so that, generally speaking, the func- 
tion @(E)  differs greatly from the Fermi function. We can 
only speak of a local electron temperature in the correspond- 
ing energy (coordinate) region. Let the chemical potential 
p, of the system in equilibrium lie below the energy E * at 
which g , ( E  *) = g 2 ( E  *). Then in not too strong electric 
fields the quantities g, ( p) differ greatly from each other, 
and as the characteristic value we should take 
go = mink ,  ( p), g,( p)}, since it is precisely the smaller of 
the two quantities g, ( p) that enters into the definition of 
.rL. - For p < E * ,  g o = g , ( p ) g g I ( E * ) g g , ( p ) .  Hence 
G( p)  z 1, and since K, =: 1 always, the quantity T, ( p) 
z T  + yA/2. Depending on the magnitude of the ratio 
r z / r $ ,  we can have a case of weak (yA < T) or strong 
(yA > T) detachment of the electron temperature at E = p. 
But irrespective of the magnitude of yA, the electron tem- 
perature is higher, i.e., Te (E)  ) T, ( p), in the energy region 
E > p  + A, since the quantity G(E) increases exponentially 
in the region E > p  with a characteristic scale of variation E,, 

attaining the maximum value at E = E * : R E  *)  = g, (E * ) /  
2g, ( p) > 1. Therefore, the function @ ( E )  has in the energy 
region E > p  + E, a long plateau extending right up to ener- 
gies of the order of 2E * - p (for the approximately symmet- 
ric function G( E) = G(2E * - E) ), where we again have - 
G(E) =: 1. The amplitude of this plateau depends on the rela- 
tion between Te ( p) and E ~ .  If Te ( p) < E,, then in the region 
of energies of order E, in the vicinity of E = p,  the function 
@(E)  decreases like the Fermi function with temperature 
T )  and is able to decrease to the value 
exp [ - E,/T, ( p) ] before the growth of Te with increasing 
E begins to have an effect. Since in this case the amplitude of 
the plateau is small, the normalization constant satisfies 
P =:Po. 

c) The case of strong electric fields 

As can be seen from the preceding subsection, in medi- 
um (warming) electric fields the symmetric part of the dis- 
tribution function @(E)  still retains some features of the 
equilibrium case: @(E)  z 1 at the bottom of the magnetic 
band, and, subsequently, after the plateau has come to an 
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end, rapidly decreases to a value practically equal to zero. 
But in strong electric fields the parameter y can be so large 
that the distribution function, under the action of the elec- 
tron-impurity collisions, greatly flattens out, and becomes 
roughly constant over the entire extent of the magnetic band. 
In this case the analysis carried out in Subsec. b )  is inappli- 
cable: we must take account of the fact that, in the vicinity of 
the magnetic-band edges, in an interval A (which constitutes 
a substantial fraction of the amplitude Vo of the potential in 
strong electric fields), the right member of Eq. ( 1 lb) does 
not contain either the first or second term. Let us first con- 
sider the commensurable case in which the interval A is con- 
tained in the left slope of the fundamental period (see Fig. 1 ) 
an integral number of times, so that E0 /A = n is a whole 
number. Then the interval A will be contained in the right 
slope of this period exactly n + 1 times. Let us set in the s-th 
interval E = E, + E, E, = (s - 1 )A, O<E< A. Let us also set 
A (E, + E )  =A,(E), g, (E ,  + E )  = g , , ( ~ ) ,  i = 12.  Then 
from ( 1 1 ) we obtain a system of equations relating the distri- 
bution functions from neighboring intervals: 

where s = 1,2, . . . , n, 8 ,  is the Kronecker symbol, and for 
s = n + 1 we have the single equation 

The differential operators standing on the left-hand sides of 
the equations ( 11 ) and proportionaito the small parameter 
y-' 4 1 have been denoted by the D,, vts ) in ( 16). Let us 
seek the solution to the system ( 17) in the form of a series in 
powers of the parameter y-': As = f ::' + f i:' + . . . . In 
the zeroth approximation in this parameter, we discard the 
left members of the equations ( 17), and find that the f ::' are 
determined by the single functionfO', defined in the interval 
A, so that f l:' = f 'O'. In the next approximation we substi- 
tute into the left members of the system ( 17) the function 
fO';  into the right members, the corrections f 2'. Consider- 
ing the fuytion f"' and, with it, the left members, 
Dl, Cf'O)) = D ,'P', of the system ( 17) to be prescribed, we can 
successively express the f ,'," ( E )  in terms of the function 
f :,I,) = f ( ' ' ( ~ ) ,  which is also defined in the interval A: 

where we have set 

The indicated procedure for obtaining the corrections f j,:' 
can be continued indefinitely, and, thus, the functionsf, ( E )  

can be expressed in terms of the function' f,,, (E)  

- - f + f ( I )  + . . . . , which is defined in the interval A. The 
form of the functionfO' can be found on the basis of the 

following arguments. It is easy to see that the sum overs of 
the right members of the equations ( 17) vanishes identical- 
ly. Therefore, for the corresponding system of equations for 
the determination of the corrections f ::' to be solvable, we 
must require that the sum of the left members of the equa- 
tions ( 17) vanish, i.e., that 

The relation ( 19) is actually a differential equation for the 
determination of the function f O'. Integrating it once, we 
obtain 

II n + I  

where C is a normalization constant, proportional to the 
density of the electric current flowing along the superlattice 
axis. Another constant, which is required for the determina- 
tion of S o ) ,  can be found from the matching condition, 
yO' (0)  = f(O'(A), necessary for the continuity off "(E)  
over the entire extent of the magnetic band. It is clear that 
the symmetric part of the distribution function f " (E) is 
periodic, with period A, in the magnetic band. 

On the basis of similar arguments, we can obtain an 
equation for the determination of the functionff<" (E) .  But 
for the computation of the currents in the system, it is suffi- 
cient to know the difference f:-2 - f $), which, with 
allowance for (20), can be written in the form 

h-I k 

The general (incommensurable) case, in which Eo 
= nA + A', A' <A, can be analyzed, using practically the 

same procedure developed above for solving the system 
( 11 ). It is just sufficient to divide the interval [0, E, + A] 
into successive intervals of length A' and A - A', and write 
down a system of equations similar to (17) in each of the 
intervals, the total number of which will now be 2n + 3. Of 
these equations only the n + 1 equations pertaining to the 
A - A' intervals and the n + 2 equations pertaining to the A' 
intervals are coupled. Each of these systems of equations can 
be solved similarly to the system (17), and the symmetric 
part of the distribution functionfO'(E) is "sewn" together 
from the portions defined in the A' and A - A' intervals. 

The possible variation of the function f " ( E )  in the A 
interval depends on the form of the functions K, (E )  and 
decreases with increasing number n of intervals, the function 
f O' (E) tending to a constant as A decreases. At the same 
time the amplitude of the aperiodic monotonic component 
connected with the corrections f begin to increase, and 
the solution constructed in the present subsection joins the 
solution given in Subsec. b)  . 

d) The case of weak impurity scattering 

Let us now consider the case r,*, s r z h ,  which can be 
called the case of weak impurity scattering. As we have 
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shown above, this situation is clearly realized in the limit 
A)R, when the electron-impurity collision integral can be 
neglected. Discarding the right members of the equations 
( 1 1 ) , and integrating once, we obtain 

where the C, are integration constants. But in narrow re- 
gions around the extrema of the dispersion curve (6), where 
the conditions for phonon emission are not fulfilled and the 
coefficients K, vanish, the collision integral (8) is relatively 
large because of the growth of the corresponding overlap 
integrals in these regions. The scattering of the electrons by 
the impurities in the vicinity of the extrema ensures the clo- 
sure of the current in these regions, and, furthermore, brings 
together the values of the distribution functionsf, on differ- 
ent sides of an extremum. Therefore, the effect of the impuri- 
ty scattering (an effect which is important only in the indi- 
cated narrow regions) on the form of the functionsf, in the 
principal energy region lying far from the magnetic-band 
edges can be qualitatively taken into account in the form of 
the corresponding boundary conditions on Eqs. (22). Spe- 
cifically, we equate the distribution functions f, (E)  at the 
bottom of the well (see Fig. 1 ) and in the vicinity of its edges, 
which, on account of the periodicity of the distribution func- 
tion, leads to the conditions 

and also set - C,  = C2 = J, which, with allowance for the 
sign, implies the equality of the electric-current densities at 
the sides of the well. Then it is not difficult to show that, at 
lattice temperatures T 5 V, and a magnetic-band occupancy 
v < 4, the current in the system is always exponentially small 
because of the fact thatA -exp{ - EJT} near the magnet- 
ic-band edges. For the constant J, which is proportional to 
the electric current density, we have 

Everywhere above we spoke of electrons, assuming that 
the magnetic band occupancy satisfies v 5 1. In the case v 2 4 
the obtained results can easily be reformulated for the holes 
in the magnetic band. 

5 3. COMPUTATION OF THE DISSIPATIVE AND HALL 
CURRENTS 

As is well for a prescribed density matrix? 
of the system the average densities of the dissipative, j,, and 
Hall, j,, currents of the system can be computed from the 
formulas 

jx  =I-Z eoC'h[2(N+1) 1'" Im f N S N + ,  ( X ) ,  (25a) 
LxL, N , ,  

where the IN, X ) areJhe basis wave functions of the unper- 
turbed Hamiltonian H,, , ( 1 ) . The off-diagonal density-ma- 
trix elements f,,, , entering into these expressions can be 
expressed by means of the standard procedure" in terms of 
the diagonal elements f, (X), which we computed in the pre- 

ceding section with the aid of the kinetic equation (4). After 
a number of tedious but simple transformations we can re- 
duce (25 ) into a form convenient for the computation of the 
currents in the above-mentioned cases a) ,  b), and c) from 
$2: 

E, 

I.= (ednhri.Vo) j gz(E) (f2-fl)dE, (26a) 
0 

It is easy to see that (26a) takes account of the total 
number of electrons crossing in unit time the cross section 
X = 0 (the bottom of the well in Fig. 1 ) as a result of impuri- 
ty scattering. As we saw in 52, the electric-current compo- 
nent due to the electron-phonon collisions vanishes in the 
vicinity of the magnetic-band extrema; therefore, the for- 
mula (26a) gives the total dissipative current in the system. 
(Let us recall that we are neglecting the hopping of the carri- 
ers from slope to slope during the scattering by the phon- 
ons.) For an arbitrary cross section (X #O) the formula 
equivalent to (26a)has a more complicated form. The 
expression (26b) shows that the Hall current in the system is 
proportional to the drift velocity averaged over the distribu- 
tion f(E) .  

Substituting the solutions (12) into (26), we obtain at 
sufficiently low lattice temperatures T <  E~ in the linear case 
the expressions 

These formulas give the implicit dependence ofj, and j, on 
the magnetic band occupancy v, which is connected with the 
position of the chemical potentialp of the system relative to 
the bottom of the band through the normalization condition 
( T 4  Vo): 

1 
dE=v. 

AVO 

Since G(E) has a sharp peak of width E,  at E = E *, in the 
present (A <A) case the quantity j,, as a function of the 
occupancy, has a sharp peak inside the magnetic band, in 
contrast to the caseR 2 A, in which j, has its maximum near 
band edges.16 In this same region of energies - E ,  the func- 
tionj, (v) undergoes a steep jump in the vicinity ofE *, since 
forp < E * we haveg, ( p) (g2( p ), while forp > E *, in con- 
trast, we have g, ( p ) )g, ( p ). Thus, this dependence has a 
stepwise form, characteristic of the quantum Hall effect (a  
similar result has been obtained by Aizin and Volkov" in the 
linear response formalism), j, (v)  being, with exponential 
accuracy a multiple of Ne2/2d. In the present case the 
shelves in the plot ofj, (v)  arise not as a direct consequence 
of the localization of the electron states, but as a result of the 
fact that the isoenergetic levels in the vicinity of the bottom 
of the well are strongly coupled by the electron-impurity 
interaction, and they have, with exponential accuracy, the 
same occupancy. 
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In the opposite (T>E,) limit, it is interesting to note 
that j, and jy are rapidly varying functions of the lattice 
temperature. For example, in the regionp < E * the quantity 
G( p )  in (27a) is replaced by G(B*) ( E , /  

T)exp[ - ( E  * -p) /T] ,  while the ratio g,(  p) /g2(  p)  in 
(27b) is replaced by exp [ - ( E  * - ,u ) /TI. This is due to the 
fact that the occupancy of the states with energy of the order 
of E *, which make the effective contribution to the dissipa- 
tive and Hall currents, increases exponentially with increas- 
ing temperature. For 3 5 A /A 5 4 and 30 5 V, 5 50 K, the 
characteristic energy E, lies in the range from 2 to 5 K, so 
that the indicated temperature dependences occur in a re- 
gion convenient for experimental observation. 

As Fincreases in the y 3 1  limit, the electron gas begins 
to warm up (see Subsec. b in $2), which leads to the appear- 
ance of critical dependences ofj, and jy on the electric field 
intensity. Assuming the lattice temperature to be low, spe- 
cifically, that T<yA, and substituting the expression (14) 
into (26), we find that in the region p CL E * 

where C, - 1; the second term in the brackets is connected 
with the appearance in the distribution function @(E) of a 
long plateau of width 2(E* -p -.so) and height - exp [ - E ~ T ,  ( p) 1. The nonlinear function j, ( F )  arises 
on account of the fact that Te ( p)  -p. Similar computa- 
tions for the Hall current yield 

where C, - 1. The second term in the formula (29a) is equal 
to the first term in the characteristic field 

(see Fig. 2), which can be considered to be the beginning of 
the nonlinear regime. The critical dependence j, (F) occurs 
in a fairly narrow range of fields right up to the field 
A, = A;lni(V&,) in which the plateau height saturates 
(T, ( p )  ZE,, ). Notice that the nonlinear regime in the Hall 
current can arise much earlier, specifically, in a field of in- 
tensity 

and end in the same field A,. For A > A, the Hall current 
practically does not differ from the ideal current, whereas 

I 
0 A: A, A, A, A=eFA 

FIG. 2. 

the dissipative current saturates, and then there appears a 
decreasing section in the dependence j, (F) in a characteris- 
tic field A,. The appearance of this section is due to the fact 
that the distribution function is roughly a constant over the 
entire extent of the magnetic band in a strong electric field 
(see Subsec. c in $2). Substituting the expression (21 ) into 
(26), we find 

E .  

In deriving (30) we assumed that n = E, /A>> 1, and re- 
placed the corresponding sums in (21) by integrals. It is 
interesting to note that the expression ( 30) contains only the 
characteristics of the electron-phonon scattering, although 
in the case under consideration this scattering is much 
weaker than the electron-impurity scattering. This circum- 
stance has a simple physical explanation. Because of the in- 
tense scattering by the impurities, the electron "spreads" 
along the chain of isoenergetic states belonging to different 
wells, and then slowly, over a time period of the order of T:,, , 
hops from chain to chain, losing in each hopping act energy 
of the order of WA.  The electron traverses a distance A 
before losing a total energy of A. Consequently, the mean 
electron velocity along the X axis is A (fi//Z)/r,*, A. 

The characteristic field A, essentially gives the lower 
limit of applicability of the expressions obtained in Subsec. c 
of $2. Consequently, this field can be estimated on the basis 
of the argument that, near the upper magnetic-band edge, 
the corrections f "', ( 18), are of the order off 'O'. Replacing 
the sums in ( 18) by integrals, we find that f :L ' -&dTe ( V,) . 
since Te(Vo) = Te( PIG( Vo)/G( ,u) < T,( p )  (see (1611, 
A, = A2[G( , ~ ) / G ( v , ) ] " ~ .  

Finally, in the region of fields A > A, = V,, where the 
electrons can be scattered only by the phonons, the function 
j, (F) -F - 2 ,  similarly to the homogeneous case investigat- 
ed by E r ~ k h i m o v . ~ ~  

$4. CONCLUSION 

Above we have studied the dynamics of the electrons of 
a given partially occupied Landau level, neglecting the possi- 
ble coupling between the levels, as well as the electron-elec- 
tron interaction. Let us consider the effect of these factors on 
the results obtained. Let us, for example, estimate the ratio 
of the occupancies, f, and f,, of the ground and first excited 
Landau levels. Since h,*>> V,, in a fairly broad region of 
electric-field intensities the magnetic subbands of the var- 
ious Landau levels lying within the limits of a small number 
of superlattice constants do not intersect, and the interband 
transitions are over large distances satisfy AX,A (see Fig. 
3); therefore, these transitions are of low probability, and 
can give rise to only small corrections to the distribution 
functions fo and f, found from Eq. (4)  without allowance 
for the interband transitions. But it is precisely the interband 
transitions that determine the ratio f, /fo of the occupancies 
of neighboring levels. This ratio is easily estimated with the 
aid of a simple iteration procedure based on the exponential 
smallness of the ratio of the intensities of the interband and 
intraband electron transitions. It is precisely in the equation 
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FIG. 3. 

for fo that we shall take account of the interband transitions 
to the neighboring N = 1 Landau level. Subsequently, we 
shall eliminate from this equation the large St&, f,)-type 
collision terms describing the intraband transitions to the N 
= 0 level by summing this equation over X. As a result we 

obtain the following relation between the amplitudes fo and 

f, : 

The estimation from ( 3  1) of the desired ratio f, /f, is 
easiest in the case of large F, when the distribution functions 
J; =:const in the magnetic bands. It is easy to see that in this 
case the most intense particle exchange occurs between the 
top of the lower and the bottom of the upper magnetic band. 
It follows from the laws of conservation of energy and mo- 
mentum that the scattering by the phonons occurs with max- 
imum effectiveness when the x component of the phonon 
momentum is equal to zero. The electron-jump distance in 
this case (the processes 1 and 3 in Fig. 3) is accordingly 
given by 

~ , - ~ , , ~ = h ( i ? o , ' - 2  I~o)l(eFh*i?slh), 

and the overlap integrals (see Ref. 23) 

A similar formula relates the overlap integral J, in the 
expression for the probability for electron-impurity scatter- 
ing (the process 2 in Fig. 3)  with the corresponding jump 
distance25 X, - X, = (fiw,* - 2V,)/eF. The minimum ener- 
gy of the phonon absorbed in the process 1 corresponds to 
the quite large quantity (h,* - 2Vo)+is/eFA '; at low tem- 
peratures T the number of such phonons is exponentially 
small, and the process 1 is of low probability. Therefore, the 
dominant contribution to the population of the upper level is 
made by the electron-impurity scattering process 2, and the 
contribution of the phonon emission processes (the arrow 3 
in Fig. 3) is negligible. On the other hand, the upper level is 
depopulated most rapidly through the emission of phonons 
in the process that is the inverse of the process 1 in Fig. 3. 
Comparing the principal exponential factors in the expres- 
sions for the rates of population, J, and depopulation, J , ,  of 
the upper level, we find that, for 

the occupancy of this level is exponentially small, and, con- 
trary to the assumption made in Ref. 26, is not described by 
the Boltzmann law with any of the intraband "tempera- 
tures." 

Owing to the fact that the initial and final points of the 
most probable jumps cannot coincide exactly with the ex- 
trema of the bands, the corrections to the indicated distances 
X, - Xi are small, provided that X, - X, %A. In this case 
the probabilities for the indicated transitions practically do 
not depend on, for example, the shape of the potential V,(x), 
whose only effect is to effectively decrease the cyclotron 
quantum by the width 2 V, of the magnetic band. Let us also 
note that, in the lowest order perturbation theory, the elec- 
trons are not allowed by the energy and momentum conser- 
vation laws to undergo interlevel transitions in the course of 
the scattering by each other. Assuming that +is/A =:4 K and 
&I,* z 100 K, we see that the inequality (32) is violated only 
in fields F- 5 x lo3 V/cm. 

At equilibrium the electron density in a superlattice is 
inhomogeneous. This leads to the appearance in the system 
of a periodic self-consistent potential with amplitude of or- 
der V, ze2A /27rwZ ( x i s  the mean permittivity). This esti- 
mate has been obtained under the assumption that the fun- 
damental harmonic in the spectrum of the function n, ( x )  is 
the one with period A. If V, /V, < 1, then this potential can 
be ignored. In the opposite case it should be included in the 
definition of the total potential V, ( x ) .  The effect of the self- 
consistent potential on our results will be greatest in the 
field-intensity range [A,, A,] (see Fig. 2), since for A <A, 
the height of the plateau is small, and the variation of the 
self-consistent potential with the electric-field intensity is 
insigficant. But if A > A,, then the electron density in the 
system is approximately uniform, and the self-consistent po- 
tential can generally be ignored. 

As to the scattering of the electrons by one other, in a 
number of cases its intensity is substantially suppressed. The 
laws of conservation of momentum and energy indicate that 
two electrons in states X, and X, in the magnetic band can 
scatter each other only when E '(X, ) =: E ' (X, ), i.e., only 
when the states are on different sides of the point X * of in- 
flection of the function E(X) ,  (6 ) .  If p < E ( X  *), and the 
electron temperature is not high, then the occupancy of one 
of these states is exponentially small, and the probability for 
interelectron scattering is - exp{ - I E (X,  ) - E(X2)  //T, ). 
Furthermore, in the case of a highly asymmetric shape of the 
E ( X )  curve, when I V, - E ( X  * )  I V,, the electron-electron 
collision integral contains an additional small parameter 
- I Vo - E ( X  * ) lA /A V,, due to the narrowness of the range 
of allowed energy transfers that occur during scattering. The 
effect of the electron-electron collisions can be appreciable 
when the distribution function f(E) is of the same order of 
magnitude in the entire domain of definition (see Subsec. c 
in $2). The magnitude of the electron-electron collision inte- 
gral is then proportional to the amplitude of the f(E) oscilla- 
tions, and decreases as the oscillations abate, since f (E)  
= const satisfies this integral identically. If the f(E) oscilla- 

tion amplitude is high, then it can decrease under the action 
of the electron-electron collisions. But the order of magni- 
tude of the currentj, , (30), determined by the phonon-emis- 
sion intensity will not vary in the process. 

In conclusion let us note the most interesting cases of 
the results obtained above. 
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1. In weak electric fields the components of the conduc- 
tivity tensor for the system depend exponentially on the ex- 
tent of occupation of the magnetic band by electrons and on 
the phonon gas temperature. 

2. Critical nonlinear dependences of the Hall and dissi- 
pative currents on the electric-field strength arise in relative- 
ly weak electric fields, specifically in fields of intensity F- 10 
V/cm. 

3. In this case the electron-temperature approximation 
for the description of the electron gas in magnetic bands is 
often inapplicable. Even in comparatively weak fields the 
charge distribution function differs greatly from the Fermi 
function. 

4. Even in fields of appreciable intensity, when the elec- 
trons are uniformly distributed at the lowest Landau level, 
the occupancy of the top level can remain exponentially 
small. 

These results are in fact a consequence of the inhomoge- 
neity of the system in the case when A < A ,  a situation which 
leads, in particular, to the critical dependence of the elec- 
tron-impurity transition probability on the electron energy 
in the magnetic band. 

As the magnetic field intensity is increased, the values 
of the characteristic electric fields F, = A,/eA on the cur- 
rent-voltage characteristics of the system vary slightly (see 
Fig. 2 ) ,  and, owing to the decrease of A / A ,  the indicated 
critical dependences of the components of the system's con- 
ductivity tensor on the electric field, temperature, and car- 
rier concentration will be more pronounced. 
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